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SUMMARY

A hybrid scheme called finite element method of lines is proposed and described for modelling and analysis
of generalized computational electromagnetic problems with emphasis on a number of irregular waveguide
examples. This new technique is developed by combining a finite element method with a method of lines so
that it can handle not only irregular composite geometry but also maintain high accuracy enjoyed by semi-
analytical procedures. Analytical and numerical algorithmic building blocks of this new scheme are
discussed in detail such as geometry discretization, element mapping, element trial functions, reformulation
and computational issues of non-linear ordinary differential equations. Our results show that this new
technique is able to efficiently solve complex problems as compared with the conventional method of lines.
Copyright # 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Guided-wave and transmission line problems are the foundation for design of integrated circuits
and devices at frequencies ranging from megahertz to terahertz, which have been studied by
researchers for a long time. With few exceptions, the existing analytical solutions are only
amenable to structures of homogeneous material and of simple regular geometry such as
circular, rectangular, elliptical, annular or other co-ordinate-conformable topology, for which
the method of separation of variables can be applied. As for an arbitrarily shaped transmission
line, however, the solution is obtainable only numerically, for example, the finite difference
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method, the finite element method (FEM) as well as the boundary equation method.
In particular, the FEM has become a very popular tool in solving electromagnetic
problems because it is able to handle with great flexibility a large class of geometrically
and compositionally complex problems [1–3]. Nevertheless, the FEM has to fully dis-
cretize a problem into a system of algebraic equations with discrete nodal/edge potential
or field values as basic unknowns and thus errors of discretization are inevitably in-
troduced. Mesh density must be small enough to obtain accurate solutions and locally
adaptive mesh refinement is necessary when there is a singularity in the computational
domain.

It is, of course, desirable to solve boundary-value problems in an analytical manner
whenever possible. The method of lines (MOL) is a semi-discrete and semi-analytical method
and it has found applications in simulating and modelling multi-layer planar circuits [4–8].
However, the conventional MOL makes use of a finite difference technique to discretize the
problem and turn it into a set of analytically solvable ordinary differential equations (ODEs)
with nodal line functions as the basic unknowns. Different from the conventional MOL,
our proposed hybrid finite element method of lines FEMOL scheme utilizes a finite
element technique in a semi-discrete form [9–14]. Partial differential equations (PDEs) defined
on some particular domains even though they may be arbitrary are semi-discretized into a
system of ODEs defined on discrete mesh lines (straight or curved) via variational principles,
and then the resulting ODE system can directly be solved using a standard and robust ODE
solver. Due to the efficient adaptivity and the so-called super-convergence capability built into
today’s ODE solvers, highly reliable and accurate solutions of the ODE system can be obtained
numerically, and hence the semi-analytical characteristics featured in this method are well
preserved.

As a semi-analytical or semi-discrete method, the FEMOL makes itself distinguished
from the standard FEM procedures in view of several aspects. Intuitively, this method
should be powerful and efficient, in particular, for those field problems for which solutions,
for example in a two-dimensional (2D) case, may exhibit quite ‘wild’ behaviour in one direction
and rather ‘mild’ in the other. For the standard line meshes, both FEMOL and FEM share
the same convergence order in the formulated energy norms. But the errors in a FEMOL
solution are independent of the true solution variation in the mesh line direction. In
other words, no matter how naughty the true solution behaves along the mesh line direction,
we will be able to gain an equally or consistently accurate FEMOL solution as long
as the behaviours of the true solutions are similar to that of the FEM along the discrete
direction. This characteristic is very attractive when there is a singularity in the computational
domain. On the other hand, the use of robust ODE solvers makes the solution of the resulting
ODEs (generally with variable coefficients) unified, efficient, accurate and effortless as compared
with the conventional MOL in which a linear transformation is required to de-couple the
coupled ODEs.

