1. (15 marks) Derive explicit expressions for cubic Lagrange shape functions and sketch them for the master element $[-1, 1]$. Illustrate the form of the basis functions produced by such shape functions for a mesh consisting of two elements.

Solution. The explicit expressions for cubic Lagrange shape functions are

\[
\begin{align*}
p_1(\xi) &= \frac{(\xi - \xi_2)(\xi - \xi_3)(\xi - \xi_4)}{(\xi_1 - \xi_2)(\xi_1 - \xi_3)(\xi_1 - \xi_4)}, \\
p_2(\xi) &= \frac{(\xi - \xi_1)(\xi - \xi_3)(\xi - \xi_4)}{(\xi_2 - \xi_1)(\xi_2 - \xi_3)(\xi_2 - \xi_4)}, \\
p_3(\xi) &= \frac{(\xi - \xi_1)(\xi - \xi_2)(\xi - \xi_4)}{(\xi_3 - \xi_1)(\xi_3 - \xi_2)(\xi_3 - \xi_4)}, \\
p_4(\xi) &= \frac{(\xi - \xi_1)(\xi - \xi_2)(\xi - \xi_3)}{(\xi_4 - \xi_1)(\xi_4 - \xi_2)(\xi_4 - \xi_3)}.\end{align*}
\]

They are sketched in Figure 1.

![Cubic shape functions](image.png)

Figure 1: Cubic shape functions.
The basis functions produced by such shape functions for a mesh consisting of two elements are as follows. Figure 2 was provided generously by Mr. Rod Locke, and Figure 3 generously by Mr. Xiaomin Li. Many other students also responded to my request quickly. I greatly appreciate their help and generosity.

![Cubic Basis Functions for a Two-Element Mesh](image)

Figure 2: Cubic basis functions.

2. (35 marks) Use the cubic shape functions to revise `ode2.m` in Chapter 4 and present your revised program and the code of cubic shape functions. Then test your revised code with following boundary value problems:

(a) The Dirichlet problem

\[
\begin{align*}
y'' + y' + y - 6x - 3x^2 - x^3 &= 0, & 1 < x < 2, \\
y(1) &= 1, & y(2) = 8.
\end{align*}
\]

(b) The Neumann problem

\[
\begin{align*}
y'' + y' + y - 6x - 3x^2 - x^3 &= 0, & 1 < x < 2, \\
y'(1) &= 3, & y'(2) = 12.
\end{align*}
\]
Both problems have the exact solution \(y = x^3 \). Present your mesh data file and coefficient file. Plot both the exact solution and your piece-wise cubic approximations. Do your piece-wise cubic approximations give this exact solution?

Solution. The revised **ode2.m** is as follows:

```matlab
%===============
% PROGRAM ode2cubicElement
%===============

clear

% ----------------
% INPUT DATA
% ----------------
load cubicMESH.dat  -ASCII
load QUAD  -ASCII
```

![Figure 3: Cubic basis functions.](image-url)
% Define MESH Data
% ----------------
NUMNP = cubicMESH(1,1);
NUMEL = (NUMNP - 1)/3;
for i=1:NUMNP;
 XORD(i) = cubicMESH(i+1,1);
 NPBC(i) = cubicMESH(i+1,2);
 Y(i) = cubicMESH(i+1,3);
 Q(i) = cubicMESH(i+1,4);
end
% ----------------
% Define QUAD Data
% ----------------
NQPTS = QUAD(1,1);
for i=1:NQPTS
 GPTS(i)=QUAD(i+1,1);
 GWTS(i)=QUAD(i+1,2);
end
% ----------------------------
% Initialize stiffness matrix
% ----------------------------
for I=1:NUMNP
 for J=1:7
 SK(I,J)=0.0;
 end
end
% --------------------------------
% FORMATION OF STIFFNESS MATRIX
% and
% RIGHT HAND SIDE
% --------------------------------
IB=7;
for I=1:NUMEL
% Initialize Element Variables
% -----------------------------
 Xa = XORD(3*I-2);
 Xb = XORD(3*I+1);
RL=Xb-Xa;
DxDu=RL/2.0;
DuDx=2.0/RL;

for J=1:4
 for K=1:4
 S1(J,K)=0.0;
 S2(J,K)=0.0;
 S3(J,K)=0.0;
 end
 Qe(J)=0.0;
end

