1 Series, Limits and Asymptotics

Consider the function

\[f(x) = \frac{1 + x^2}{1 + x} \]

The crudest statement we could make about its behavior is \(f(x) \to 1 \) as \(x \to \infty \). Often, we would like to know how fast it goes to infinity. The answer is clear here—it grows like \(x \).

What about \(f(x) - x \)?

\[f(x) - x = \frac{1 + x^2}{1 + x} - x \]

\[\frac{1 + x^2}{1 + x} = \frac{x^2 + x}{x(1 + x)} \]

If \(|x| > 1 \),

\[\left(1 + \frac{1}{x}\right) = 1 - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3} + \ldots \]

so

\[\frac{1 + x^2}{1 + x} = \frac{x^2 + 1}{x} \left(1 - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3} + \ldots\right) \]

\[= \left(1 + \frac{1}{x}\right) \left(1 - \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3} + \ldots\right) \]

\[= x - 1 - \frac{2}{x} + \frac{2}{x^2} + \ldots \]

and thus

\[f(x) - x = -1 + \frac{2}{x} - \frac{2}{x^2} + \ldots \]

So \(f(x) - x \) remains bounded as \(x \to \infty \). In fact, as you can see it approaches the limit \(-1\). What about \(f(x) - x + 1 \)? We could say that it tends to zero as \(x \to \infty \), or we could say that it behaves like \(\frac{2}{x} \) when \(x \) is large. We could address many similar questions with the series for \(f(x) \). \(f(x) \) is the asymptotic expansion when \(x \) is large. The series is useless as \(x \to 0 \) as it is neither convergent nor asymptotic.

Writing

\[f(x) = \frac{1 + x^2}{1 + x} = (1 + x^2)(1 - x + x^2 - x^3 + \ldots) \]

\[= 1 - x + 2x^2 - \ldots \]

gives a convergent asymptotic expansion as \(x \to 0 \).

2 The Symbols \(O \), \(o \), and \(\sim \)

We will now consider some precise definitions of the growth rates of functions.

2.1 \(O \) (read as big “oh”)

Let \(f(x) \) and \(g(x) \) be continuous functions with \(g(x) \) continuous and \(x_0 \) a fixed point.

We write \(f(x) = O(g(x)) \) \((x \to x_0) \) if there is a constant \(A \) s.t. \(|f(x)| \leq A|g(x)| \) for all \(x \) in some neighborhood of \(x_0 \). (If \(x_0 = \infty \), this means for sufficiently large \(x \).

We can write this as:

\[\frac{|f(x)|}{|g(x)|} \leq A \]

where \(A \) is continuous as \(x \to x_0 \).
Roughly speaking (as a mnemonic) we can say that $f(x) = 0(g(x))$ means that $f(x)$ doesn’t grow any faster than $g(x)$ as $x \to x_0$.

So $f(x) = O(1)$ as $x \to \infty$ means that
\[
\lim_{x \to \infty} \frac{f(x)}{1} \leq A
\]
i.e. $f(x)$ is bounded.

2.2 o (read little “oh”)

\[f(x) = o(g(x)) \quad (x \to x_0)\]

if
\[
\lim_{x \to x_0} \frac{|f(x)|}{|g(x)|} \to 0 \text{ as } x \to x_0
\]

In other words, $f(x) = o(g(x))$ can be interpreted as saying that $f(x)$ grows more slowly than $g(x)$ as $x \to x_0$. So if $g(x) \to 0$ as $x \to x_0$, and $f(x) = o(g(x))$, $f(x)$ must go to zero more rapidly.

2.3 \sim (is asymptotic to)

\[f(x) \sim g(x) \quad (x \to x_0) \quad \text{if} \quad \lim_{x \to x_0} \frac{f(x)}{g(x)} = 1\]
i.e. $f(x)$ and $g(x)$ grow at the same rate as $x \to x_0$

2.4 Summary

Thus $o, O,$ and \sim characterize three states of knowledge.

\sim we know the most

o we know less

O we know the least

In some ways \sim is superfluous, since if
\[f(x) \sim g(x) \quad (x \to x_0)\]
then
\[f(x) = g(x)(1 + o(1)) \quad (x \to x_0)\]
but \sim is useful.

$O, o,$ and \sim suppress information — be careful

2.5 More complicated forms

\[f(x) = g(x) + O(h(x)) \quad (x \to x_0)\]

means
\[f(x) - g(x) = O(h(x)) \quad (x \to x_0)\]
or
\[
\lim_{x \to x_0} \frac{|f(x) - g(x)|}{|h(x)|} \leq A
\]

Similarly,
\[f(x) = g(x) + o(h(x)) \quad (x \to x_0)\]
means
\[f(x) - g(x) = o(h(x)) \quad (x \to x_0)\]

3 Examples to Study

\[
\sqrt{n^2 + 1} \sim n \quad (n \to \infty)
\]
\[
\frac{n}{n+1} \sim n \quad (n \to \infty)
\]
\[
\sin x \sim x \quad (x \to 0); \quad x \text{ in radians}
\]
\[
(1 + x)^{-1} = o(1) \quad (x \to \infty)
\]
\[
= o(x^{-1}) \quad (x \to \infty)
\]
\[
= O(x^{-2}) \quad (x \to \infty)
\]
\[
\sim x^{-2} \quad (x \to \infty)
\]
\[
= x^{-2} + o(x^{-2}) \quad (x \to \infty)
\]
\[
= x^{-2} + O(x^{-4}) \quad (x \to \infty)
\]
\[
= x^{-2} + x^{-4} + O(x^{-6}) \quad (x \to \infty)
\]

Note that $f(x) \sim x + \sqrt{x} \quad (x \to \infty)$ conveys no more information than $f(x) \sim x \quad (x \to \infty)$, since $f(x)$ is dominated by x.

Stirling’s approximation can be written as
\[
n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \quad (n \to \infty)
\]
\[
\sin x = O(1) \text{ as } x \to \infty
\]

\[
\frac{\sin x}{1} \leq A \quad \Rightarrow \quad \sin x \text{ is bounded.}
\]

\[
\frac{1}{1 + x^2} = O(1) \quad (x \to \infty)
\]

\[
\Rightarrow \quad \frac{1}{1 + x^2} \to 0 \text{ as } x \to \infty
\]

since

\[
\lim_{x \to \infty} \frac{|(1 + x^2)^{-1}|}{1} = 0.
\]