In this paper, basic concepts and analytical formulations of the proposed FEMOL
hybrid algorithm are detailed by solving an elliptic Helmholtz equation boundary
value problem. In Section 2, algorithmic properties and procedures of geometry discreti-
zation, element mapping and element trial functions in the FEMOL are discussed in depth.
In Section 3, several numerical examples are given to showcase the accuracy and efficiency of
this new numerical technique through modelling and analysis of waveguide eigen-value
problems.
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2. THEORY AND FORMULATION

To begin with, let us consider a problem of the elliptic model, for example, Helmholtz equation,

r2uþ lu ¼ 0 over O ð1Þ

u ¼ %uuðx; yÞ on GD ð2Þ

@u

@n
¼ g on GN ð3Þ

where the 2D domain O is bounded by a segmented boundary with differential element @O that
consists of Dirichlet boundary GD and Neumann boundary GN ; for example, @O ¼ GD [ GN ;
and n denotes the outward normal orientation. For the problem defined above, it can be shown
that its solution can be obtained by solving the equivalent variation problem defined by

dFðuÞ ¼ 0

ujGD
¼ %uuðx; yÞ

(
ð4Þ

where

FðuÞ ¼
1

2

ZZ
O

@u

@x

� �2

þ
@u

@y

� �2

þlu2
" #

dA�
Z
Gn

gu dG

in which u satisfies the essential boundary conditions (2). It is readily proved that searching for a
solution of the PDE problem (1) is equivalent to finding a u that minimizes the functional
equation (4). There are a number of ways to do so; our interest is to develop a new scheme called
FEMOL, which can effectively be applied herewith. This new technique will be described in
detail in the subsequent sections.

2.1. Domain discretization and parametric element mapping

To explain our proposed FEMOL, first of all, we segment the domain O into N quadrilateral
elements ek ðk ¼ 1; 2; . . . ;NÞ so that O ¼ Oh ¼

SN
k¼1 ek depending on whether Oh covers O

exactly or not. To simplify our mathematical description, the subscript k is dropped off when
referring to a representative element unless otherwise specified. Geometrical shapes of the
elements depend on mapping functions of the elements. However, all the four edges of an
element are generally allowed to be in the curved form, leading to a convenient and flexible
modelling of irregular or arbitrary domains.

As an example, Figure 1 shows a possible FEMOL mesh arrangement for an irregular 2D
domain, in which f1g; f2g; . . . ; denote the global mesh line number and 1; 2; . . . ; denote the
global end-node number. The dashed lines in quadratic elements stand for the internal mesh
lines. Figure 2(a) shows a typical quadratic element mapping in the FEMOL from a local ðx; ZÞ
space to the global ðx; yÞ space. The curves are defined by x ¼ xi ¼ �1þ 2ði � 1Þ= #pp;
i ¼ 1; 2; . . . ; #ppþ 1; which are called element nodal lines and the ith nodal line is denoted, for
example, by Li: The two boundary curves are defined by Z ¼ Zi ¼ �1þ 2ðj � 1Þ; j ¼ 1; 2; which
are called element end-sides, and the jth end-side is denoted, for example, by Sj : The
intersections of Li and Sj are defined by ðxi; ZjÞ ¼ Li \ Sj ; i ¼ 1; 2; . . . ; #ppþ 1; j ¼ 1; 2; which are
called node ij of an element with symbol Zij : The element mapping is set up in two steps, namely,
the nodal line mapping and the interpolation to the nodal lines.
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The first step is to map the curved nodal lines in ðx; yÞ space to a standard straight-line
segment Z from �1 to þ1 so that a typical nodal line Li is formulated in a parametric manner as

x ¼ xiðZÞ; y ¼ yiðZÞ; �14Z4þ 1 ð5Þ

Although the exact curve mapping is analytically possible in some cases, approximate mappings
are much preferred for the purpose of a computational flexibility and versatility. The domain
partition has been discussed in detail in References [9–13]. However, quadrilaterial elements do
not provide enough convenient modelling of irregular or arbitrary domains and then triangular
elements are introduced in this section to enhance the flexibility and versatility of this hybrid
method. The triangular element may be regarded as an element with an end-side Sj degenerating
to point. In this case the Jacobin determinant J of the triangular element vanishes at the
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Figure 1. Descriptive mesh or segmentation arrangement of the proposed FEMOL for arbitrary
computational domain with boundary conditions.
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Figure 2. (a) A quadratic element mapping between the global space and local space; and (b) An element
with a degenerate end-side.
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degenerated point and hence singularity arises in the formulation in References [10–13]
involving that end-side if the generated point is a Neumann point or an interior point.

