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Introduction

In this lecture we introduce other thermodynamic potentials and Maxwell relations.

The energy and entropy representations

We have noted that botf(U, V, N) andU (S, V, N') contain complete thermodynamic information.
We will use the fundamental thermodynamic identity

AU = TdS — pdV + pudN

as an aid to memorizing the of temperature, pressure, and chemical potential from the consideration
of equilibrium conditions. by calculating the appropriate partial derivatives we have
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We can also write the fundamental thermodynamic identity in the entropy representation:
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from which we find
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By calculating the second partial derivatives of these quantities we find the Maxwell relations.
Maxwell relations can be used to relate partial derivatives that are easily measurable to those that
are not. Starting from

we can calculate
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Now since under appropriate conditions
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This resultis called a Maxwell relation. By considering the other second partial derivatives, we find

two other Maxwell relations from the energy representation of the fundamental thermodynamic
identity. These are:

ory _(om) g (%) (o
ON S,v— 95 )y n ON Sy_ ov S,N.
Similarly, in the entropy representation, starting from
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we find the Maxwell relations:
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and the results




Enthalpy H(S,p,N)

We have already defined enthalpys= U + pV. We can calculate its differential and combine
it with the fundamental thermodynamic identity to show that the natural variabl&sas€ S, pO,
andN.

H=U+pV

we have
dH = dU 4+ d(pV) = dU + pdV + Vdp,

and so inserting
dU =TdS — pdV + pdN

we have
dH =TdS — pdV + udN + pdV + Vdp

resulting in
dH =TdS + Vdp + pdN.

Thus, we can see that we can wrile= H (S, p, N), and as already notesl p, andN are the
natural variables off. We can continue as above to generate the definitions
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and the Maxwell relations
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In the above, as we transformed fraimto H, we changed independent variables,, we
replaced the variabl& with its conjugatey. (Variablesr andy that are related through the partial
derivative of some functiog such thatg—i = y are called conjugate variables.) This is an example
of a Legendre transformIn a Legendre transform, to replace one independent variable with its
conjugate, a new functiapis defined by the addition or subtraction of the product of the conjugates
x andy. In other words we defing = ¢ 4+ xy. In the case of enthalpy we adged, as we shall
see, this was due to the presence of the t&sdV in the fundamental thermodynamic identity. To
eliminate the variables and NV in terms of their conjugates, it will be necessary to subtract the
products of the conjugate variables, as we shall soon see.

Helmholtz Free Enerygy F(T,V,N)

This time we as we transform frdimto ', we replace the independent variaBSlevith its conjugate
T'. In a Legendre transform, to replace one independent variable with its conjugate, a new function
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is defined by the addition or subtraction of the product of the conjugates. Thus in this case we
define the new functiod’ by subtractindg/’S from U.

Starting from
F(T,V,N)=U(S,V,N) - TS

calculating the differentials
dF =dU —d(TS) =dU — TdS — SdT,

then inserting
dU =TdS — pdV + udN

we find
dFf =TdS — pdV + pdN — TdS — SdT

resulting in
dFf = —SdT — pdV + pdN.

Thus, we havé” = F(T,V, N) as desired. We continue as above to generate the definitions
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and the Maxwell relations
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Gibbs Free Energy G(T,p,N)

This time we as we transform froli to G, we replace the independent variablesand V' with
their conjugated” andp. We can think of this as a double Legendre transforn/adr a single
Legendre transform of eithéf or F.

Starting from
G(Tapa N) - U(Sv VvN) - TS+pV

calculating the differentials
dG =dU — d(TS) +d(pV) = dU — TdS — SAT + pdV + Vdp,

then inserting
dU =TdS — pdV + udN
we find
dG =TdS — pdV + pdN — TdS — SAT + pdV + Vdp
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resulting in
dG = =SdT" + Vdp + pdN.

Thus, we havér = G(T',p, N) as desired. We continue as above to generate the definitions
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and the Maxwell relations
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The Grand Potential Q(T, V, u)

This time we as we transform frofi to €2, we replace the independent variabléand NV with

their conjugatesy and .. We can think of this as a double Legendre transfornadr a single
transform ofF'. The grand potential is far less common in elementary work than the other poten-
tials. It is used in open systems, that is systems that can exchange particles with the environment.
We will, however, make some use of it.

Starting from
QUT,V,p) =U(S,V,N) =TS — uN
calculating the differentials
dQ=dU —d(TS) —d(uN) =dU — SdT — TVdS — udN — Ndpu,

then inserting
dU =TdS — pdV + pdN

we find
dQ=TdS — pdV + udN — TdS — SdT — pdN — Ndu

resulting in
dQ = —pdV — SdT — Ndu.

Thus, we havé&) = Q(T,V, 1) as desired. We continue as above to generate the definitions
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and the Maxwell relations
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