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Section 1: Photons 4

1. Photons

1.1. Blackbody Radiation

All objects emit electromagnetic radiation, the peak wavelength is a
function of temperature. In most cases the radiation is not in thermal
equilibrium with matter. Consider an opaque enclosure whose walls
are maintained at a constant temperature T . The radiation and walls
will reach thermal equilibrium and the radiation will have definite
properties.
To study the properties of this equilibrium radiation we can imag-

ine cutting a small hole in the enclosure. If the hole is small enough, it
will not disturb the radiation in the cavity. Radiation will be emitted
through the hole and this radiation will have the same properties as
the cavity radiation. This radiation will also have the same properties
as the radiation emitted by a perfectly black body at the same tem-
perature as the enclosure T . Why? A perfectly black body absorbs
all radiation falling on it – the hole behaves in the same way – all
incident radiation will enter the hole.
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Section 1: Photons 5

Thus, the terms cavity radiation and blackbody radiation are syn-
onymous. We will analyze the situation by treating blackbody radia-
tion as a gas of photons.

1.2. The Partition Function for Photons

Photons are particles of spin one and are bosons, we calculate their
properties without making use of this fact. We will do this for now.
We know that we can superimpose electric and magnetic fields, in
other words they obey the principle of linear superposition. This
means that photons do not interact, and we can treat them as an
ideal gas.
The thermal equilibrium between the cavity radiation and the cav-

ity walls is produced by the continuous emission and absorption of
photons by the atoms of the cavity walls. This means that the num-
ber of photons in the cavity is not constant — instead, it fluctuates
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Section 1: Photons 6

about a mean value that depends on T .

Z =
∑

r

e−βEr

where Er is the energy of the r
th state. We can write that

Er =
∑

i

niεi

where the occupation numbers are ni = 0, 1, 2, . . . for all i. So

Z =
∑

n1,n2,...

exp

{

−β
∑

i

niεi

}

There is no constraint on the total number of photons, this means
that each of the occupation numbers assumes all possible values inde-
pendently of the others, so rather than Z(T, V,N) we have Z(T, V )

Z =

∞
∑

n1=0

∞
∑

n2=0

. . .
∑

exp

{

−β
∑

i

niεi

}
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Section 1: Photons 7

Z =
∞
∑

n1=0

∞
∑

n2=0

. . .
∑

e−βn1ε1e−βn2ε2e−βn3ε3 . . .

Z =

(

∑

n1

e−βn1ε1

)(

∑

n2

e−βn2ε2

)

. . .

(

∑

ni

e−βniεi

)

and so we write this as

Z =

∞
∏

j=1





∑

nj

e−βnjεj



 .

Let’s examine a single term of this equation. That is consider
∞
∑

nj=0

e−βnjεj

nj takes on the values 0, 1, 2, . . . ,∞, so we can expand it as

∞
∑

nj=0

e−βnjεj = 1 + e−βεj + e−2βεj + e−3βεj + . . .
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Section 1: Photons 8

Now, if we let x = e−βεj , and we see that we have the geometric series

1 + x+ x2 + x3 + . . .

Now

1 + x+ x2 + x3 + . . . =
1

1− x
if x < 1.

x = e−βεj =
1

eβεj

(Convince yourselves that this holds, you might use εj = ~ω.) So we
can rewrite our photon partition function as

Zph(T, V ) =

∞
∏

j=1

1

1− e−βεj

In principle this gives us all the physics. To make any further progress,
we need to calculate the mean occupation number, we know how to
do this, but we haven’t actually made the calculation.
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1.3. Mean Occupation Number

〈ni〉 =

∑

r nie
−βEr

Z
=

∑

n1,n2,...
nie

−β(n1ε1+n2ε2+...)

Z
.

Now consider
∑

nie
−β(n1ε1+n2ε2+...)

we use it and

Zph(T, V ) =
∞
∏

j=1

1

1− e−βεj

to evaluate
〈ni〉.

