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Introduction

In this section we will explore the relationships between heat capacities and
specific heats and internal energy and enthalpy.

Heat Capacity

The heat capacity of an object is the energy transfer by heating per unit tem-
perature change. That is,

C =
Q

4T
.

In this expression, we will frequently put subscripts on C, Cp, or Cv for instance,
to denote the conditions under which the heat capacity has been determined.
While we will often use heat capacity, heat capacities are similar to mass, that
is their value depends on the material and on how much of it there is. If we are
calculating properties of actual materials we prefer to use specific heats. Specific
heats are similar to density in that they depend only on material. Specific heats
are tabulated. When looking them up, be careful that you choose the correct
specific heat. As well as tabulating specific heats at constant pressure and
constant volume, specific heats are given as heat capacity per unit mass, heat
capacity per mole, or heat capacity per particle. In other words, c = C/m,
c = C/n, or c = C/N. In elementary physics mass specific heats are commonly,
while in chemistry molar specific heats are common. Be careful!

Heat Capacities at Constant Volume and Pres-
sure

By combining the first law of thermodynamics with the definition of heat capac-
ity, we can develop general expressions for heat capacities at constant volume
and constant pressure. Writing the first law in the form q = 4E + p4V, and
insering this into C = q

4T , we arrive at

C =
4E + p4V

4T
.
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We can now evaluate this at constant volume, and we arrive at

Cv =

(
4E

4T

)
v

.

For an infinitesimal process we write this as

Cv =

(
q

dT

)
v

=

(
d−q

dT

)
v

or

Cv =

(
∂E

∂T

)
v

.

In the above “d−” is used to denote an “inexact” differential. By an inexact
differential we mean that there is no function to take the differential of, instead
the symbol is used to denote a small amount. Similarly we can calculate the
heat capacity at constant pressure. So the heat capacity at constant pressure is
given by

Cp =

(
4E + p4V

4T

)
p

=

(
∂E

∂T

)
p

+ p

(
∂V

∂T

)
p

.

If we examine the expressions for heat capacity, apart from the quantity held
constant we see that the expression for Cp contains an extra term. It isn’t too
difficult to figure out what is going on. Most materials expand when they are
heated. The additional term keeps track of the work done on the rest of the
universe as the system expands.

Heat Capacities of an Ideal Gas

For an ideal gas, we can write the average kinetic energy per particle as

1
2
m < v2 >=

3
2
kT.

From this, we calculate Cv and Cp for N particles.

Cv =

(
∂E

∂T

)
v

=
3
2
Nk

To calculate Cp, we make use of the ideal gas law in the form pV = NkT .

Cp =

(
∂E

∂T

)
p

+ p

(
∂V

∂T

)
p

So,

Cp =
3
2
Nk + p

∂

∂T
(NkT/p)p =

3
2
Nk + Nk =

5
2
Nk
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Comparing the expressions for Cp and Cv, we see that we can write

Cp − Cv = Nk.

So in terms of the ideal gas constant, R, we can write

Cp − Cv = NR.

This is an interesting result. It’s independent of pressure, in other words, at
high external pressures, the gas will expand less in such a way that the work
done on the environment is independent of p.

Latent Heat

As we have noted, you can transfer energy by heating without increasing temper-
ature. This happens during phase changes. In a phase change, the heat capacity
becomes infinite. The appropriate term to consider is now latent heat. We want
to know how much energy is transferred by heating during phase changes. We
can define the latent heat as

L =
Q

m
=

Q

N
.

Our author prefers to use the latent heat per molecule, I have a preference for
using the latent heat per unit mass. The reason isn’t deep, latent heats per
unit mass are easier to find! The definitions that I have given for latent heat
are a little ambiguous, in the same way that the definition for heat capacity
was ambiguous until I stated the conditions under which it was to be evaluated.
By convention, we assume that latent heats are calculated under conditions of
constant pressure, and normally that that pressure is one atmosphere. Con-
stant pressure processes are common enough that we introduce a new variable
to simplify calculations under constant pressure conditions. That quantity is
enthalpy.

Enthalpy

Enthalpy, H, is defined through

H = E + pV.

It is possible to use enthalpy to purge heat from our vocabulary. I won’t do that
because most people still use heat, and you’ll need to communicate with others.
Basically, the pV term in enthalpy keeps track of expansion/compression related
work for us. Starting from the first law in the form q = 4E+p4V (Let’s call this
the first law for hydrostatic processes) and the definition Cp =

(
∂E
∂T

)
p
+p

(
∂V
∂T

)
p
,

and inserting H, we can rewrite the expression for Cp in terms of enthalpy. Thus,

Cp =

(
∂(H − pV )

∂T

)
p

+ p

(
∂V

∂T

)
p

,
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or

Cp =

(
∂H

∂T

)
p

− p

(
∂V

∂T

)
p

+ p

(
∂V

∂T

)
p

,

producing the result

Cp =

(
∂E

∂T

)
p

+ p

(
∂V

∂T

)
p

=

(
∂H

∂T

)
p

.

This expression is often taken as the definition of Cp.
Enthalpy and latent heat are simply related. Which, of course is reason that I
introduced latent heats in the previous section. The latent heat of vaporization
Lv is defined as the difference in enthalpy between a fixed mass of vapor and
the same mass of liquid. That is Lv = Hvap − Hliq. Similarly, the latent heat
of fusion is given by Lf = Hliq − Hsol, and the latent heat of sublimations
is given by Ls = Hvap − Hsol. These enthalpy differences are related through
Ls = Lf +Lv. We shall explore these relationships further when we study phase
transitions and the Clausius-Clapeyron equation in chapter 12.
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