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Introduction

Over the next several class periods we will be reviewing the basic results of
probability and relating probability to the second law of thermodynamics.

Basic Probability

The theory of probability has its origins in gambling. Chevalier de Mere
noted that he could make money by offering even odds on throwing one
“6” in four rolls of a die. He reasoned (plausibly) that betting on a double
“6” in 24 rolls of a pair of dice would be profitable – it wasn’t.

The Single Die

We’ll adopt a useful device – what’s the probability of getting no sixes
on four rolls of a die? The probability of not getting a 6 on one roll is
5/6. Since the rolls are independent of each other we can multiply the
individual probabilities to calculate the net probability:

P(no 6|fair die) =
(

5
6

) (
5
6

) (
5
6

) (
5
6

)
=

(
625
1296

)
.

We are, of course interested in the opposite result – what is the probability
of getting one six in four throws?

P(6|4 throws of a die) = 1−
(

625
1296

)
>

(
1
2

)
,
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–the bet is a winner.

P(6|fair die) =
(

1
6

) /
throw

P(not 6|fair die) =
(

5
6

) /
throw

Notice that I’ve written my probabilities in a particular way, I have written
probabilities that are conditional. The vertical line can be read as “given
that”. There are several different schools of probability, until recently the
dominant schools was the frequentist, orthodox, or statistical school. The
use of the conditional symbol indicates that the writer is a member of the
Bayesian, or Laplacian school. Interestingly, it was shown, in 1946, that if
the statistical method produces a different result to the Bayesian method,
then the statistical method is wrong. I am an adherent of the Bayesian
school, I have always been, when I wanted to learn about this sort of thing
I picked up Harold Jeffreys’ book on probability. Since I omitted the first
chapter, I wasn’t aware that there were other methods that were accepted.
I viewed it as Jeffreys simply showing that other methods that could be
used were inefficient. It was a surprise to find that people actually used
them. In cases where it is obvious what is meant, I won’t always use the
conditioning notation — but I always have the background information in
mind.

In order to see why the second bet failed, we will take a brief look at
sample space.

Sample Space

A sample space is a list of all possible outcomes of an experiment. The
possible outcomes for a pair of dice are:

∣∣∣∣111111
∣∣∣∣222222

∣∣∣∣333333
∣∣∣∣444444

∣∣∣∣555555
∣∣∣∣666666

∣∣∣∣∣∣∣∣123456
∣∣∣∣123456

∣∣∣∣123456
∣∣∣∣123456

∣∣∣∣123456
∣∣∣∣123456

∣∣∣∣
. Of the 36 possible outcomes, only one is a double 6.
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P(double 6|one roll of fair dice) =
(

1
36

)

P(Not double 6|one roll of fair dice) =
(

35
36

)
Compounding probabilities multiplicatively,

P(no double 6|24 rolls of a pair of fair dice) =
(

35
36

)24

= 0.5086

Thus it is no surprise that Chevalier de Mere lost money on this bet.

Formal definitions of probability

If there are several equally likely, mutually exclusive, and collectively ex-
haustive outcomes to an experiment, the probability of an event E is given
by:

P(E|Conditioning Information) =
Number of outcomes favorable to E

Total number of outcomes
.

If the event cannot be broken down into equally likely events – for in-
stance, what’s the probability of snow on June 21st.

P(E|Conditioning Information) =
Number of succesful occurences of E

Number of trials
.

This second definition can be expected to improve with the number of tri-
als.

The Terminology of Probability

Event not A ⇒ A does not happen

Event A or B ⇒ In an experiment A or B or both occur
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A then B ⇒ If in independent successive experiments A occurs in the 1st

and B occurs in the 2nd.

A,B are disjoint events if it is impossible for both of them to occur simul-
taneously.

Compounding Probabilities

If A,B are independent successive events or experiments:

P(A then B) = P(A)P(B),

P(not E) = 1− p(E),

and, if A,B are disjoint,

P(A or B) = P(A) + P(B).

The reason that we calculated P(no 6|4 rolls) was that we couldn’t com-
pound the probabilities for one six in four rolls.

Some Examples

Playing Cards

In a normal deck, there are fours suits and 52 cards.

P(spades) =
13
52

=
1
4

P(king) =
4

52
=

1
13

If you haven’t seen the cards, it doesn’t matter if some of them were previ-
ously dealt. If the cards are exposed and not replaced differences emerge.
In such situations, it is best to use the notation for conditional probability
so that the conditions are clear.

P(pair|2 cards are drawn) =
3
51
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In this case, it doesn’t matter what the first card was.

P(5 spades) =
(

13
52

) (
12
51

) (
11
50

) (
10
49

) (
9

48

)
= 0.000495

In this case each of the events was independent.