To develop the result, it is useful to start from the first step of our
calculation of the partition function for photons

Z =
∑

n1,n2,...

exp

{

−β
∑

i

niεi

}
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Section 1: Photons 10

=
∑

n1,n2,...

e−β(n1ε1+n2ε2+n3ε3+...).

Now

−
1

β

(

∂Z

∂εi

)

β,εj

= −
1

β

∂

∂εi

∑

n1,n2,...

e−β(n1ε1+n2ε2+n3ε3+...)

= −
1

β

∑

n1,n2,...

(−βni)e
−β(n1ε1+n2ε2+n3ε3+...)

=
∑

n1,n2,...

nie
−β(n1ε1+n2ε2+n3ε3+...).

And so we can write

−
1

βZ

(

∂Z

∂εi

)

β,εj

=
1

Z

∑

n1,n2,...

nie
−β(n1ε1+n2ε2+n3ε3+...) ≡ ni.
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Where the equivalence is obvious from our starting point. Thus we
have the result

〈ni〉 = −
1

βZ

(

∂Z

∂εi

)

β,εj

= −
1

β

(

∂ lnZ

∂εi

)

β,εj

At this point we can use the product form for our photon partition
function

Zph =

∞
∏

j=1

1

1− e−βεj

lnZph = ln

∞
∏

j=1

1

1− e−βεj

=

∞
∑

j=1

(ln 1− ln(1− e−βεj ))

= −
∞
∑

j=1

ln(1− e−βεj )
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〈ni〉 = −
1

β

(

∂ lnZ

∂εi

)

β,εj

so

〈ni〉 = −
1

β

∂

∂εi

∞
∑

j=1

ln(1− e−βεj )

we can rewrite this as

〈ni〉 = −
1

β

∂

∂εi
ln(1− e−βεi)

as all the other terms would not contribute to the result. Thus,

〈ni〉 =
(1− e−βεi)−1

β

∂

∂εi
(1− e−βεi)

〈ni〉 =
e−βεi

1− e−βεi
=

1

eβεi − 1
This is the Planck distribution function. It gives us average photon
occupancies.
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Section 1: Photons 13

1.4. The Properties of Blackbody Radiation

The energy of a photon is E = hν = ~ω. We know that the density
of states fuunction in k-space is

f(k)dk =
V k2dk

2π2

= number of states between k and dk.

When we are dealing with photons, we need to multiply the density of
states function by 2 because the electromagnetic field has two polar-
izations. First, we’ll find the numbers of states between ω and ω+dw.
Using k = 2π/λ, ω = 2πν, and c = λν, we have k = ω/c and

f(ω)dω =
V ω2

2π2c2
dk

dω
dω.

Now c = ω/k and vg =
dω
dk and we rewrite the density of states

function as

f(ω)dω =
V ω2dω

2π2c2vg
.
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Section 1: Photons 14

For a non-dispersive medium (i.e. one in which c 6= c(ω), vg = c, and

f(ω)dω =
V ω2dω

2π2c3
,

and finally multiplying by 2 as we are dealing with photons, we arrive
at

f(ω)dω =
V ω2dω

π2c3
.

Now, let the number of photons with frequency between ω and ω+dω
be dNω where we can write

dNω = 〈ni〉f(ω)dω

Let the energy in the frequency range between ω and ω+dω be dEω,
then

dEω = ~ωdNω

=
V ~
π2c3

ω3dω

eβ~ω − 1
.
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Section 1: Photons 15

The density of states f(ω)dω depends only on the size of the container.
This means that the photon density and the energy density in the
cavity are uniform. So we write

dEω

V
=

~ω3dω

π2c3(eβ~ω − 1)
= u(ω, T )dω,

where

u(ω, T ) = energy/unit volume/unit frequency range

= spectral density

=
~ω3

π2c3(eβ~ω − 1)
.

