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Introduction

In this section, we are going to combine mechanics and quantum mechan-
ics with the basic ideas of probability that we have developed.

We will need to be able to specify the state of physical systems. we
will be using the method of ensembles because we do not have enough
information about the initial states of systems to use deterministic meth-
ods. Even if we had enough information to use deterministic methods,
we would not have the computational power to exploit it. The essence of
the ensemble method is to consider a large number of replicas of the sys-
tem, and to imagine that the experiment is repeated in each replica. We
get the probabilities of interest by finding the fraction of replicas in some
particular state.

The Basic Postulate

The a-priori probabilities of each specific outcome in an experiment are
equal. By a-priori, we mean based on notions as yet unspecified by obser-
vation.
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Macrostates and Microstates

In thermal physics, particular outcomes are called microstates, the outcome
is called a macrostate. Thus, we can rephrase our basic postulate as: each
microstate of a system occurs with equal probability. The question we
need to address is: If particles (atoms, molecules, etc.) obey specific micro-
scopic laws with specified interparticle interaction — what are the observ-
able properties of a system containing large numbers of these particles.

Systems allowed to evolve to a single macroscopic state. Macroscopic
states are described by macroscopic variables such as p, V, and T. Mi-
crostates are specified by the location and momentum of individual par-
ticles. Different numbers of microstates correspond to macrostates. The
number of microstates corresponding to a macrostate is called the mul-
tiplicity of the macrostate. In many books, this multiplicity is called the
number of ways

Specification of a State

Any system of particles can be described by quantum mechanics. A sys-
tem is described by a wavefunction ψ(q1, q2, . . . , qn) of some set of coor-
dinates. The number of coordinates is equal to the number of degrees of
freedom of the system. A particular state is then specified by giving the
value of some set of quantum numbers. Such a description is complete –
if ψ is specified at time t, quantum mechanics allows the prediction of ψ at
any other time. (Recall that the set of quantum numbers n, l, ml, ms specify
the state of hydrogen.)

Ensembles

The idea underlying the statistical approach is that if we wait long enough
the system will flow through (or will be arbitrarily close to) all microscopic
states consistent with the constraints imposed on the system. There are
two ways of performing averages: time averaging and ensemble averag-
ing. The method of ensemble averages is usually easier to implement.

Consider again a pair of dice, to get a statistical description, we could
throw the same pair of dice N times or we could through N pairs of dice

once. In either case, as N → ∞, P(pair of sixes) = N(pair of sixes)
Ntotal

. The
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probability of an event determined in this manner depends on the nature
of the ensemble. The ensemble method is based on the frequency defini-
tion of probability. Under this definition it makes no sense to speak of the
probability that a single seed would yield red flowers. It is meaningful to
ask the probability that the seed will yield red flowers if it is regarded as
a member of a group of similar seeds derived from a specific set of plants.
The probability will obviously be different if the seed is a member of a col-
lection of seeds known to yield red flowers, than if it is from a collection
of seeds that yields pink flowers.

This method of ensembles is not the only method of calculating macro-
scopic properties, it is the method that our author uses although he doesn’t
describe the details. As we shall see later the method of maximum entropy
yields identical results without need of ensembles.

In thermal physics we will be interested in the number of accessible mi-
crostates. An ensemble is simply a (mental) collection of systems, each a
replica on the thermodynamic (macroscopic) level. Any of the replicas can
represent the system.

The method of ensemble averaging is based on the idea that the equiv-
alence of time averaging and ensemble averaging. It sounds reasonable,
proving the equivalence is not easy. Dynamical systems that obey this
equivalence are said to be ergodic. Mathematicians have devoted much
time to the ergodic hypothesis. For physicists, this is time wasted, it is
wasted for two reasons, all many body systems encountered in nature
have been ergodic, and finally we are often interested in non-equilibrium
systems where properties change with time.

Ensembles in Thermal Systems

The approach is to consider a large number of replicas of our system – with
each replica subjected to the appropriate physical constraints. The replicas
will in general be in different physical states and will be characterized by
different macroscopic parameters. (T, P, V or U, V, N etc.) We will want to
know the probability of some value of the parameter, in other words what
fraction of the replicas assumes some particular value.

We usually have some partial knowledge of the system. The system
can only be in one of the states compatible with the available information.
It is these states that we call the accessible states of the system. Thus the
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systems in our ensembles will be distributed over the accessible states.
We will now develop our first method of determining the probability of
finding a system in one of its accessible states. Our first approach (which
you won’t find in your book, thought the pieces are there) is called the
microcanonical ensemble.