Consider an element e and let one of its end-side #SSj degenerate to a point ðx0; y0Þ as shown in
Figure 2(b). For the ith nodal line curve defined by ðxiðZÞ; yiðZÞÞ; by expanding xiðZÞ and yiðZÞ
into the Taylor series about point Z ¼ Zj we obtain

xiðZÞ ¼ x0 þ ðZ� ZjÞx
0
iðZjÞ þ ðZ� ZjÞ

2x00i ðZjÞ=2þ � � � ð6aÞ

yiðZÞ ¼ y0 þ ðZ� ZjÞy
0
iðZjÞ þ ðZ� ZjÞ

2y00i ðZjÞ=2þ � � � ð6bÞ

The manner to remove singularities is to decompose each vanishing term at Z ¼ Zj into a
product of a linear vanishing factor ðZ� ZjÞ and a non-vanishing term, so that the vanishing
factor ðZ� ZjÞ can be completely cancelled in the subsequent asymptonic analysis. Therefore, the
above equations can be rewritten in the following compact form:

xiðZÞ

yiðZÞ

( )
¼

x0

y0

( )
þ ðZ� ZjÞ

uxiðZÞ

uyiðZÞ

( )
ð7Þ

As the nodal line mapping is completed, the element mapping is readily made by the use of a
Lagrange interpolation in x direction in the local space, such as

x

y

( )
¼

x0

y0

( )
þ ðZ� Z0Þ

X#ppþ1

i¼1

NiðxÞ
uxiðZÞ

uyiðZÞ

( )
ð8Þ

Subsequently, we have

@

@x

@

@Z

8>>><
>>>:

9>>>=
>>>;

¼ ½J�

@

@x

@

@y

8>><
>>:

9>>=
>>;;

@
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@y

8>><
>>:

9>>=
>>; ¼ ½J��1

@

@x

@

@Z

8>>><
>>>:

9>>>=
>>>;

ð9Þ

in which the Jacobian matrix ½J� of the co-ordinate transformation and its inversion can easily
be obtained by the following explicit equations:

½J� ¼ ðZ� ZjÞ½ #JJ�; ½J��1 ¼
1

#JJ

yZ=ðZ� ZjÞ �uyx

�xZ=ðZ� ZjÞ uxx

" #
ð10Þ

where

½ #JJ� ¼
#xxx #yyx

xZ yZ

" #

and #xxx ¼ @xx=@Z; #yyx ¼ @yx=@Z at Z ¼ Zj : Note that jJ j vanishes at Z ¼ Zj but j #JJ j does not.
Furthermore, the singularity in the first column of ½J��1 will be removed when it is practically
applied to calculation of partial derivatives.

2.2. Energy functional in triangular element

The trial function u over triangular element e may be approximated by a certain shape function
in x direction, and it remains continuous and unknown in Z direction. A convenient choice for
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the shape function is the Lagrange interpolating polynomials of degree p as follows:

u ¼
Xpþ1

i¼1

NiðxÞFiðZÞ � 14x; Z41 ð11Þ

where
p ¼ 1

N1ðxÞ ¼ 1
2
ð1� xÞ; N2ðxÞ ¼ 1

2
ð1þ xÞ

p ¼ 2

N1ðxÞ ¼ 1
2
ðx2 � xÞ; N2ðxÞ ¼ 1� x2; N3 ¼ 1

2
ðx2 þ xÞ

p ¼ 3

N1ðxÞ ¼ 1
16
ð1� xÞð9x2 � 1Þ; N2ðxÞ ¼ 9

16
ðx2 � 1Þð3x� 1Þ

N3ðxÞ ¼ � 9
16
ðx2 � 1Þð3xþ 1Þ; N4ðxÞ ¼ 1

16
ð1þ xÞð9x2 � 1Þ

The nodal line functions follow the same rule as in Equation (7), i.e.

FiðZÞ ¼ u0 þ ðZ� ZjÞ #FFiðZÞ ð12Þ

where u0 is the function value at the degenerated point. Substituting (12) into (11) we obtain

u ¼ u0 þ ðZ� ZjÞ
Xpþ1

i¼1

NiðxÞ #FFiðZÞ ð13Þ

It should be pointed out that the elements defined in Figure 2 are used for geometry modelling
and the trial functions pertaining to such elements may take different approximate functions.
Substituting (13) into (5), the energy functional for triangular element e can be written in general
by

FðfFgeÞ ¼
Z
O
L Z; fFge;

@fFge

@Z

� �
dO

and in detail as follows:

FðfFgeÞ ¼
1

2

Z 1

�1

ðfF0geT½A�efF0ge þ 2fF0geT½B�efFge þ fFgeT½C�efFge þ lfFgeT½M�efFgeÞ dZ

�
Z 1

�1

fFgeTfFge dZ�
X2
j¼1

fFðZjÞg
eTfPjg

e ð14Þ

where

½A�e ¼ ðZ� ZjÞ½ uA�
e; ½ uA�e ¼

Z 1

�1

aðx; ZÞ½N�T½N� dx; aðx; ZÞ ¼ ½ðuxxÞ
2 þ ðuyxÞ

2�= #JJ

½B�e ¼ ½ uB�e; ½ uB�e ¼
Z 1

�1

bðx; ZÞ½N�T½N 0� dx; bðx; ZÞ ¼ �ðuxxxZ þ uyxyZÞ= #JJ

½C�e ¼ ðZ� ZjÞ
�1½ uC�e; ½ uC�e ¼

Z 1

�1

cðx; ZÞ½N 0�T½N 0� dx; cðx; ZÞ ¼ ½ðxZÞ
2 þ ðyZÞ

2�= #JJ
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½M�e ¼ ðZ� ZjÞ½ uM�e; ½ uM�e ¼
Z 1

�1

½N�T½N� #JJ dx

fFge ¼ fJL1
gL1

; 0; . . . ; 0; JLpþ1
gLpþ1

g; gLi
¼ gðLiÞ

fPjg
e ¼

Z 1

�1

fFgTgSj
JSj

dx; gSj
¼ gðSjÞ

2.3. Variational equation in FEMOL

Once energy functional in triangular/quadrilateral element is expressed, the variation principle is
used to derive the first variation of the element functional. Since the operation of variation is
cumulative with respect to both integration and differentiation, the first variation of F due to an
incremental change in solution F can be expressed as

@F ¼
Z
O

@L

@F
dFþ

@L

@FZ
dFZ

� �
dO

¼
Z
O

@L

@F
dFþ

@L

@FZ

@

@Z
dF

� �
dO ð15Þ

in which FZ ¼ @F=@Z and dFZ ¼ d@F=@Z ¼ @dF=@Z: Integrating the second term by parts and
applying Green–Gauss theorem yieldsZ

O

@L

@FZ

@ðdFÞ
@Z

dO ¼
Z
O

@

@Z
@L

@FZ
dF

� �
dO�

Z
O

@

@Z
@L

@FZ

� �
dF dO

¼
Z
G
lZ

@L

@FZ
dF dO�

Z
O

@

@Z
@L

@FZ

� �
dF dO ð16Þ

in which lZ is the direction cosine of the normal to the outer surface with respect to the Z axis.
And then @F can be expressed as

@F ¼
Z
O

@L

@F
�

@

@Z
@L

@FZ

� �
dF dOþ

Z
G

@L

@FZ
lZdF dG ð17Þ

Substituting Equations (11) and (12) into Equation (15), the first-order differentiation of the
element functional with integration by parts yields

@FeðfFgeÞ ¼ �
Z 1

�1

f@FgeTð½A�efF00ge þ ½G�efF0ge þ ½H�efFge þ l½M�efFgeÞ dZ

þ
X2
j¼1

Zjf@FðZjÞg
eTðfQjg

e � ZjfPjg
eÞ ð18Þ

where

½G�e ¼ ½A0�e þ ½B�e � ½B�eT; ½H�e ¼ ½B0�e � ½C�e

fQjg
e ¼ ½A�efF0ge þ ½B�efFge; Z ¼ Zj; j ¼ 1; 2
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½A0�e ¼
Z 1

�1

@aðx; ZÞ
@Z

½N�T½N� dx; ½B0�e ¼
Z 1

�1

@bðx; ZÞ
@Z

½N�T½N 0� dx

The trial functions are required to be globally continuous and also satisfy essential boundary
conditions. The continuity condition across common nodal lines can be realized in the element
assembling procedure in a similar fashion to that of the FEM.