This is the Planck radiation law. A plot of u(ω, T ) against (usually
inverse) wavelength would show a different peak for each temperature.
So for every temperature there is a unique frequency that is the

peak emission frequency. At 6000 K, the peak lies at the edge of the
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Section 1: Photons 16

visible spectrum. Starting from

u(ω, T ) =
~ω3

π2c3(eβ~ω − 1)

we can find the frequency of peak emission by calculating the deriva-
tive

(

∂u(ω, T )

dω

)

T

= 0

so
∂

∂ω

~ω3

π2c3
(eβ~ω − 1)−1 = 0

3
~ω2

π2c3
(eβ~ω − 1)−1 +

~ω3

π2c3
(−1)(eβ~ω − 1)−2eβ~ωβ~ = 0

3ω2 =
ω3eβ~ωβ~
(eβ~ω − 1)

3(eβ~ω − 1) = β~ωeβ~ω.
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Section 1: Photons 17

Now, let x = β~ω, and note that ω = ωmax, we are locating the
maximum. Thus rewriting, we get

3(ex − 1) = xex.

To find the value of x satisfying this equation, we can use numerical
or graphical methods.
What value of x satisfies

3(ex − 1)

ex
= x.

One way to approach this is to guess an answer and iterate, let’s try
it with an initial guess of x = 3. Then we find

3(e3 − 1)

e3
= 2.8506, this becomes our new guess

= 2.8266

= 2.8824
...

= 2.822.
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Section 1: Photons 18

Thus, our result is x = β~ωmax = 2.822 or ~ωmax

kT = 2.822. This
is the Wien displacement law. You can use it to estimate surface
temperature from peak emission wavelength. It is used to estimate
the surface temperatures of stars.

1.5. Total Energy Density of Blackbody Radiation

U(T ) =
E

V
=

∞
∫

0

u(ω, T )dω

U(T ) =

∞
∫

0

~ω3

π2c3(eβ~ω − 1)
dω

Let x = β~ω, so dx = β~dω, then

U(T ) =
~

π2c3
1

(β~)3
1

β~

∞
∫

0

x3dx

ex − 1
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Section 1: Photons 19

where
∞
∫

0

x3dx

ex − 1
=

π4

15
, a simple contour integral

leading to

U(T ) =
π2k4T 4

15c3~3
=

E

V
= aT 4.

This is the Stefan-Boltzmann law, where σ = c
4a is the Stefan-Boltzmann

constant.

1.6. Photon Entropy

E

V
=

π2k4T 4

15c3~3

dE = TdS − pdV + µdN

Let E, V be constant so that dE = TdS, then

E =
π2k4T 4

15c3~3
V
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Section 1: Photons 20

(

∂E

∂T

)

V,N

=
4

15

π2k4V T 3

c3~3

so, provided N,V are constants, we can write

dE =
4

15

π2k4V T 3

c3~3
dT

dS =
dE

T
=
4

15

π2k4V T 2

c3~3
dT

S =
4

15

π2k4V

c3~3

∫

T 2dT

S =
4

45
π2k4V

(

T

c~

)3

+ constant.

Now, as we have previously noted, by the strong form of the third law
of thermodynamics, limT→0 S = 0 resulting in

S =
4

45
π2k4V

(

T

c~

)3

.
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From this, we can conclude that a process carried out at constant
entropy (called an isentropic process is one for which V T 3 = constant.

1.7. Radiation Pressure

For an ideal gas of N particles, each of mass m, we can write

pV =
1

3
Nm〈v2〉

where
〈v2〉

1
2 = r.m.s. velocity of the particles

Now, if we let Nm =M be the mass of the gas, then

pV =
1

3

M

V
〈c2〉.

