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Section 1: The Canonical Ensemble 3

1. The Canonical Ensemble
We will develop the method of canonical ensembles by considering a
system placed in a heat bath at temperature T. The canonical ensem-
ble is the assembly of systems with fixed N and V. In other words we
will consider an assembly of systems closed to others by rigid, diather-
mal, impermeable walls. The energy of the microstates can fluctuate,
the system is kept in equilibrium by being in contact with the heat
bath at temperature T. Schematically, we can view this ensemble as:

State 1 E1, V,N Bath T

State 2 E2, V,N Bath T

State 3 E3, V,N Bath T

...
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State ν Eν , V,N Bath T

The system for which the canonical ensemble is appropriate can be
thought of as a sub-system of the system for which the microcanonical
ensemble is appropriate.

Bath E0

System Eν

Isolated system with E, V,N fixed.
Basically what we do is to examine one state and consider the rest
to be in the heat bath. Thus the macroscopic system is specified by

JJ II J I Back J Doc Doc I



Section 1: The Canonical Ensemble 5

T, V, andN as illustrated.

Isolated
Temperature T

V,N

Let the combined energy of the system and the heat bath = E0

The system with V,N will be in one of a variety of microstates
E1, E2, . . . , Er. These energies could be degenerate in some cases, but
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we assume that they can be ordered.

E1 ≤ E2 ≤ E3 ≤ . . . ≤ Er ≤ . . .

We’ll select δE so that we select one energy level but several mi-
crostates.

Let the system be in a state with energy Er, the energy of the reser-
voir is then E0 − Er.

What’s the probability that the system will be in a microstate with
energy Er? When we considered an isolated system, we found the
probability of it being in a macrostate specified by (E, V,N, α) was
proportional to the multiplicity Ω(E, V,N, α). In this situation, we
could choose to analyze the system or the heat bath. It will prove to
be efficient to analyze the heat bath.
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The multiplicity of the heat bath is:

Ω(E0 − Er)

We have an isolated system with two sub-systems, labelling the heat
bath as system 2, we have:

pr = constΩ2(E0 − Er)

The ratio of probabilities for the states Ei, and Ej is

pi

pj
=

Ω2(E0 − Ei)
Ω2(E0 − Ej)

We could write similar expressions for all pairs of levels, if we consider
three

pi

pi
=

Ω2(E0 − Ei)
Ω2(E0 − Ei)

pi

pj
=

Ω2(E0 − Ei)
Ω2(E0 − Ej)
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pi

pk
=

Ω2(E0 − Ei)
Ω2(E0 − Ek)

we can add them to give

pi + pj + pk

pi
=

Ω2(E0 − Ei) + Ω2(E0 − Ej + Ω2(E0 − Ek))
Ω2(E0 − Ei)

We can generalize this result to yield

pr =
Ω2(E0 − Er)∑
i

Ω2(E0 − Ei)

Where the sum is taken over all levels. Next, we rewrite the expres-
sion for pr in terms of the reservoir entropy.

S = k ln Ω, so S/k = ln Ω, and Ω = eS/k. Using this we write

pr = (constant) × exp
(

S2(E0 − Er)
k

)
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With a large reservoir, we can assume that E0 À Er. If the
heat bath is large this inequality holds for all states with a reasonable
chance of occurring. Now we’ll expand in a Taylor series about S2(E0).
Recall

f(x0 + a) = f(xo) + a

(
df

dx

)
x=x0

+
1
2!

a2

(
d2f

dx2

)
x=x0

+ . . .

so
1
k

S2(E0 − Er) =
1
k

S2(E0) − Er

k

∂S2(E0)
∂E0

+
E2

r

2!k
∂2S2(E0)

∂E2
0

. . .

Now, we know that
∂S2(E0)

∂E
=

1
T

where T is the temperature of the heat bath. Thus, we have

1
k

S2(E0 − Er) =
1
k

S2(E0) − Er

kT
.
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All higher order partial derivatives are zero by assumption of a large
heat bath

∂2S2

∂E2
=

∂

∂E

(
1
T

)
= 0

Now using

pr =
Ω2(E0 − Er)∑
i

Ω2(E0 − Ei)

and
Ω = eS/k

and substituting

β =
1

kT
we get

pr =
exp(S2

k − βEr)∑
i

exp(S2
k − βEi)
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=
eS2/ke−βEr∑
i

eS2/ke−βEi

=
e−βEr∑
i

e−βEi

pr =
e−βEr

Z

2. Partition Functions and the Boltzmann Distri-
bution

In the last equation, I have defined

Z =
∑

i

e−βEi = Sum over States = Zustandsumme = Partition Function

We will also use an alternate definition where the sum is over en-
ergy levels rather than states. In this alternate definition, we let the
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degeneracy of the level be g(Ei). Then

Z =
∑
Ei

g(Ei)e−βEi .

The equation pr = e−βEr

Z is called the Boltzmann distribution. The
Boltzmann distribution gives the probability that is in a particular
state when it is in a heat bath at temperature T. Z plays a central
rôle in the study of systems at fixed T. The term e−βEr is called the
Boltzmann factor.

It is now time to combine these ideas with our knowledge of prob-
ability, recall

<x>=
∑

i

xif(xi) =
∑

i

pixi

In thermal physics, in the canonical ensemble, the probability distri-
bution (pi = f(xi) is the Boltzmann distribution, the average is called
an ensemble average.
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2.1. Average Energy in the Canonical Ensemble

<E>=
∑

i

piEr =
1
Z

∑
r

Ere
−βEr

Let’s simplify this result, consider Z =
∑
r

e−βEr

∂Z

∂β
=

∂

∂β

∑
r

e−βEr

=
∑

r

e−βEr
∂

∂β
(−βEr)

= −
∑

r

Ere
−βEr

so

<E> =
1
Z

∑
r

Ere
−βEr
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= − 1
Z

∂

∂β

∑
r

e−βEr

= − 1
Z

∂Z

∂β

<E> = −∂ lnZ

∂β

This is an average over the states of the system that exchange energy
with the reservoir. The fluctuations around this energy are small.

