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Entropy

The equilibrium state for a system corresponds to the value of α for which
Ω(E, V,N, α) attains its maximum value with E, V,N fixed. The equilibrium
state is the state of maximum probability.

Instead of using Ω, we will now introduce the entropy S as a measure of the
disorder of the system. The entropy of the system is given by

S = k ln Ω(E, V,N, α).

During real (as distinct from idealized reversible processes) the entropy of an
isolated system always increases. In the state of equilibrium, entropy attains its
maximum value.

This is the Clausius statement of the second law of thermodynamics. At
this time, I am going to use the maximization of Ω to derive the concepts of
temperature, pressure, and chemical potential.

Thermal Equilibrium

E1 E2

V1 V2

N1 N2

Consider a system, that is isolated, and is divided into two parts by a wall
s.t.

E1 + E2 = E

V1 + V2 = V

N1 + N2 = N

These equations are called the equations of constraint. We’ll further assume
that the sub-systems are not in equilibrium and that the wall separating them
is rigid, impermeable and diathermal. That is, energy can pass through the wall,
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particles cannot, and the wall is fixed in place. For each division of E, V, andN
between the sub-systems specified by the equations above, we can write

Ω(E, V,N,E1, V1, N1︸ ︷︷ ︸
α

) = Ω1(E1, V1, N1)Ω2(E2, V2, N2)

where Ω1 is the multiplicity of sub-system 1 in the macrostate specified by
(E1, V1, N1), Ω2 is the multiplicity of sub-system 1 in the macrostate specified
by (E2, V2, N2), and Ω is the multiplicity of the composite system with this
division of energy, volume, and particle number. Taking the product of Ω1

and Ω2 is justifed by the fundamental principle of counting. The contstraint
equations limit E1, E2 etc., we’re choosing E1, V1, andN1 as independent - in
other words, they correspond to the α that we used earlier. But S = k ln Ω, so

S(E, V,N,E1, V1, N1) = S1(E1, V1, N1) + S2(E2, V2, N2).

Now let the sub-systems come to equilibrium, at equilibrium, entropy is maxi-
mized, therefore

dS = 0,

and
0 = dS1 + dS2

we can rewrite this as

0 =
∂S1

∂E1
dE1 +

∂S1

∂V1
dV1 +

∂S1

∂N1
dN1 +

∂S2

∂E2
dE2 +

∂S2

∂E2
dE2 +

∂S2

∂V2
dV2 +

∂S2

∂N2
dN2

Now using our equations of constraint dV1 = dV2 = dN1 = dN2 and dE = 0, so
dE1 = −dE2, we can simplify this expression to

0 =
(

∂S1

∂E1

)
V1,N1

dE1 +
(

∂S2

∂E2

)
V2,N2

dE2

and using dE1 = −dE2, this becomes(
∂S1

∂E1

)
V1,N1

=
(

∂S2

∂E2

)
V2,N2

.

This is the condition for thermal equilibrium (i.e. no heat transfer). We already
know a condition for the equilibrium of two systems in thermal contact:

T1 = T2.

We use this to define absolute temperature,

1
Ti

=
(

∂Si

∂Ei

)
Vi,Ni

.

The choice is not unique, but it this choice makes the absolute temperature
scale identical to the ideal gas temperature scale.
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Thermal and Mechanical Equilibrium

We will now consider two subsystems not in equilibrium separated by moveable,
diathermal, impermeable walls. In such a system, energy and volume will flow
until equilibrium is achieved.

E1 E2

V1 V2

N1 N2

The equations of constraint are

E1 + E2 = E,

V1 + V2 = V,

N1 + N2 = N.

These yield dE1 = −dE2, dV1 = −dV2, and dN1 = dN2 = 0. Again we use
entropy maximization at equilibrium, dS = 0 yielding

0 =
(

∂S1

∂E1

)
dE1 +

(
∂S1

∂V1

)
dV1 +

(
∂S2

∂E2

)
dE2 +

(
∂S2

∂V2

)
dV2

At equilibrium, we would expect temperature and pressure to be equal in this
case.

0 =
(

1
T1

− 1
T2

)
dE1 +

[(
∂S1

∂V1

)
−

(
∂S2

∂V2

)]
dV1

Thus at equilibrium, T1 = T2, and
(

∂S1
∂V1

)
E1,N1

=
(

∂S2
∂V2

)
E2,N2

. Now the partial

derivatives in this case must describe the equality of pressure. We define pressure
for each subsystem as

pi

Ti
=

(
∂Si

∂Vi

)
Ei,Ni

.