Now for a photon gas where all the particles have the same velocity
c,

p =
1

3

M

V
c2 =

1

3

E

V
=
1

3

〈E〉

V
=
1

3
U(T )

for a photon gas.
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Section 2: Phonons 22

2. Phonons
The energy of elastic waves is quantized – just as the energy of electro-
magnetic waves in a cavity is quantized. When we talk about phonons,
we are talking about the allowed vibrational modes in solids. The en-
ergies of these lattice vibrations are quantized because only certain
modes of vibration are allowed. Thus, we can treat elastic vibrations
in solids as particles or waves. The energy in a vibrational mode can
be treated as a quantum mechanical oscillator of the same frequency.
We can develop our treatment based on the properties of quantum
mechanical oscillators. Ultimately, we shall calculate heat capacities
— before embarking on those calculations, let’s look at the heat ca-
pacity of solids.
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Section 2: Phonons 23

2.1. The heat capacity of solids

When we transfer an amount of heat 4Q to raise the temperature of
a material by 4T , we define the heat capacity of the material as

lim
4T→0

4Q

4T
= C

or

C =
d−Q

dT
Then using

dE = TdS − pdV where TdS = d−Q,

we have

Cv = T

(

∂S

∂T

)

v

, dV = 0, so Cv =

(

∂E

∂T

)

v

.

We will now investigate the contributions of crystal lattice vibrations
to the heat capacity of solids. By the heat capacity, we shall usu-
ally mean the heat capacity at constant volume. Let’s review the
properties of a representative solid.
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• At room temperature, in most cases, the value of the heat ca-
pacity is 3Nk = 3R per mole = 25 J mol−1deg−1. This result,
derived from data is called the Dulong and Petit law. While
derived from data, it can be “justified.”

Consider a crystal consisting of N identical atoms. Each atom
is bound to its equilibrium position by forces that we can model
using springs. (We introduce the principle of equipartition as
an axiom here, but should note that it can be deduced from sta-
tistical mechanics.) The equipartition theorem says that each
velocity component (linear or angular) has an average energy of
kT/2 per molecule associated with it. The number of velocity
components needed to describe the motion is called the num-

ber of degrees of freedom. A monatomic gas has 3 degrees of
freedom. So E = 3

2kT per molecule or
3
2R per mole.

Now consider a solid, each atom vibrates about an equilibrium
position. By the equipartition theorem, each atom should have
an average kinetic energy of kT2 , for each of its three vibrational
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Section 2: Phonons 25

degrees of freedom. In addition, each atom has potential en-
ergy associated with elastic deformation. For simple harmonic
motion, the instantaneous oscillator energy is

E =
1

2
mv2 +

1

2
kx2

and the average kinetic energy is equal to the average potential
energy. In a crystal lattice, each atom is essentially a three-
dimensional harmonic oscillator. Provided that the springs are
Hooke’s law springs, it can be shown that:

〈KE〉 = 〈PE〉 =
3

2
kT

so
〈E〉 = 3kT

For N atoms
〈E〉 = 3NkT

and

Cv =

(

∂E

∂T

)

v

= 3Nk = 3Rmole
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Section 2: Phonons 26

this is the Dulong and Petit law.

• At lower temperatures the heat capacity drops markedly and
approaches zero as T 3 in insulators and as T in conductors.

• In magnetic material, there is a large contribution to the heat
capacity over the range of temperatures at which the magnetic
moments become ordered. Why? A change in order⇒ a change
in entropy. We know that we can write

Cv =

(

∂E

∂T

)

v

So a change in entropy contributes to a change in heat capacity.
Below 0.1 K the ordering of nuclear magnetic moments can give
rise to very large heat capacities.
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2.2. The quantum mechanical harmonic oscillator

For such an oscillator we write

εs =

(

s+
1

2

)

~ω s = 0, 1, 2, . . .

~ω/2 is called the zero point energy (zpe), we will often set it to
zero since it doesn’t affect the heat capacity. If a mode is excite to
a quantum number s, we say that there are s phonons in the mode.
If Hooke’s law is applicable, the normal modes of vibration of lattice
atoms are independent. The average energy of a lattice mode depends
only on its frequency ω and the number of phonons in the mode s.

• The partition function for a single oscillator

Z =
∑

r

e−εr/kT =

∞
∑

s=0

e−(s+ 1
2
)~ω/kT
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Section 2: Phonons 28

let ~ω/kT = x then

Z =
∑

e−(s+ 1
2
)x = e−

x
2

∑

e−sx

The sum is of the form
∑

ys where y = e−~ω/kT , if y < 1 we have a
geometric series,

∑

= 1
1−y . So

Z =
e−x/2

1− e−x
=

e−~ω/2kT

1− e−~ω/kT

We can use this result to calculate a variety of properties.