% Begin Gaussian Quadrature
% -------------------------

for J=1:NQPTS
 u = GPTS(J);
 Xg = (Xa+Xb)/2 + (RL/2.0)*u;
end

% INCLUDE COEF.m
% Defines: AX, BX, CX, and DX
% ------------------------------

DNDX(1) = cubicSF(1,1,u)*DuDx;
DNDX(2) = cubicSF(1,2,u)*DuDx;
DNDX(3) = cubicSF(1,3,u)*DuDx;
DNDX(4) = cubicSF(1,4,u)*DuDx;

% Element stiffness matrices
\[
Wt = GWTS(J);
\]
for \(K=1:4\)
\[
\text{for } L=1:4
\]
\[
S1(K,L) = S1(K,L) + Wt * DNDX(K) * AX * DNDX(L) * DxDu;
\]
\[
S2(K,L) = S2(K,L) + Wt * cubicSF(0,K,u) * BX * DNDX(L) * DxDu;
\]
\[
S3(K,L) = S3(K,L) + Wt * cubicSF(0,K,u) * CX * cubicSF(0,L,u) * DxDu;
\]
end
\[
Qe(K) = Qe(K) + Wt * cubicSF(0,K,u) * DX * DxDu;
\]
end
end
\%
\begin{verbatim}
% ----------------------------
Wt = GWTS(J);
for K=1:4
 for L=1:4
 S1(K,L) = S1(K,L) + Wt * DNDX(K) * AX * DNDX(L) * DxDu;
 S2(K,L) = S2(K,L) + Wt * cubicSF(0,K,u) * BX * DNDX(L) * DxDu;
 S3(K,L) = S3(K,L) + Wt * cubicSF(0,K,u) * CX * cubicSF(0,L,u) * DxDu;
 end
 Qe(K) = Qe(K) + Wt * cubicSF(0,K,u) * DX * DxDu;
end
end
% ----------------------------
% Assemble element matrices
% into global matrix
% ----------------------------
K1=3*(I-1);
L0=4;
for K=1:4
 L0=L0-1;
 K1=K1+1;
 L1=L0;
 for L=1:4
 L1=L1+1;
 SK(K1,L1) = SK(K1,L1) + S1(K,L) - S2(K,L) - S3(K,L);
 end
 Q(K1) = Q(K1) + Qe(K);
end
end
% ----------------------------
% ---- Global Matrices are assembled
% ----------------------------
% BOUNDARY CONDITIONS
% ----------------------------
B = 0;
for I=1:NUMNP
 for J=1:7
 B = B+abs(SK(I,J));
 end
end
B = B*(1.0E+04);
for I=1:NUMNP
 if NPBC(I) == 1
 SK(I,4)=B;
 Q(I)=Y(I)*B;
 end
end

% -------------------------
% CALL EQUATION SOLVER
% -------------------------
Y = nGAUSS(SK,Q[NUMNP],IB);

% -----------------------
% OUTPUT DATA
% -----------------------
save Y Y -ASCII

plot the solution
hold on
for I=1:NUMEL
 L_I=XORD(3*I+1)-XORD(3*I-2);
 h_I= L_I/10;
 x_I= XORD(3*I-2):h_I:XORD(3*I+1);
 u_I= (2*x_I-XORD(3*I+1)-XORD(3*I-2))/L_I;
 y_I =Y(3*I-2)* cubicSF(0,1,u_I)+Y(3*I-1)* cubicSF(0,2,u_I)...
 +Y(3*I)* cubicSF(0,3,u_I)+Y(3*I+1)* cubicSF(0,4,u_I);
 app=plot(x_I,y_I, '-r', 'linewidth', 2);
 grid on;
end
title(' Results from ode2cubicElement.m')
xlabel(' Independent variable')
ylabel(' Dependent variable')

x = min(XORD):0.01:max(XORD);
y = x.^3;
exact=plot(x,y, '-.k', 'linewidth', 2);
legend([app exact], 'Approximate solution', 'Exact solution');
hold off;

