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1. Systems with Variable Particle Numbers

We have developed an expression for the partition function of an ideal
gas.
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2. Review of the Ensembles

2.1. Microcanonical Ensemble

The system is isolated. This is the first bridge or route between
mechanics and thermodynamics, it is called the adiabatic bridge.

E, V,N are fixed S = k lnΩ(E, V,N)
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2.2. Canonical Ensemble

System in contact with a heat bath. This is the second bridge
between mechanics and thermodynamics, it is called the isothermal

bridge. This bridge is more elegant and more easily crossed.

T, V,N fixed, E fluctuates. F = −kT lnZ(T, V,N)
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2.3. Grand Canonical Ensemble

System in contact with heat bath/paricle reservoir. This third
bridge is called the open bridge. T, V, µ fixed, E and N fluctuate.
Ω = −kT ln Ξ = −kT lnZ, where Ω is the grand potential and
Ξ(= Z), is the grand partition function.
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3. Average Values on the Grand Canonical

Ensemble

For systems in thermal and diffusive contact with a reservoir, let
x(N, r) be the value of x when the system has N particles and is
in state Nr. The thermal average is thus

〈x〉 =
∑

N,r

x(N, r)pNr =

∑

N,r

x(N, r)eβ(Nµ−ENr)

Z

3.1. Average Number of Particles in a System

〈N〉 =

∑

N,r

Neβ(Nµ−ENr)

Z
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We can evaluate this by differentiating Z.

∂Z

∂µ
=
∑

N,r

Nβeβ(Nµ−ENr)

∂Z

∂µ
= β

∑

N,r

Neβ(Nµ−ENr).

Now we can rewrite our equation for 〈N〉 as

Z〈N〉 =
∑

N,r

Neβ(Nµ−ENr)

and we see that

βZ〈N〉 =
∂Z

∂µ

〈N〉 =
1

βZ

∂Z

∂µ

〈N〉 =
1

β

∂(lnZ)

∂µ
.
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Now it is useful to introduce the absolute activity λ at this point. We
define the absolute activity as

λ = eβµ.

We use this to rewrite the expressions for Z and 〈N〉.

Z =
∑

N

∑

r

eβ(Nµ−ENr)

=
∑∑

eβNµe−ENr

=
∑∑

λNe−ENr .

So we can rewrite our our expression for 〈N〉

〈N〉 =
1

β

∂(lnZ)

∂µ
,

using λ = eµβ . Starting from λ = eµβ , we find

∂λ

∂µ
= βeµβ = λβ.
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So
1

β

∂(lnZ)

∂µ
=

1

β

∂(lnZ)

∂λ

∂λ

∂µ
=
λβ

β

∂(lnZ)

∂λ
= λ

∂(lnZ)

∂λ

This is a result of practical importance. We can find λ by matching
〈N〉 to N the actual number of particles in the system.

In chemistry, it is common to introduce the fugacity at this point.
The definition is close to the definition of the absolute activity, we
define the fugacity f as

f = e
µ
k .

We will not make further use of the fugacity.
In calculating the thermal properties of systems, the ensemble on

which we choose to make the calculations is a matter of convenience.
We choose the ensemble independently of the actual environment.
This is possible because fluctuations tend to be small. Since N =
const is mathematically awkward, the grand ensemble is often the
most convenient approach.
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4. The Grand Canonical Ensemble and Ther-

modynamics

Starting from

Z =
∑

N,r

eβ(Nµ−ENr)

and

pNr =
eβ(Nµ−ENr)

Z
,

we relate the grand canonical ensemble to thermodynamics using the
Gibbs entropy formula

S = −k
∑

r

pr ln pr.

In this case we write the Gibbs entropy formula as

S = −k
∑

N,r

pNr ln pNr.
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Inserting the Gibbs distribution, we get

S = −k
∑

N,r

pNr ln

(

eβ(Nµ−ENr)

Z

)

= −k
∑

N,r

pNr ln

(

ln

(

1

Z

)

+ βNµ− βENr

)

= −k
∑

N,r

pNr ln
1

Z
− k

∑

N,r

pNrβNµ+ k
∑

N,r

pNrβENr

= −k ln
1

Z

∑

N,r

pNr − kβµ
∑

N,r

pNrN + kβ
∑

N,r

ENrpNr

S = k lnZ − kβµ〈N〉+ kβ〈E〉.

And, after rearranging

lnZ =
S

k
+ βµ〈N〉 − β〈E〉,
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which will normally be written as

lnZ =
S

k
+ βµN − βE,

where, as usual, we have written E = 〈E〉 and N = 〈N〉.
This expression can be further simplified. To simplify it we will

make use of the Legendre transform.