The Microcanonical Ensemble

The microcanonical ensemble represents isolated systems in equilibrium.
An isolated system is a system that cannot exchange energy or particles
with its surroundings. (That is, its total energy is conserved.)

When an isolated system is in equilibrium, the probability of finding
the system in some state is independent of time. All macroscopic features
of the system are also independent of time. Our fundamental requirement
is the one that we have already stated: equal a-priori probabilities. An
isolated system is equally likely to be in any of its accessible states. The
corollary of this is: if an isolated system is not equally likely to be in any
of its accessible states then it isn’t in equilibrium. Equilibrium is a macro-
scopic concept.

Application to a Simple System

Consider N molecules of a one component system, the system is totally
isolated. Thus U, V, and N are fixed. (U, V, N) will completely specify
the macrostate of the system in equilibrium. When the system is not in
equilibrium ρ(−→r , t), etc. need to be specified. let’s say that in general,
a macrostate can be specified by (U, V, N, α) where α denotes all addi-
tional variables. Then let Ω(U, V, N, α) be the number of microstates spec-
ified by V, N, and α and with energy between U and U + δU. (Thus Ω is
what we have called the multiplicity.) In this expression we need to use a
range of energy because it is difficult to specify or measure the energy of a
macroscopic system. (Looking ahead, quantum mechanics will not allow
it δUδt ≥ h̄) If δU is chosen to be zero, Ω is a badly behaved function,
its value is mostly zero, but at other times it jumps to the degeneracy to
the level. Ω is insensitive to the size of δU, usually any choice of δU ≤ U
works to make Ω a well behaved continuous function. While our author
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calls Ω the multiplicity, I will often call it the statistical weight or the thermo-
dynamic probability of the macrostate. An equilibrium state is characterized
by Ω(U, V, N) since α is fixed for a particular equilibrium state.

Model System: Spin Magnets

Consider N separate and distinct sites on a line, at each site is a spin mag-
net that can point up or down. Up +m ↑
Down −m ↓
Recall for a dipole of moment −→m in an external −→B − field, the interaction
energy of the dipole is U = −−→m .−→B
Dipoles tend to orient in alignment with external fields. We’re only al-
lowing up or down. If the dipole is parallel to the field, U = −mB, if the
dipole is antiparallel to the field U = mB. That is there are two possible
states with an energy splitting of 2mB.
Consider N dipoles, n parallel to the field. Then,

U = ∑
i

Ui = n(−mB) + (N − n)mB = (N − 2n)mB

Thus, in this case we see that U = U(n) here since U(−→B , V, N, n). In this
case we are keeping −→B , N constant, volume has no effect, so n ≡ α. n is
completely determined by U (and vice-versa.)

If N = 9, n = 2, both arrangements below are possible.
↑↓↓ ↓↓↓
↑↓↓ ↑↑↓
↓↓↓ ↓↓↓
These states are distinct, but cannot be distinguished macroscopically. The
total number of microstates is 2N, two possible orientations at N sites. The
number of microstates with energy U(n) is given by C(N, n), n is the num-
ber of spin-up sites. Thus in this case

Ω(n) = C(N, m) =
N!

(N − n)!n!

This is the number of states with n spin-ups. By choosing δU < 2mB the
interval contains only one energy level, and Ω(n) is the statistical weight,
degeneracy, or multiplicity.
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If n = N, all spins are up, M = mn, U(n) = −mBN, Ω = 1, this is the
ground state.

If n = N/2, M = 0, U = 0, Ω is a maximum, and the system behaves
as if there is zero field. (With a zero field the dipoles would be randomly
oriented yielding a zero net magnetization.

The most probable state is the most disordered, that is the one with the
greatest multiplicity. In fact we can state a version of the second law of
thermodynamics based on it.

The Second Law of Thermodynamics

If a system with many molecules is permitted to change, then — with over-
whelming probability — the system will evolve to the macrostate of largest
multiplicity and will subsequently remain in the macrostate.

In the preceding definition we are assuming that the system evolves in
isolation, that is no energy transfers are made to or from the system.

The Equilibrium of an Isolated System and the
Microcanonical Ensemble – Summary

Equilibrium states are fully specified by U, V, and,N – for non-equilibrium
states we must specify additional variables, α. The basic idea of statistical
mechanics is that during a measurement every microscopic state occurs
– and the observed properties are averages over all microscopic states, to
quantify this, me make the assumption of equal a-priori probabilities.

For an isolated system, with fixed total energy U, and fixed size, all
microscopic states are equally likely at thermodynamics equilibrium. This
allows us to write the probability of macrostates and microstates occur-
ring.