The code of the cubic shape functions are
function s = cubicSF(D,node,u)
%---
% Shape Functions
% D = derivative
% = 0 function itself
% = 1 first derivative of function
% node = nodal point number (1 or 2)
% u = local coordinate
%---

u_1=-1;
ít_2=-1/3;
ít_3=1/3;
ít_4=1;

if D == 0 % Calculate shape function
 if node == 1
 s = (u-u_2).*(u-u_3).*(u-u_4)./((u_1-u_2).*(u_1-u_3).*(u_1-u_4));
 elseif node == 2
 s = (u-u_1).*(u-u_3).*(u-u_4)./((u_2-u_1).*(u_2-u_3).*(u_2-u_4));
 elseif node == 3
 s = (u-u_1).*(u-u_2).*(u-u_4)./((u_3-u_1).*(u_3-u_2).*(u_3-u_4));
 elseif node == 4
 s = (u-u_1).*(u-u_2).*(u-u_3)./((u_4-u_1).*(u_4-u_2).*(u_4-u_3));
 else
 error('Error #1 in SF function')
 end

elseif D == 1 % Calculate derivative shape function
 if node == 1
 s = ((u-u_3)*(u-u_4)+(u-u_2)*(u-u_4)+(u-u_2)*(u-u_3))./((u_1-u_2)*(u_1-u_3)*(u_1-u_4));
 elseif node == 2
 s = ((u-u_3)*(u-u_4) +(u-u_1)*(u-u_4)+(u-u_1)*(u-u_3))./((u_2-u_1)*(u_2-u_3)*(u_2-u_4));
 elseif node == 3
 s =((u-u_2)*(u-u_4)+(u-u_1)*(u-u_4)+(u-u_1)*(u-u_2)) ./((u_3-u_1)*(u_3-u_2)*(u_3-u_4));
 elseif node == 4
 s =((u-u_2)*(u-u_3)+(u-u_1)*(u-u_3)+(u-u_1)*(u-u_2)) ./((u_4-u_1)*(u_4-u_2)*(u_4-u_3));
 else
 error('Error #1 in SF function')
 end
end
Figure 4: Exact and approximate solution of the Dirichlet problem.

```matlab
error('Error #2 in SF function');
end
else
    error('Error #3 in SF function')
end
```

(a) The mesh data file for the Dirichlet problem is

```
% MESH data file
%---------------------------------------------
% NUMNP + 3 dummy numbers
%---------------------------------------------
7 0 0 0
%---------------------------------------------
% XORD NPBC U Q
%---------------------------------------------
1 1 1 0
1.2 0 0 0
1.4 0 0 0
1.5 0 0 0
1.7 0 0 0
1.9 0 0 0
2 1 8 0
```

The coefficient INCLUDE file is
The exact solution and piece-wise cubic approximation are plotted in Figure 4, which shows that they are equal since the cubic approximation contains the exact solution.

(b) The mesh data file for the Neumann problem is

The exact solution and piece-wise cubic approximation are plotted in Figure 5, which shows that they are equal since the cubic approximation contains the exact solution.

3. (10 marks) Run the linear finite element code `ode2.m` to solve the above Dirichlet problem and compare this result with your cubic finite element approximation. What conclusions can you draw?

Solution. The linear finite element and cubic finite element approximations are plotted in Figure 6. This example shows that as the degree of polynomials increases, the accuracy of the approximate solution increases. However, there is a price to pay for such accuracy. As the degree increases, the bandwidth of the resulting stiffness matrix
Figure 5: Exact and approximate solution of the Neumann problem.

increases and thus, in general, so does the computational effort required in solving the final system of equations.
Figure 6: The linear and cubic approximations of the Dirichlet problem.