This definition reduces to pV = NkT when applied to an ideal gas.

Thermal and Diffusive Equilibrium

We can continue this analysis in a similar vein by considering the wall to be
diathermal, rigid and permeable. The analysis leads to an expression for the
equilibrium of matter flow. This leads to the definition of chemical potential µi

of the ith chemical species through(
∂Si

∂Ni

)
= −µi

Ti
.

Chemical potential controls matter equilibrium.
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The Fundamental Thermodynamic Relation

S = S(E, V,N) contains complete thermodynamic information. We could equiv-
alently write E = E(S, V,N), E is minimized at equilibrium, if we start from
E, and consider the same systems and walls we get the following definitions:

Ti =
(

∂Ei

∂Si

)
Vi,Ni

pi = −
(

∂Ei

∂Vi

)
Ei,Ni

µi =
(

∂Ei

∂Ni

)
Si,Vi

Thus if E = E(S, V,N), then

dE =
(

∂E

∂S

)
V,N

dS +
(

∂E

∂V

)
S,N

dV +
(

∂E

∂N

)
S,V

dN

and
dE = TdS − pdV + µdN

This is called the fundamental thermodynamic relation or the fundamental
thermodynamic identity. Note: T = T (S, V,N), p = p(E, V,N), and µ =
µ(N,S, V ). The fundamental thermodynamic relation can be used to recover
the definitions of T, p, µ. We can also solve the relationship for entropy

dS =
dE

T
+

p

T
dV − µ

T

this allows us to recover the equivalent definitions in the entropy representation.

In general there is more than a single chemical species in out thermal system.
The general form of the fundamental thermodynamic relation is:

dE = TdS − pdV +
∑

j

µjdN j

where µj is the chemical potential of the jth chemical species. In this expression
µj = (∂Ej/∂N j)S,V,µi , and the equilibrium condition is µj

1 = µj
2. µ is a potential

for matter flow. At this point, we are in a good position to explore entropy and
equilibrium.

Entropy and Equilibrium

S = S(E, V,N) is a fundamental relation in that it contains complete ther-
modynamic information about the system. At equilibrium S is a maximum.
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The properties of S are that S = ΣSi is a continuous, differentiable, monotonic
function of E that is homogeneous of degree one in E, V, and N. For now we
will also assert that at T = 0, S = 0. This latter statement assumes the strong
form of the third law of thermodynamics. We will explore the strong and weak
forms of the third law of thermodynamics at a later date.

Equilibrium in the Entropy Representation

Consider again two subsystems separated by rigid, impermeable, diathermal
walls.

S = S1 + S2

dS =
(

∂S1

∂E1

)
V1,N1

dE1 +
(

∂S2

∂E2

)
V2,N2

dE2

dS =
1
T1

dE1 +
1
T2

dE2

Now, at equilibrium dE = 0 and dS = 0, and T1 = T2. Close to equilibrium we
can write

dS ≈
(

1
T1

− 1
T2

)
︸ ︷︷ ︸

(−)ve

dE1.

Assuming T1 > T2 by a small amount we can see that since dS must be positive,
dE1 must be negative. In other words if T1 > T2, E1 will decrease, E2 will
increase as energy flows from subsystem one to subsystem two. Thus our new
formulation agrees with our intuitive understanding of the situation.

Now if we change the wall to having a moveable, impermeable diathermal
wall, we have

dS =
(

1
T1

− 1
T2

)
dE1 +

(
p1

T1
− p2

T2

)
dV1.

Now, E and V are independent, so the coefficients must separately equal 0.
Thus, as we have noted, at equilibrium T1 = T2 and p1 = p2. Infinitesimally
close to 0, we can write

dS︸︷︷︸
(+)ve

≈ p1 − p2

T︸ ︷︷ ︸
(+)ve

dV1,︸︷︷︸
(+)ve

where I have assumed that p1 > p2. This again agrees with our intuitive under-
standing of the situation — the region at higher pressure will grow. We could
similarly analyze the situation of a rigid, permeable, diathermal wall. Infinites-
imally close to equilibrium we would find that

dS︸︷︷︸
(+)ve

≈ µ2 − µ1

T︸ ︷︷ ︸
(−)ve ifµ1>µ2

dV1,︸︷︷︸
(−)ve

matter flows from high µ to low µ.
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Entropy and the Energy Transfer by Heating

Entropy increases can also be related to the energy transfer by heating. We
could for instance (as our author does, and you should read) examine entropy
changes as energy is transferred to an ideal gas by heating. Other examples are
to be found in you university physics text. In general, we find that

4Ssystem ≥ Energy transfer by heating
T

.