5. Legendre Transforms

Legendre transforms are widely used in mechanics and thermodynam-
ics. Legendre transforms transform are most easily explained in one
dimension. For each function f(x) define a new function Lf(z), the
Legendre transform, as follows:
Define

z =
df

dx
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thus relating the new variable z to the old variable x. We require that

d2f

dx2
6= 0

to guarantee that we can find the inverse function x(z). Hence we
have a unique relation between x and z. The Legendre transform can
be written as

Lf(z) = zx(z)− f (x(z))

So we simultaneously change our variable to the derivative and modify
the function. Note that in physics the transform is often defined as the
negative of the function above (e.g. F = E − TS) The mathematical
definition of the transform is “better” as there is no minus sign in the
inverse transformation. But in thermodynamics we want to keep the
meaning of the transformed function in terms of energy, and TS −E
would be awkward. Thus we have seen Legendre transforms but have
not defined them.

That completes the theory as I’ll present it, if you are interested
you can easily find the complete theory worked out (usually in terms
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of mappings) and explicit calculations of the inverse transform. I’m
going to show you how to figure it out practically for two variables.

5.1. Legendre Transforms for two variables

Consider a function of two variables f(x, y) so that the differential of
f is of the form

df =
∂f

∂x
dx+

∂f

∂y
dy

or
df = udx+ vdy

where u = ∂f
∂x

and v = ∂f∂y. Our task is change the independent
variables x, y to the independent variables u, y. The differential quan-
tities will be expressed in terms of du and dy. to effect the change
let

g = f − ux

then
dg = df − udx− xdu
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but
df = udx+ vdy

so
dg = vdy − xdu.

This is the form we desire. The quantities x and v are now functions
of u and y and are given by

x = −
∂g

∂u
and v =

∂g

∂y
.

In this case, these are our inverse transforms. The transformation of
the Lagrangian of mechanics to the Hamiltonian is an example of such
a transformation.1

1See for example: Herbert Goldstein, Classical Mechanics, Addison-Wesley,

1950, Chapter 7
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5.2. Helmholtz Free Energy as a Legendre Trans-

form

We want to transform from E(S, V,N) to F (T, V,N so using

Lf(z) = f (x(z))− zx(z)

we know T =
(

∂E
∂S

)

V,N
so we write

LE(N,V, T ) = E(N,V, S(T ))
∂E

∂S
S

or
F = E − TS.

calculating the differential shows that we have changed the indepen-
dent variable from S to T .
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6. Legendre Transforms and the Grand Canon-

ical Ensemble

Recall we have found

lnZ =
S

k
+ βµN − βE

we can rewrite this as

−kT lnZ = E − TS − µN.

Rewriting this as
−kT lnZ = F − µN

we recognize this as another Legendre transform, as we know that
µ is the conjugate variable of N . Thus we are transforming to a
quantity that is a function of µ rather than being a function of N .
Such potentials are called grand potentials. This one happens to be
the most useful. So defining

Ω(T, V, µ) = F (T, V,N(µ))−
∂F

∂N
N
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we have

dΩ = dF − µdN −Ndµ = SdT − pdV −Ndµ

The grand potential is the available energy for a system in contact
with a reservoir that provides the energy necessary to keep the system
at constant temperature and the particles necessary to keep it at
constant chemical potential.

We can now relate Ω andZ by writing

Ω = −kT lnZ.

This result is the open bridge between thermodynamics and statisti-
cal mechanics. This equation will form the basis of our strategy for
deriving thermodynamics from the grand canonical ensemble.

Since we have used the methods before, I am going to summarize
the strategy as you will appreciate the terminology. You wouldn’t
have before we had studied the canonical ensemble.

Toc JJ II J I Back J Doc Doc I



Section 7: Solving Problems on the Grand Canonical Ensemble 20

7. Solving Problems on the Grand Canon-

ical Ensemble

1. Find Z as a function of T, V, µ. (Other mechanical extensive
variables could replace V .

2. Find the grand potential from Ω = −kT lnZ.

3. Find the entropy of the system from

S = −

(

∂Ω

∂T

)

V,µ

and the number of particles from

N = 〈N〉 = −

(

∂Ω

∂µ

)

V,T

4. Use

p = −

(

∂Ω

∂V

)

µ,T
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to find the equation of state.

5. Find any useful thermodynamic potential from

F = Ω+ µN

E = F + TS = Ω+ µN + TS

G = E + pV − TS = F + pV

H = E + pV

6. Study the system using thermodynamics.
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