• Helmholtz Free energy of an oscillator

F = −kT lnZ =
~ω
2
+ kT ln(1− e−~ω/kT )

• Average oscillator energy

〈E〉 = −
∂ lnZ

∂β
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Section 2: Phonons 29

Z =
e−β~ω/2

1− e−β~ω

lnZ = −
β~ω
2
− ln(1− e−β~ω)

so

〈E〉 = −
∂ lnZ

∂β

=
~ω
2
+

∂

∂β
ln(1− e−β~ω)

=
~ω
2
+

1

1− e−β~ω ~ωe−β~ω

=
~ω
2
+

~ω
eβ~ω − 1

Now, comparing this with E = (s+1/2)~ω, we see that we can write

E =

(

〈s〉+
1

2

)

~ω
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Section 3: The Einstein Model (1907) 30

where

〈s〉 =
1

e~ω/kT − 1
.

We can interpret this as the average occupancy of a photon mode ω.
As we have already seen (when we derived it directly for photons) this
is the Planck distribution.

3. The Einstein Model (1907)
This was the first application of quantum theory to solid state physics.
In this model, we treat the system as N oscillators connected by
springs in one dimension. Einstein assumed that all the oscillators
oscillate with a common frequency.
The average thermal energy of an oscillator of frequency ω is

E =
~ω
2
+

~ω
e~ω/kT − 1

for N oscillators in one dimension, the average thermal energy is

E = N〈s〉~ω, ignoring the ZPE.
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Section 3: The Einstein Model (1907) 31

Then using

E =
N~ω

e~ω/kT − 1
and

Cv =

(

∂E

∂T

)

v

We find

Cv = N~ω
∂

∂T
[e~ω/kT − 1]−1

= N~ω(−1)[e~ω/kT − 1]−2e~ω/kT
(

−
~ω
kT 2

)

= Nk

(

~ω
kT

)2
e~ω/kT

(e~ω/kT − 1)2
.

This is for the one-dimensional Einstein solid. In three dimsnsions,
we replace N ny 3N , since each atom has three degrees of freedom
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Section 3: The Einstein Model (1907) 32

and we find

Cv = 3Nk

(

~ω
kT

)2
e~ω/kT

(e~ω/kT − 1)2
.

How good is this expression? Let x = ~ω/kT , then

Cv = 3Nk
x2ex

(ex − 1)2
,

we can then examine the behavior of this expression at high and low
temperature.

3.1. High Temperature Limit

At high temperatures,

x =
~ω
kT
¿ 1

so let’s examine the term x2ex

(ex−1)2 as x→ 0.

Let

ex = 1 + x+
x2

2!
+
x3

3!
+ . . .
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Section 3: The Einstein Model (1907) 33

so we have
x2(1 + x+ x2

2! +
x3

3! + . . .)

(x+ x2

2! +
x3

3! + . . .)2
.

This obviously goes to 1 as x → 0. This yields the classical result of
Dulong and Petit, Cv = 3Nk.

3.2. Low temperature limit

In the low temperature limit, xÀ 1, ex À 1 so

Cv = 3Nk
x2ex

(ex − 1)2
' 3Nkx2ex = 3Nk

(

~ω
kT

)2

e−~ω/kT .

In this expression, Cv → 0 as T → 0 as required. (The exponential
always wins.)

3.3. Summary

Thus, in the Einstein model, the high temperature behavior is good,
the behavior at T = 0 is good, the low temperature behavior is not
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Section 4: The Debye Model, 1912 34

very good. While we measure that Cv ∝ T 3, but in this expression at
low temperature Cv ∝ e

−~ω/kT .
It is customary to introduce the Einstein temperature ΘE , through

x =
~ω
kT

=
ΘE
T

,

and we call ω = ωE the Einstein frequency. If T À ΘE , Cv =
3Nk. Einstein temperatures are properties of the material and are
tabulated. If T ¿ ΘE we are in the low temperature regime. This
model is so simple, it is surprising that it works at all.