3. Gibbs Entropy Formula
Consider a general macroscopic system with state labelled 1, 2, 3, . . . , r, . . ..
The probability that a system is in a state r is pr. Without constraints,∑

pr = 1 is all about the way we can say about the system. The gen-
eral definition of entropy is then

S = −k
∑

r

pr ln pr.
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This is the Gibbs entropy formula. We can deduce this formula for
a generalized ensemble. Consider an ensemble of ν replicas of our
system. We’ll assume that each replica has the same probability
p2, p2, p3, . . . , pr, . . . of being in the state i. Provided ν is large enough,
the number or systems in the ensemble in state r is

νr = νpr

The multiplicity Ων for the ensemble with ν1 subsystems in state 1,
ν2 subsystems in state 2, etc., is the number of ways the distribution
can be realized:

Ων =
ν!

ν1!ν2! . . . νr!
Now

Sν = k ln Ων = k ln
ν!

ν1!ν2! . . . νr!
Sν = k ln ν! − k(ln ν1! + ν2! + . . . + νr!)
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Recall Stirling’s approximation lnN ! = N lnN − N , so

Sν = k(ν ln ν −
∑

r

νr ln νr)

But νr = νpr

Sν = kν ln ν − k
∑

r

νpr ln(νpr)

= kν ln ν − kν
∑

r

pr ln(νpr)

= kν ln ν − kν
∑

r

pr ln ν − kν
∑

r

pr ln pr

= kν ln ν − kν ln ν
∑

r

pr − kν
∑

r

pr ln pr

Sν = −k ln ν
∑

r

pr ln pr
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But entropy is extensive so the entropy of one system (replica) is

S = Sν = −k
∑

r

pr ln pr

The Gibbs entropy formula is consistent with the Boltzmann entropy
formula S = k ln Ω. In an isolated system with energy in the range E
to E + δE, the number of microstates in the interval is Ω(E, V,N).
The probability of finding the system in one of the microstates is
1/Ω(E, V,N) in the range and 0 outside the range. So

pr =
1

Ω(E, V,N)
(there are Ω terms in an isolated system)

S = −k
∑

r

pr ln pr = −k
∑

r

pr ln
1
Ω

= k ln Ω
∑

r

pr = k ln Ω
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4. Entropy of a System in a Heat Bath
To find the entropy of a system in a heat bath, we can use the Gibbs
entropy formula and the Boltzmann distribution for pr.

S = −k
∑

r

pr ln pr

and

pr =
e−βEr

Z
.

Combining these expressions, and simplifying

−S

k
=

∑
r

pr ln pr

=
∑

r

e−βEr

Z
ln

(
e−βEr

Z

)

=
∑

r

e−βEr

Z
ln

(
e−βEr

) − ∑
r

e−βEr

Z
lnZ
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=
∑

r

e−βEr

Z
(−βEr) − Z

Z
lnZ

=
∑

r

−βEre
−βEr

Z
− lnZ

but, by definition, we have

<E>=
∑

r

Ere
−βEr

Z
,

so we can simplify the above result to yield

−S

k
= −β <E> − ln Z,

and finally we find

S =
<E>

T
+ k lnZ.

We will usually assume that the system energy is well defined and
use <E> and E interchangeably, that is the system’s mean energy
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Section 5: Summary 20

(which is an estimate) and the system’s energy are interchangeable.
Our development of the partition function through its ensemble tells
us that Z = Z(T, V,N), thus S and < E > are also functions of
T, V, and N.

5. Summary

S = −k
∑

r

pr ln pr

pr =
e−βEr

Z

Z =
∑

r

e−βEr

<E>=
1
Z

∑
r

Ere
−βEr

JJ II J I Back J Doc Doc I



Section 5: Summary 21

<E>= −∂ lnZ

∂β

S =
<E>

T
+ k lnZ = S(T, V,N)

In these expressions, Z and <E>, and as a consequence S are defined
as functions of T, V, and N. Contrast this with an isolated system
where S = S(T, V,N). For a macroscopic system at temperature T ,
energy fluctuations are negligible — i.e. to <E> . This means that
the entropy of a macroscopic body is a heat bath at temperature T
is well defined and is equal to that of an isolated body with energy E
equal to the mean energy <E> of the system at temperature T. We
can express this as

S(T, V,N) = k ln Ω(<E>, V,N)

For an isolate system, the basic quantities are Ω and S; for a system
in a heat bath, the basic quantities are Z(T, V,N) and F (T, V,N). We
have defined enthalpy, a function useful for studying isolated systems
at fixed pressure. F is a similar thermodynamic quantity, defined as
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F = E − TS, useful for analyzing systems in equilibrium with a heat
bath at temperature T, that is systems held at constant temperature.
We will now relate this function to the partition function.

6. Helmholtz Free Energy, F
If we define F = E − TS, and note that for a macroscopic system
E =<E>, we can write

F = E − TS = −kT lnZ(T, V,N),

and use
S =

<E>

T
+ k lnZ

resulting in
F (T, V,N) =<E> −TS = −kT lnZ.

This concludes the basic development of the partition function and
the canonical ensemble, we will later explore other theoretical devel-
opments, it is now time to look at some examples.
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