P(Macrostate) =
Number of microstates corresponding to macrostate

Total number of microstates

P(Microstate) =
1

Totalnumbero f microstates
=

1
Ω
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To this we add the equilibrium postulate: The equilibrium state corresponds
to the value of α for which Ω(U, V, N, α) attains its maximum value with
(U, V, N) fixed. In other words, the equilibrium state is the state of maxi-
mum probability.

The microcanonical ensemble is an ensemble where all replicas have
(almost) the same energy. The replicas do not exchange energy with each
other, they can be thought of as separated by rigid, adiabatic, impermeable
walls. U, V, andN are the natural variables of the microcanonical ensem-
ble.

Entropy

The equilibrium state for a system corresponds to the value of α for which
Ω(U, V, N, α) attains its maximum value with U, V, N fixed. The equilib-
rium state is the state of maximum probability.

Instead of using Ω, we will now introduce the entropy S as a measure
of the disorder of the system. The entropy of the system is given by

S = k ln Ω(U, V, N, α).

During real (as distinct from idealized reversible processes) the entropy of an
isolated system always increases. In the state of equilibrium, entropy attains its
maximum value.

This is the Clausius statement of the second law of thermodynamics.
At this time, I am going to use the maximization of Ω to derive the con-
cepts of temperature, pressure, and chemical potential.

Thermal Equilibrium

U1 U2
V1 V2
N1 N2

Consider a system, that is isolated, and is divided into two parts by a wall
s.t.

U1 + U2 = U

V1 + V2 = V
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N1 + N2 = N

These equations are called the equations of constraint. We’ll further as-
sume that the sub-systems are not in equilibrium and that the wall sepa-
rating them is rigid, impermeable and diathermal. That is, energy can pass
through the wall, particles cannot, and the wall is fixed in place. For each
division of U, V, andN between the sub-systems specified by the equations
above, we can write

Ω(U, V, N, U1, V1, N1︸ ︷︷ ︸
α

) = Ω1(U1, V1, N1)Ω2(U2, V2, N2)

where Ω1 is the multiplicity of sub-system 1 in the macrostate specified by
(U1, V1, N1), Ω2 is the multiplicity of sub-system 1 in the macrostate speci-
fied by (U2, V2, N2), and Ω is the multiplicity of the composite system with
this division of energy, volume, and particle number. Taking the product
of Ω1 and Ω2 is justifed by the fundamental principle of counting. The
contstraint equations limit U1, U2 etc., we’re choosing U1, V1, andN1 as in-
dependent - in other words, they correspond to the α that we used earlier.
But S = k ln Ω, so

S(U, V, N, U1, V1, N1) = S1(U1, V1, N1) + S2(U2, V2, N2).

Now let the sub-systems come to equilibrium, at equilibrium, entropy is
maximized, therefore

dS = 0,

and
0 = dS1 + dS2

we can rewrite this as

0 =
∂S1

∂U1
dU1 +

∂S1

∂V1
dV1 +

∂S1

∂N1
dN1 +

∂S2

∂U2
dU2 +

∂S2

∂U2
dU2 +

∂S2

∂V2
dV2 +

∂S2

∂N2
dN2

Now using our equations of constraint dV1 = dV2 = dN1 = dN2 and
dU = 0, so dU1 = −dU2, we can simplify this expression to

0 =
(

∂S1

∂U1

)
V1,N1

dU1 +
(

∂S2

∂U2

)
V2,N2

dU2
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and using dU1 = −dU2, this becomes(
∂S1

∂U1

)
V1,N1

=
(

∂S2

∂U2

)
V2,N2

.

This is the condition for thermal equilibrium (i.e. no heat transfer). We
already know a condition for the equilibrium of two systems in thermal
contact:

T1 = T2.

We use this to define absolute temperature,

1
Ti

=
(

∂Si

∂Ui

)
Vi,Ni

.

The choice is not unique, but it this choice makes the absolute temperature
scale identical to the ideal gas temperature scale.

Thermal and Mechanical Equilibrium

We will now consider two subsystems not in equilibrium separated by
moveable, diathermal, impermeable walls. In such a system, energy and
volume will flow until equilibrium is achieved.

U1 U2
V1 V2
N1 N2

The equations of constraint are

U1 + U2 = U,

V1 + V2 = V,

N1 + N2 = N.

These yield dU1 = −dU2, dV1 = −dV2, and dN1 = dN2 = 0. Again we
use entropy maximization at equilibrium, dS = 0 yielding

0 =
(

∂S1

∂U1

)
dU1 +

(
∂S1

∂V1

)
dV1 +

(
∂S2

∂U2

)
dU2 +

(
∂S2

∂V2

)
dV2
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At equilibrium, we would expect temperature and pressure to be equal in
this case.