P(black card) =
26
52

P(red ace) =
2

52

P(black card or red ace) =
4
52

+
2

52
=

7
13

In the above case, each of the events is disjoint

Monkeys and Shakespeare

We’ll use our new found methods to answer a question posed by Sir James
Jeans. Can Monkeys type Hamlet?

We first need to determine the probability of Hamlet appearing in a
random stream. As there were no computers in Jeans’ era, we’ll assume
a typewriter. There are approximately one million characters in Hamlet,
and assume that there are 44 keys on a typewriter. (We won’t worry about
the shift key.) Thus the probability of getting any character is 1/44. So

P(Hamlet|Random typing) =
(

1
44

) (
1

44

)
. . .

(
1
44

)
=

(
1

44

)106

.

This is one of those numbers for which your calculator provides little help.
We can use logarithms, log10 44 = 1.643453. Now if loga x = y, then ay = x,
so 44 = 101.643453. Thus we can write

P(Hamlet|Random) =
(

1
44

)106

=
1

(44)106 .

So
P(Hamlet|Random) =

1
(101.643453)106 =

1
101643453 .
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We have now calculated the probability of typing Hamlet if we type one
million characters at random. The probability can be expected to increase
if more characters are typed. The question is, by how much does the prob-
ability go up?

We will now work this out, the question is how many monkeys and
how many keystrokes. Let’s assume that the number of monkeys that has
ever lived is 1010. Further let each of them have lived for the age of the
universe, that is 1018. Finally, we’ll assume that they can hit ten keys per
second. (Some good typists can.) Now clearly the probability will go up.
How do we calculate it? By a scheme that we have used before. We’ll
calculate the probability that they do not type Hamlet.

P(Hamlet|Random) = 10−1643453,

P(No Hamlet|Random) = 1− 10−1643453.

With 1029 keystrokes, we can write the probability as

P(No Hamlet|Random) = (1− 10−1643453)29.

Some of you might not like this step, and would want to add 106 keystrokes
to either end of the manuscript. Remember that 2× 106 is negligible com-
pared to 1029. To evaluate this probability we use

(1 + x)p = 1 + px +
p(p− 1)x2

2!
+ . . . , if |x| < 1.

Therefore,

P(No Hamlet|Random) = 1− 102910−1643453,

and finally,

P(Hamlet|Random) = 102910−1643453 = 10−1643424.

This could be said to be the meaning of never.

Methods of Counting

If something can be done n1 ways, and something else can be done in n2
ways, then the number of ways of doing these things in succession is n1n2.
This is called Fundamental Principle of counting.
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Permutations

How many ways can 13 objects be arranged (or rearranged)?

13× 12× 11× 10× . . .× 1 = 13! = 6, 227, 020, 800

The question that we have really asked here is: given n objects, how many
ways can we permute them? We denote the number of permutations of
n things take n at a time as nPn, P(n, n), or Pn

n . To clarify this think of n
people sitting in n chairs. There are

n(n− 1)(n− 2) . . . 1 = n!

ways of arranging them. Thus,

P(n, n) = n!

Now consider n chairs and r people, where r < n. Then there are
n ways of filling the first
n− 1 ways of filling the second
n− 2 ways of filling the third
So how many ways are there of filling chair r? To determine this consider
the following
n = n− 1 + 1
n− 1 = n− 2 + 1
n− 2 = n− 3 + 1
For the rth this fives us the answer n− r + 1.
Thus the number of permutations of n things taken r at a time is

P(n, r) = n(n− 1)(n− 2) . . . (n− r + 1).

We can rewrite this as

P(n, r) = n(n− 1)(n− 2) . . . (n− r + 1)× (n− r)!
n− r)!

=
n!

(n− r)!

resulting in

P(n, r) =
n!

(n− r)!
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This calculation assumes that the order of the objects is important. It can
be used to answer such questions as: How many different finishes among
the first three places can occur in an eight horse race. The answer is

P(8, 3) =
8!

(8− 3)!
= 336.

It can’t answer questions like how many distinct foursomes can be formed
from seven golfers. Here the order of the golfers on the scorecards doesn’t
matter, for this we need combinations.

Combinations

So how many combinations can be formed from seven golfers? The num-
ber of permutations is P(7, 4) = 7!/3! = 840. Since we don’t care about
order, this contains 4! useless rearrangements of the same names – a given
foursome can be ordered in 4! ways. The number of foursomes is P(7, 4)/4!
We call this the number of combinations of n things taken r at a time. This
is written as nCr, C(n, r), or (n

r ), we read this as “n” choose “r.”