4. The Debye Model, 1912
This model is similar to the Einstein model in that we consider a lat-
tice consisting of N atoms, the system having 3N degrees of freedom
corresponding to the 3N coordinates required to specify the positions
of the atoms.
The atoms execute complex, coupled motions; the oscillations of
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Section 4: The Debye Model, 1912 35

such a system can be described in terms of the 3N normal modes of vi-
bration of the system. Each mode has its own characteristic frequency
ω1, ω2, ω3, . . . , ω3N . The lattice vibrations are then equivalent to 3N
independent harmonic oscillators with frequencies ω1, ω2, ω3, . . . , ω3N .
If we knew the frequencies, we could immediately solve the problem.
We have shown that the average energy of an oscillator is given by

〈εi〉 =
~ωi
2
+

~ωi
e~ωi/kT − 1

.

The average energy of the 3N equivalent oscillators is then

E =
3N
∑

i=1

〈εi〉

The calculation was taken this far by Biot and von Karman, also in
1912. Since we don’t know the frequencies, we use Debye’s approach.
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Section 4: The Debye Model, 1912 36

4.1. The Debye Approach

Treat the solid as a continuum. We can then consider standing waves
in the sold. We will count the standing waves using the denisty of
modes calculation. It could also be done with the density of states
calculation.

4.2. The Density of Modes

As in the density of states, we consider a cube of side L, a three
dimensional standing electromagnetic wave is specified by

Ex = Ex0 sin
(nxπx

L

)

sin
(nyπy

L

)

sin
(nzπz

L

)

where
nx, ny, nz = 1, 2, 3, . . .

and similar expressions exist for the y and z components of the field.
The solutions vanish at

x, y, z = 0, L.
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If the ni were zero there would be no wave. Consider light, for any
given triplet ni, there are two polarizations, and on substituting into
the wave equation

c2
(

∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)

Ex =
∂2Ex

∂t2

where c is the velocity of light, we find

c2π2(n2
x + n2

y + n2
z) = ω2L2.

This determines the frequency of the mode in terms of the triplet of
integers nx, ny, andnz. Defining

n ≡ (n2
x + n2

y + n2
z)

1/2,

and the frequencies are given by

ωn =
nπc

L
.
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For cavity radiation, we could use this to write the total energy of
photons in a cavity as

E =
∑

n

〈εi〉 =
∑

n

~ωn
e~ωn/kT − 1

.

This sum is taken over all positive triplets nx, ny, nz, as positive in-
tegers are sufficient to describe all the independent standing modes.
We can replace the sum over nx, ny, nz by an integral over the

volume element dnxdnydnz in the mode index space. In other words,
we can write

∑

n

(. . .) =
1

8

∞
∫

0

4πn2dn(. . .).

If we were making the calculation for photons, we would multiply
by two to deal with the two polarizations. We could complete the
calculation to find the energy density of electromagnetic radiation.
(The factor 1/8 restricts us to the positive octant of mode index space,
this is similar to our density of states calculation.) In this instance

Toc JJ II J I Back J Doc Doc I



Section 4: The Debye Model, 1912 39

we are interested in phonons.
For elastic waves, there are three possible polarizations, two trans-

verse and one longitudinal. Thus for elastic modes, the sum of a
quantity over all modes is given by:

∑

n

(. . .) =
3

8

∫

4πn2dn(. . .),

where the definition of n is identical to the one arising from photons.

4.3. Density of Modes and the Debye Model

In the Debye model, there are are 3N allowed modes. Thus, we want
to find nD such that the total number of modes is 3N . We find this
by evaluating:

3

8

nD
∫

0

4πn2dn = 3N
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So
3

8
4π

(

n3

3

)nD

0

= 3N

and

nD =

(

6N

π

)1/3

.