2.4. Ordinary differential equation (ODE) system for the FEMOL

Now, the resulting ODE system from the FEMOL approximation to the Helmholtz problem (1)
can be summarized as follows:

½A�fF00g þ ½G�fF0g þ ½H�fFg þ l½M�fFg ¼ f0g; �15Z51 ð19Þ

This is the derived set of a second-order ODE system to be solved in conjunction with the
boundary conditions at end-points of the nodal lines. Obviously, the boundary conditions and
related aspects should be examined. Let us consider a typical component Fm in fFg; which
represents mth line function value at jth end node ðj ¼ 1; 2Þ: This end node could also be an
internal common node with another line n , such as nodes 9, 10 and 11 as described in Figure 1.
We can then distinguish three different cases by

(a) Dirichlet node: This end node is on GD and Equation (14) will be satisfied ð@Fm ¼ 0Þ if we
simply interpolate the data generated by imposing Fm ¼ %FFm and Z ¼ Zj ; j ¼ 1; 2:

(b) Neumann node: This end node is on GN and hence @Fm is arbitrary, yielding Qjm ¼ ZjPjm;
Z ¼ Zj ; j ¼ 1 or 2.

(c) Interface node: This end node of mth line is an internal interface node shared with line n;
and hence @Fm is arbitrary but subject to a constraint given by @Fm ¼ @Fn; leading to
Fm ¼ Fn; and Qjm þQjn ¼ 0; Z ¼ Zj ; j ¼ 1 or 2.

Such second-order ODE systems can be solved with some currently available ODE solvers
together with boundary conditions [15–17]. To formulate relevant matrices and vectors in the
above ODE systems, a definite integration in x direction is required by using a Gaussian
numerical integration. It can be observed from the above equations that the proposed FEMOL
makes the approximation by a set of ODE systems, which is different from the FEM that makes
the approximation leading to a PDE by a set of algebraic equations. The FEMOL, in light of its
algorithmic platform between the FEM and analytical techniques, gets a step closer to the
original field problem judging from the degree of discretization, the equation characteristics,
and expected solution accuracy.

2.5. Equation reformulation and algorithm development

For the sake of readability, the above ODE system (19) is arranged into the following general
ODE matrix form:

½L�fFðZÞg ¼ l½M�fFðZÞg; �14Z41 ð20Þ

which is also subject to the boundary conditions ½B�1�fFð�1Þg ¼ f0g; ½B1�fFð1Þg ¼ f0g: l stands
for eigen-value of the ODE systems, fFg is a related n-vector eigen-function of Z; and ½L�; ½M�;
½B�1�; as well as ½B1� are ordinary differential linear operator matrices with such usual properties
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as self-adjoint, positive, non-singular, and so forth. When the Rayleigh quotient is applied to
calculate the eigen-value of (20), we have l ¼

R 1

�1 fFg
T½L�fFg dZ=

R 1

�1 fFg
T½M�fFg dZ:

Although the currently available ODE solvers are powerful enough for standard linear and
non-linear ODE systems, most of them are not furnished with eigen-solution features and thus
the eigen- problems related to the ODE systems are not in a form solvable by a standard ODE
solver. Nevertheless, they can easily be transformed into acceptable forms by adding only two
first-order differential equations as developed by Ascher and Russell [18] and Quanfeng [19].

First of all, we introduce a trial ODE for the eigen-value

l0 ¼ 0 ð21Þ

which guarantees l to be a constant. To achieve solution uniqueness for the eigen-function fFg;
a condition of normalization is applied, and it can be formulated as jjFjj2M ¼
1
2

R 1

�1
fFgT½M�fFg dZ ¼ 1: This condition may also be converted into an equivalent ODE form

as follows:

R0 ¼ 1
2
fFgT½M�fFg; �14Z41

Rð�1Þ ¼ 0; Rð1Þ ¼ 1 ð22Þ

Then (20)–(22) constitute a standard non-linear system of ODE as

l0 ¼ 0

R0 ¼ fFgT½M�fFg

½A�fF00g þ ½G�fF0g þ ½H�fFg þ l½M�fFg ¼ f0g; �14Z41 ð23Þ

with the boundary conditions

Rð�1Þ ¼ 0; Rð1Þ ¼ 1

½B�1�fFð�1Þg ¼ f0g; ½B1�fFð1Þg ¼ f0g

This ODE system can then be solved by any general-purpose ODE package. It appears that even
though the order of the new system is increased by two, it is still very advantageous in the
algorithm implementation. An obvious convenience in this case is to have an easy-to-make
programming format and understandable time saving procedure in preparing the problem for a
standard ODE solver.