The equality holds for a quasistatic process — in other words for a slow process
where the system remains arbitrarily close to equilibrium. For fast processes,
the entropy change is greater. We have to be careful to use the appropriate
temperature, for slow processes, there is no problem, the system and the heating
source will have the same temperature. For fast processes the system is far
from equilibrium, the system temperature could change drastically. For fast
processes, the appropriate temperature to use is the temperature of the heating
source.

Before looking at some examples, lets remind ourselves of a few basic facts.
Recall the first law, we have written it in the form 4E = Q−W, where W, and Q
are not functions of state. We can write this for infinitesimals as dE = d−Q−d−W
where the d− denotes an inexact differential. We will frequently integrate such
forms, but should remember that they are not true differentials. If you look at
the examples, you will see that we are integrating well defined functions or the
expressions will contain an integrating factor. As an example 1

T is an integrating
factor for d−Q. In other words dS = d−Q/T is a perfect differential if d−Q is added
reversibly. We have also defined W to be positive when the system does work on
its environment. To fix how we apply this to problems consider heat expanding
a gas in a piston-cylinder arrangement, the work done by the expanding gas is

given by W =
Vf∫
Vi

pdV.

Examples

It’s now time to use some of our tools to examine some specific situations.

Melting Ice

If ice melts slowly at 0oC, by how much does its multiplicity change?

4S = Sliquid − Sice = k ln Ωliquid − k ln Ωice = k ln
Ωliquid

Ωice

Now, examining this, we can see that we will need to calculate 4S. If we consider
the ice to melt slowly (and there is no reason not to make this assumption, the
number of accessible microstates is not going to depend on the rate of melting!)
So we can write

4S =
Q

T
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Since my calculators were all at the office, we’ll use our authors numbers, we
take 18 g of ice, at 273 K, with Lfice

= 3.34 × 105 J/Kg, we get

4S =
(3.34 × 105 J/Kg)(18 ×−3 Kg)

273 K
= 22 J/K.

We can now combine our calculations to yield

ln
Ωliquid

Ωice
=

1
k

Q

T
=

22 J/K
1.4 × 10−23 J/K

= 1.6 × 1024

then
Ωliquid

Ωice
= e1.6×1024

= 106.9×1023
.

There are many more microstates available to the liquid than there were to the
solid.

Object thrown into the sea

An object of mass m, mass specific heat cp and temperature T1 is thrown into the
sea which has temperature T0. Calculate the total change in entropy. Assume
the process is slow.

4Stotal = 4Smass + 4Ssea

4Stotal =
∫

mass

d−Q

T
+

∫
sea

d−Q

T

4Stotal =

T0∫
T1

mcpdT

T
+

∫
d−Q

T0

4Stotal = mcp ln
(

T0

T1

)
+

Q

T0

4Stotal = mcp ln
(

T0

T1

)
+

heat lost by mass = heat gained by sea︷ ︸︸ ︷
mcp(T1 − T0)

T0

4Stotal = mcp

(
T1

T0
− 1 − ln

T1

T0

)
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Isothermal Compression of an Ideal Gas

For an ideal gas, we have noted that E = E(T ) only. Now, recall the first law
4E = Q−W , or in differential form dE = d−Q−d−W. In this case if we consider
compression from V1 to V2, at fixed temperature dE = 0, and d−W = pdV , thus

dE = d−Q − pdV.

In this case however, since the process is isothermal dE = 0 and so d−Q = pdV,
then

4S =

2∫
1

d−Q

T
=

2∫
1

pdV

T
=

1
T

2∫
1

pdV

now, recall pV = NkT , so

4S =

2∫
1

NkdV

V
= Nk ln

V2

V1
= −Nk ln

V1

V2
.

Entropy and Disorder

We have defined entropy in terms of the logarithm of the multiplicity. Sometimes
entropy is described as a measure of disorder, the greater the disorder, the
greater the entropy. This works well if we are only considering solids, liquids,
and gases. You should be aware that it is not always a good description and
should be used with caution.
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