University of Central Arkansas

A Simple System Analyzed on the
Canonical and Microcanonical
Ensembles

Stephen R. Addison

Directory

• Table of Contents
• Begin Article
Table of Contents

1. The Problem Statement
2. Analysis on the Canonical Ensemble
3. Analysis on the Microcanonical Ensemble
1. The Problem Statement

Consider a system of \(N \) distinguishable, independent particles, each of which can exist in two states separated by an energy \(\varepsilon \).

We specify the state of the system, \(\psi \) by

\[
\psi = (N_1, N_2, N_3, \ldots, N_N), \quad N_j = 0 \text{ or } 1
\]

where \(N_j \) = state of the particle \(j \). The energy of a given state is given by

\[
E_\psi = \sum_{i=1}^{N} N_i \varepsilon,
\]

where I have chosen the ground state energy as 0.

2. Analysis on the Canonical Ensemble

Starting from

\[
Z = \sum_\psi e^{-\beta E_\psi}
\]
and

$$F = -kT \ln Z$$

we can write

$$-\beta F = \ln \sum_{\psi} e^{-\beta E_{\psi}}.$$

Now, the energy of a given state is given by

$$E_{\psi} = \sum_{j=1}^{N} N_j \varepsilon_j,$$

then entering this into the expression for the partition function, we get

$$Z = \sum_{\psi} e^{-\beta E_{\psi}}$$

so

$$Z = \sum_{N_1, N_2, \ldots, N_N = 0 \text{ or } 1} \exp \left(-\beta \sum_{i=1}^{N} N_i \varepsilon_i \right).$$
Section 2: Analysis on the Canonical Ensemble

We can use $e^{a+b} = e^a e^b$ to write the rewrite the partition function as

$$Z = \sum_{N_1, N_2, \ldots, N_N = 0 \text{ or } 1} (e^{-\beta N_1 \varepsilon}) (e^{-\beta N_2 \varepsilon}) \ldots$$

or

$$Z = \left(\sum_{N_1 = 0 \text{ or } 1} e^{-\beta \varepsilon N_1} \right) \left(\sum_{N_2 = 0 \text{ or } 1} e^{-\beta \varepsilon N_2} \right) \ldots \left(\sum_{N_N = 0 \text{ or } 1} e^{-\beta \varepsilon N_N} \right).$$

We can rewrite this as a product

$$Z = \prod_{j=1}^{N} \sum_{N_j = 0, 1} e^{-\beta \varepsilon N_j}.$$

The sum contained in this product can be evaluated easily,

$$\sum_{N_j = 0, 1} e^{-\beta \varepsilon N_j} = \frac{1}{N_j = 0} + e^{-\beta \varepsilon} \frac{1}{N_j = 1},$$

which reduces to

$$Z = (1 + e^{-\beta \varepsilon})^N.$$
Section 2: Analysis on the Canonical Ensemble

Now that we have the partition function, we are in a position to calculate the properties of the system. Recall

\[
\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta}
\]

and

\[
F = -kT \ln Z(T, V, N)
\]

so

\[
-\beta F = \ln Z.
\]

Thus, in the current example we have

\[
-\beta F = \ln \left(1 + e^{-\beta \varepsilon}\right)^N = N \ln \left(1 + e^{-\beta \varepsilon}\right)
\]

and

\[
\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta} = -\frac{\partial}{\partial \beta} N \ln \left(1 + e^{-\beta \varepsilon}\right)
\]
\[\begin{align*}
\frac{N}{(1 + e^{-\beta \varepsilon})} \partial \frac{\partial}{\partial (1 + e^{-\beta \varepsilon})} \\
\varepsilon Ne^{-\beta \varepsilon} \\
\frac{N \varepsilon}{e^{\beta \varepsilon} + 1}.
\end{align*} \]

Thus we have

\[E = E(T) \]

We can draw some simple conclusions from this expression.

At \(T = 0 \), \(e^{\beta \varepsilon} \to \infty \Rightarrow E \to 0 \).

Thus at \(T = 0 \) all particles are in the ground state.

As \(T \to \infty \), \(e^{\beta \varepsilon} \to 1 \), since \(\beta \varepsilon \to 0 \), and \(E = NE/2 \).

Thus as \(T \to \infty \) all states are equally likely.
3. Analysis on the Microcanonical Ensemble

Consider the state m, with m upper levels occupied, its multiplicity is the number of ways of choosing m objects from N, the identity is immaterial.

$$C(N,m) = \Omega(E,N) = \frac{N!}{m!(N-m)!}.$$

For the state m, we can write $E = m\varepsilon$, or $m = E/\varepsilon$.

Combining this with $S = k \ln \Omega(E,N)$ and $\frac{1}{T} = \left(\frac{\partial S}{\partial E} \right)_{V,N}$, we get,

$$\frac{1}{T} = \left(\frac{\partial S}{\partial E} \right)_{V,N} = \left(\frac{\partial (k \ln \Omega)}{\partial E} \right)_{V,N}$$

or

$$\frac{1}{kT} = \beta = \left(\frac{\partial (\ln \Omega)}{\partial E} \right)_{V,N}.$$
But $E = m\varepsilon$, $\varepsilon = \text{constant}$, so $dE = \varepsilon dm$, and
\[
\beta = \frac{1}{\varepsilon} \left(\frac{\partial (\ln \Omega)}{\partial m} \right)_{V,N},
\]
where N must be large enough for Ω to be a continuous function of m.

We must now relate this to system functions
\[
\left(\frac{\partial (\ln \Omega)}{\partial m} \right)_{V,N} = \frac{\partial}{\partial m} \ln \left(\frac{N!}{m!(N-m)!} \right)_N
\]
but $\ln N! = N \ln N - N$, so
\[
\ln \frac{N!}{m!(N-m)!} = N \ln N - N - [(N-m) \ln(N-m) - (N-m)
+ m \ln m - m]
= N \ln N - (N-m) \ln(N-m) - m \ln m
\]
\[
\left(\frac{\partial \ln \Omega}{\partial m} \right)_N = 0 - \frac{\partial}{\partial m} (N-m) \ln(N-m) - \frac{\partial}{\partial m} \ln m
\]
\[
\begin{align*}
= \ln(N - m) - \frac{(N - m) \partial(N - m)}{\partial m} - \ln m - \frac{m \partial m}{\partial m} \\
= \ln(N - m) + 1 - \ln m - 1 \\
= \ln \left(\frac{N - m}{m} \right) \\
= \ln \left(\frac{N}{m} - 1 \right).
\end{align*}
\]

But,
\[
\beta = \frac{1}{\varepsilon} \left(\frac{\partial \Omega}{\partial m} \right)_{N,V},
\]
so
\[
\varepsilon \beta = \ln \left(\frac{N}{m} - 1 \right)
\]
and
\[
\exp(\varepsilon \beta) = \frac{N}{m} - 1, \\
m = \frac{N}{1 + \exp(\varepsilon \beta)}.
\]
and finally, using $E = m \varepsilon$ we get the same result that we got earlier by performing the analysis on the canonical ensemble:

$$E = \frac{N_\varepsilon}{1 + e^{\varepsilon \beta}}.$$