In order that the convergence of non-linear system (23), one by one, to the first N eigen-pairs
can be assured and routinized, a series of initial guesses appropriate for the non-linear solution
of system by a standard ODE solver should be generated. The inversion iteration is used as
follows to solve linear system (24) with initial eigen-pairs adequately set for fFg;

f *FFgðkÞ ¼ ½L��1½M�fFgðk�1Þ

lðkÞ ¼
1

jj *FFðkÞjjM
; fFgðkÞ ¼

f *FFgðkÞ

jj *FFðkÞjjM
; k ¼ 1; 2; . . . ð24Þ

Although an inverse iteration may be used alone to solve eigen-problem (20), the convergence is
often very slow as jl1=l2j is close to 1. This is why only a small number of inverse iterations are
applied to generate a relatively pure eigen-function, and the components of higher-order eigen-
functions are mostly filtered out or at least negligible. Once the first i � 1 eigen-value and vector
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are obtained, the preprocessing of orthogonalizing fFg must be taken to remove the
components of the first i � 1 eigen-functions from the provided trial function. With this
moderately accurate eigen-solution as the initial guess, the above direct non-linear solution
process can thus be used to speed up the convergence and sharpen the accuracy of the sought
eigen-pairs. This strategy has been founded to be much more efficient and powerful than either
pure inverse iteration or direct non-linear solution.

3. EXAMPLES AND DISCUSSION

To show the accuracy and efficiency of the proposed FEMOL scheme, three numerical examples
are presented, all of which are of irregular geometry.

(A) As the first example, the cross-section of an eccentric coaxial line is described in the w-
plane as shown in Figure 3(a), which is ready for a conformal mapping transformation.
Radii of the inner and outer circles are R1 and R2; respectively. D is the distance between
the two centre points of circle. A mapping procedure, characterized by w ¼ R1 sinh x1
coth z=2; transforms the outer circle ABC of radius R1 and its centre at (R1 sinh x1; 0) in
the w-plane to a straight line A0B0C0 in the z-plane as illustrated in Figure 3(b). Co-
ordinates of the points A0B0C0 are, respectively, x1 � jp;x1 þ j0 and x1 þ jp: This
conformal mapping also transforms the circle EFG of radius R2 into the w-plane with
its centre at R1 cosh x2ðsinh x1=sinh x2Þ; 0Þ to a straight line E0F0G0 in the z-plane. Co-
ordinates of the points E0F0G0 are, respectively, x2 � jp; x2 � j0 and x2 þ jp: As a result,
the Helmholtz equation in the w-plane can be converted into a weighted Helmholtz
equation in the z-plane as follows:

@2u

@x2
þ

@2u

@y2
þ k2R2

1

sinhðx1Þ
coshðxÞ � cosðyÞ

� �2

u ¼ 0 ð25Þ

u

v

R1

BA

C

E

G

FR2

π

-π

x1 x2

X

Y

A’

B’

C’

E’

F’

G’

(a) (b)

Figure 3. Geometrical representation of an eccentric coaxial line in the w-plane (original domain) and in
the z-plane (transformed domain) for conformal mapping transformation. (a) w-plane representation; and

(b) z-plane representation.

Copyright # 2004 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2005; 18:49–66

R. S. CHEN, E. K. N. YUNG AND K. WU58



The transformed structure of Figure 3(b) has electric walls at x ¼ x1 and x2 and magnetic
walls at y ¼ �p: Higher-order modes in this case always satisfy the following boundary
conditions on the electric walls: u ¼ 0 for TM modes, and @u=@n ¼ 0 for TE modes. On the
magnetic walls, the boundary conditions for these modes are different for symmetric and
asymmetric cases, namely, @u=@n ¼ 0 for symmetric TE modes; u ¼ 0 for asymmetric TE
modes; @u=@n ¼ 0 for symmetric TM modes; u ¼ 0 for asymmetric TM modes.

Since calculated fields are expected to exhibit quite ‘wild’ behaviour in y-direction while
rather ‘mild’ in x-direction, a discretization is made in x-direction. The mesh segmentation
considered for this transformed rectangular domain is simple. Numerical results obtained
by the present method together with calculations of Reference [20] on the basis of a finite-
difference approach for the symmetric and asymmetric TM as well as TE modes are given
in Tables I and II. Comparisons are made for the first 10 modes. Observed deviation of the
results between the two techniques is less than 1.0%, and this excellent agreement justifies
the validity of the present model. It is also known that the weighted Helmholtz equation

Table I. Comparative results of TM cutoff wave-numbers for the eccentric coaxial lines between the
proposed FEMOL and finite-difference (FD) method.