C(n, r) =
P(n, r)

r!
=

n!
r!(n− r)!

We can write the relationship as

P(n, r) = C(n, r).P(r, r)

Combinations can be used to answer such questions as: What is the co-
efficient of x8 in the binomial expansion of (1 + x)15? I suppose we could
work it out, but there is an easier method. Think! We obtain the term in
x8 by multiplying 1′s in 7 brackets by x′s from the other 8. The number of
choosing 8 form 15 is

C(15, 8) =
15!
8!7!

This is the desired coefficient of x8.

Detailed Example

Let’s check this method for (1 + x)3

(1 + x)3 = (1 + 2x + x2)(1 + x) = 1 + 2x + x2 + x + 2x2 + x3 = 1 + 3x + 3x2 + x3
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The coefficients are
x0: C(3, 0) = 3!

3!0! = 1
x1: C(3, 1) = 3!

1!2! = 3
x2: C(3, 2) = 3!

2!1! = 3
x3: C(3, 3) = 3!

0!3! = 1
Generalizing, if we have (a + b)n, then the coefficient of an−rbr is C(n, r),
usually written as (n

r ). The binomial expansion can then be written as

(a + b)n =
n

∑
r=0

(n
r )an−rbr

The Basic Problem of Thermal Physics

Many problems that arise in thermal physics reduce to the following: Given
N balls and n boxes, how many ways can they be arranged so that there
are N1 in the first, N2 in the second, . . . , Nn in the nth, and what is the prob-
ability that a given distribution will occur? Let’s take a particular case.
N = 15

Box Number Number of Balls
1 3
2 1
3 4
4 2
5 3
6 2

Order is obviously unimportant in this case.
How many ways can we choose 3 from 15 for the first box? The answer is
C(15, 3). This leaves
12 box 2 C(12, 1)
11 box 3 C(11, 4)
7 box 4 C(7, 2)
5 box 5 C(5, 3)
2 box 6 C(2, 2)
Therefore, the total number of ways is

C(15, 3)C(12, 1)C(11, 4)C(7, 2)C(5, 3C(2, 2)
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=
15!

12!3!
12!

11!1!
11!
7!4!

7!
5!2!

5!
2!3!

2!
2!0!

=
15!

4!(3!)2(2!)21!
Now, what’s the probability of this distribution occurring? Assume a ran-
dom distribution, each ball has a one in six chance of being in any box. So
we can place the
1st ball in 6 ways
2nd ball in 6 ways
3rd ball in 6 ways
4th ball in 6 ways
5th ball in 6 ways
. . .
15th ball in 6 ways
The fundamental principle of counting yields 615 total ways. Recall

P(E|Conditioning Information) =
Number of outcomes favorable to E

Total number of outcomes
so

P =
15!

4!(3!)2(2!)21!

615 ≈ 8× 10−4

Now, we’ll consider restricting the number of particles allowed in a
box. Consider the problem of placing 4 balls in 6 boxes with the constraint
that the maximum number of balls in any box is 1. The total number of
ways of distributing the balls is not 64. There are six ways of choosing the
first box, five ways of choosing the second, four ways of choosing the third
and three ways of choosing the fourth box. The total number of ways is
6× 5× 4× 3.

Let’s rewrite this. Consider the number of permutations of 6 objects
taken 4 at a time.

P(6, 4) =
6!
2!

= C(6, 4).4! =
6!

4!1!
4! = 6× 5× 4× 3

Now what’s the probability that the first two boxes are vacant when the
other four are filled?
The number of ways of arranging 4 balls in the last four boxes is 4!. This is
the number of favorable outcomes. The probability of the distribution is

P =
4!

C(6, 4)4!
=

1
C(6, 4)

.
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4! is the number of ways of arranging 4 balls in the 4 occupied boxes.
This will be the same for any given set of 4 boxes. The quantity C(6, 4)
tells us the number of ways of picking the four occupied boxes from the
6 boxes. There is only one way to pick the first two boxes to be vacant
so the probability is 1

C(6,4) . We could look at this problem in another way.
Consider the set of four identical (or indistinguishable) balls being placed
in six distinguishable boxes.

The balls are identical, the 4! arrangements of the 4 balls in the 4 boxes
all look alike. So there are C(6, 4) distinguishable rearrangements of 4
identical balls in 6 boxes (one or no balls per box.) All the arrangements
are equally probable, so the probability of any one arrangement is 1

C(6,4) as
before.

The probability of 2 particular boxes being empty is the same whether
the objects are distinguishable not. This only happened because all the dis-
tinguishable arrangements are equally probable. Without the restriction of
1 per box the distinguishable arrangements are not equally probable and
we’d get different results.
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