0 =
(

1
T1
− 1

T2

)
dU1 +

[(
∂S1

∂V1

)
−

(
∂S2

∂V2

)]
dV1

Thus at equilibrium, T1 = T2, and
(

∂S1
∂V1

)
U1,N1

=
(

∂S2
∂V2

)
U2,N2

. Now the

partial derivatives in this case must describe the equality of pressure. We
define pressure for each subsystem as

pi

Ti
=

(
∂Si

∂Vi

)
Ui,Ni

.

This definition reduces to pV = NkT when applied to an ideal gas.

Thermal and Diffusive Equilibrium

We can continue this analysis in a similar vein by considering the wall to
be diathermal, rigid and permeable. The analysis leads to an expression
for the equilibrium of matter flow. This leads to the definition of chemical
potential µi of the ith chemical species through(

∂Si

∂Ni

)
= −µi

Ti
.

Chemical potential controls matter equilibrium.

The Fundamental Thermodynamic Relation

S = S(U, V, N) contains complete thermodynamic information. We could
equivalently write U = U(S, V, N), U is minimized at equilibrium, if we
start from U, and consider the same systems and walls we get the follow-
ing definitions:

Ti =
(

∂Ui

∂Si

)
Vi,Ni

pi = −
(

∂Ui

∂Vi

)
Ui,Ni
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µi =
(

∂Ui

∂Ni

)
Si,Vi

Thus if U = U(S, V, N), then

dU =
(

∂U
∂S

)
V,N

dS +
(

∂U
∂V

)
S,N

dV +
(

∂U
∂N

)
S,V

dN

and
dU = TdS− pdV + µdN

This is called the fundamental thermodynamic relation or the fundamen-
tal thermodynamic identity. Note: T = T(S, V, N), p = p(U, V, N), and
µ = µ(N, S, V). The fundamental thermodynamic relation can be used to
recover the definitions of T, p, µ. We can also solve the relationship for en-
tropy

dS =
dU
T

+
p
T

dV − µ

T
this allows us to recover the equivalent definitions in the entropy repre-
sentation.

In general there is more than a single chemical species in out thermal
system. The general form of the fundamental thermodynamic relation is:

dU = TdS− pdV + ∑
j

µjdN j

where µj is the chemical potential of the jth chemical species. In this ex-
pression µj = (∂U j/∂N j)S,V,µi , and the equilibrium condition is µ

j
1 = µ

j
2.

µ is a potential for matter flow. At this point, we are in a good position to
explore entropy and equilibrium.

Entropy and Equilibrium

S = S(U, V, N) is a fundamental relation in that it contains complete ther-
modynamic information about the system. At equilibrium S is a max-
imum. The properties of S are that S = ΣSi is a continuous, differen-
tiable, monotonic function of U that is homogeneous of degree one in
U, V, and N. For now we will also assert that at T = 0, S = 0. This latter
statement assumes the strong form of the third law of thermodynamics.
We will explore the strong and weak forms of the third law of thermody-
namics at a later date.
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Equilibrium in the Entropy Representation

Consider again two subsystems separated by rigid, impermeable, diather-
mal walls.

S = S1 + S2

dS =
(

∂S1

∂U1

)
V1,N1

dU1 +
(

∂S2

∂U2

)
V2,N2

dU2

dS =
1
T1

dU1 +
1
T2

dU2

Now, at equilibrium dU = 0 and dS = 0, and T1 = T2. Close to equilibrium
we can write

dS ≈
(

1
T1
− 1

T2

)
︸ ︷︷ ︸

(−)ve

dU1.

Assuming T1 > T2 by a small amount we can see that since dS must be
positive, dU1 must be negative. In other words if T1 > T2, U1 will decrease,
U2 will increase as energy flows from subsystem one to subsystem two.
Thus our new formulation agrees with our intuitive understanding of the
situation.

Now if we change the wall to having a moveable, impermeable diather-
mal wall, we have

dS =
(

1
T1
− 1

T2

)
dU1 +

(
p1

T1
− p2

T2

)
dV1.