The average energy of an oscillator is

〈E〉 =
~ω
2
+

~ω
e~ω/kT − 1

.

Now omitting the zero point energy (it doesn’t affect Cv),

E =
∑

n

〈εn〉 =
∑ ~ωn

e~ωn/kT − 1

and

E =
3

8

nD
∫

0

4πn2dn
~ωn

e~ωn/kT − 1
.
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• Evaluation of the Debye Integral

Now ωn =
nπc
L , and we rewrite the energy integral as

E =
3

8

nD
∫

0

4πn2dn~
nπc

L

1

e~nπc/LkT − 1
.

Transforming the integral to one over a dimensionless variable by

x =
π~cn
LkT

, xD =
π~cnD
LkT

we have

n =
LkTx

π~c
, dn =

Lkt

π~c
dx.

Therefore,

n3dn =

(

LkT

π~c

)4

x3dx
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and

E =
3

2

nD
∫

0

π2~c
L
(n3dn)

1

ex − 1

=
3

2

nD
∫

0

π2~c
L

(

LkT

π~c

)4
x3dx

ex − 1

=
3

2

π2~c
L

(

LkT

π~c

)4
xD
∫

0

x3dx

ex − 1
.

The upper limit of integration is

xD =
π~cnD
LkT

=
π~cnD
V 1/3kT

,

since

L3 = V and nD =

(

6N

π

)1/3

.
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Then we can write

xD =
~c
kT

(

6π2N

V

)1/3

=
ΘD
T

where

ΘD =
~c
k

(

6π2N

V

)1/3

= Debye Temperature

The Debye temperature is fixed for a particular temperature - it ba-
sically depends on (N/V )1/3.

4.4. The Debye Model at Low Temperture

Let’s find Cv at low temperature. At low temperatures, T ¿ ΘD and
so xD À 1. We can write xD = ∞ here, since beyond x = 10 the
integrand is approximately zero.
From tables we find

∞
∫

0

x3dx

ex − 1
=

π4

15
.
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Using this in

E =
3

2

π2~c
L

(

LkT

π~c

)4
xD
∫

0

x3dx

ex − 1

we find

E '
3

2

L3k4T 4

π2~3c3
π4

15
.

But

ΘD =
~c
k

(

6π2N

V

)1/3

, Θ3
D =

(

~c
k

)3
6π2N

V
so

E =
3

2

π4

15
NkT 4 V

6Nπ2

6k3

~3c3

=
3

2

π4

15
NkT 4 6

Θ3
d

=
3

5

NkT 4π4

Θ3
D

.
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Then

Cv =

(

∂E

∂T

)

v

yields

Cv =
12

5

NkT 3π4

Θ3
D

' 234Nk

(

T

ΘD

)3

.

In other words Cv → 0 as T → 0 and at low temperatures Cv ∝ T 3.
This is the Debye T 3 approximation. At high temperatures the model
yields the Dulong and Petit result. This model is “exact” at low and
high temperature and an interpolation formula in between.
At “sufficiently” low temperatures, the T 3 approximation is good.

At such temperatures only long wavelength acoustic modes are ex-
cited. These are just the modes that can safely be treated as an
elastic continuum with macroscopic elastic constants. The energy of
short wavelength modes (for which this approximation fails) is too
high for them to be significantly populated. For actual crystals, the
temperatures for which the T 3 law holds is quite low, typically ΘD/50.
As examples ΘD = 645 K for Si, in fact, let’s look at this column of
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the periodic table.

Element ΘD (K)
C 2230
Si 645
Ge 374
Sn 200
Pb 105

Note that the heavier atoms have the lowest ΘD’s, this is because
the velocity of sound decreases as density increases.
In a later course, you will study optic and acoustic phonons. A

common practice is to model acoustic phonons with the Einstein
model being used to model the optical phonon part of the phonon
spectrum. Further discussion is beyond the scope of our course at
this point.1

1If you really want to know more at this point refer to Kittel’s Introduction to

Solid State Physics
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