Now, U and V are independent, so the coefficients must separately equal
0. Thus, as we have noted, at equilibrium T1 = T2 and p1 = p2. Infinitesi-
mally close to 0, we can write

dS︸︷︷︸
(+)ve

≈ p1 − p2

T︸ ︷︷ ︸
(+)ve

dV1,︸︷︷︸
(+)ve

where I have assumed that p1 > p2. This again agrees with our intuitive
understanding of the situation — the region at higher pressure will grow.
We could similarly analyze the situation of a rigid, permeable, diathermal
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wall. Infinitesimally close to equilibrium we would find that

dS︸︷︷︸
(+)ve

≈ µ2 − µ1

T︸ ︷︷ ︸
(−)ve ifµ1>µ2

dV1,︸︷︷︸
(−)ve

matter flows from high µ to low µ.

Entropy and the Energy Transfer by Heating

Entropy increases can also be related to the energy transfer by heating.
We could for instance (as our author does, and you should read) examine
entropy changes as energy is transferred to an ideal gas by heating. Other
examples are to be found in you university physics text. In general, we
find that

4Ssystem ≥ Energy transfer by heating
T

.

The equality holds for a quasistatic process — in other words for a slow
process where the system remains arbitrarily close to equilibrium. For
fast processes, the entropy change is greater. We have to be careful to
use the appropriate temperature, for slow processes, there is no problem,
the system and the heating source will have the same temperature. For
fast processes the system is far from equilibrium, the system temperature
could change drastically. For fast processes, the appropriate temperature
to use is the temperature of the heating source.

Before looking at some examples, lets remind ourselves of a few basic
facts. Recall the first law, we have written it in the form 4U = Q + W,
where W, and Q are not functions of state. We can write this for infinites-
imals as dU = d−Q + d−W where the d− denotes an inexact differential. We
will frequently integrate such forms, but should remember that they are
not true differentials. If you look at the examples, you will see that we are
integrating well defined functions or the expressions will contain an inte-
grating factor. As an example 1

T is an integrating factor for d−Q. In other
words dS = d−Q/T is a perfect differential if d−Q is added reversibly. We
have also defined W to be positive when work is done on the system.
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Examples

It’s now time to use some of our tools to examine some specific situations.

Melting Ice

If ice melts slowly at 0oC, by how much does its multiplicity change?

4S = Sliquid − Sice = k ln Ωliquid − k ln Ωice = k ln
Ωliquid

Ωice

Now, examining this, we can see that we will need to calculate 4S. If we
consider the ice to melt slowly (and there is no reason not to make this
assumption, the number of accessible microstates is not going to depend
on the rate of melting!) So we can write

4S =
Q
T

Since my calculators were all at the office, we’ll use our authors numbers,
we take 18 g of ice, at 273 K, with L fice = 3.34× 105 J/Kg, we get

4S =
(3.34× 105 J/Kg)(18×−3 Kg)

273 K
= 22 J/K.

We can now combine our calculations to yield

ln
Ωliquid

Ωice
=

1
k

Q
T

=
22 J/K

1.4× 10−23 J/K
= 1.6× 1024

then
Ωliquid

Ωice
= e1.6×1024

= 106.9×1023
.

There are many more microstates available to the liquid than there were
to the solid.

Object thrown into the sea

An object of mass m, mass specific heat cp and temperature T1 is thrown
into the sea which has temperature T0. Calculate the total change in en-
tropy. Assume the process is slow.

4Stotal = 4Smass +4Ssea
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4Stotal =
∫

mass

d−Q
T

+
∫

sea

d−Q
T

4Stotal =

T0∫
T1

mcpdT
T

+
∫

d−Q
T0

4Stotal = mcp ln
(

T0

T1

)
+

Q
T0

4Stotal = mcp ln
(

T0

T1

)
+

heat lost by mass = heat gained by sea︷ ︸︸ ︷
mcp(T1 − T0)

T0

4Stotal = mcp

(
T1

T0
− 1− ln

T1

T0

)

Isothermal Compression of an Ideal Gas

For an ideal gas, we have noted that U = U(T) only. Now, recall the first
law 4U = Q + W, or in differential form dU = d−Q + d−W. In this case if
we consider compression from V1 to V2, at fixed temperature dU = 0, and
d−W = −pdV, thus

dU = d−Q− pdV.

In this case however, since the process is isothermal dU = 0 and so d−Q =
pdV, then

4S =

2∫
1

d−Q
T

=

2∫
1

pdV
T

=
1
T

2∫
1

pdV

now, recall pV = NkT, so

4S =

2∫
1

NkdV
V

= Nk ln
V2

V1
= −Nk ln

V1

V2
.
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Entropy and Disorder

We have defined entropy in terms of the logarithm of the multiplicity.
Sometimes entropy is described as a measure of disorder, the greater the
disorder, the greater the entropy. This works well if we are only consider-
ing solids, liquids, and gases. You should be aware that it is not always a
good description and should be used with caution.
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