R2

R1
¼ 2

3
; D
R1

¼ 0:2 R2

R1
¼ 1

4
; D
R1

¼ 0:25

J Symmetry FEMOL FD method FEMOL FD method

1 S 6.226 6.217 3.457 3.446
2 A 6.894 6.887 4.253 4.248
3 S 7.657 7.650 4.904 4.897
4 A 8.353 8.347 5.498 5.488
5 S 9.023 8.990 5.872 5.862
6 A 9.674 9.610 5.569 6.552
7 S 10.315 10.309 6.587 6.580
8 A 10.941 10.932 6.621 6.626
9 S 11.537 11.523 7.453 7.460
10 A 12.417 12.423 7.506 7.513

Table II. Comparative results of TE cutoff wave-numbers for the eccentric coaxial lines between the
proposed FEMOL and finite-difference (FD) method.

R2

R1
¼ 2

3
; D
R1

¼ 0:2 R2

R1
¼ 1

4
; D
R1

¼ 0:25

J Symmetry FEMOL FD method FEMOL FD method

2 A 1.189 1.189 1.638 1.633
3 S 1.319 1.318 1.667 1.663
4 A 2.423 2.418 2.905 2.908
5 S 2.435 2.422 2.928 2.915
6 A 3.427 3.415 3.911 3.899
7 S 3.575 3.565 3.987 3.972
8 A 4.670 4.669 4.349 4.352
9 S 4.689 4.672 4.728 4.654
10 A 5.803 5.717 5.037 5.055
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(25) could not be solved in the conventional MOL but it can easily be done by our
developed FEMOL.

(B) Our second example is to calculate a bending waveguide whose cross-section is shown in
Figure 4(a) and the angle ðp=44y4p=2Þ denotes its bending degree. Figure 4(b) presents
the mesh segmentation in dividing this irregular domain. Since the fields vary abruptly in
the proximity of the corner, the discretization is selected along the circumferential
direction. For this symmetrical structure, odd or even E-waves under different bending
degrees are calculated by the FEMOL. This problem may be solved with the conventional
MOL but much more radial lines are needed to discretize the domain in matching sharply
angular boundary for higher accuracy. On the other hand, it may also be handled by the
FEM but much effort is invested in mesh design and accuracy control. Calculated eigen-
values are compared in Tables III and IV between the FEMOL and conventional MOL
developed in Reference [5] for two bending degrees y ¼ p=4 and p=2; respectively. It can be
found from our calculations that the new FEMOL (8 cubic elements) scheme requires
fewer lines to match the irregular boundary as compared to the conventional MOL (50
lines) in achieving the same accuracy of solution.

(C) Our last showcase consists of an eight-sided polygon structure as described in Figure 5(a),
which is known as GWW iso-spectral drum. This complex geometry is now modelled by
the proposed FEMOL. The polygon, especially with re-entrant corners, has been well
recognized as a numerically difficult problem. Techniques on the basis of a complete

1

2

θ
1

2

θ

(a) (b)

Figure 4. Cross-sectional view and proposed FEMOL mesh design for a symmetrically bending
waveguide: (a) cross-section; and (b) mesh design.

Table III. Numerical results of even-ordered TM cutoff wave-numbers for the symmetric bending
waveguide, calculated by the proposed FEMOL and the method of lines (MOL).

y ¼ 308 y ¼ 458

J FEMOL MOL method FEMOL MOL method

Ee
1 3.487 3.486 3.151 3.150

Ee
2 4.581 4.577 4.471 4.469

Ee
3 5.683 5.691 5.732 5.714

Ee
4 6.485 6.475 6.409 6.392
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domain discretization such as FD technique and FEM may demand an extra effort in
handling singularities near the geometrical corners. Figure 5(b) shows the adaptive grid
process in PLTMG for the first eigen-value on this eight-sided polygon [21]. The finest
structure occurs near the corner where the eigen-value is large. At this stage, there are 966
triangles and 402 vertices and the eigen-value estimate reaches a relative accuracy of about
0.5%. The storage as well as computational time would become a serious obstacle if high
accuracy is required via the FEM. The conventional MOL should use a very small mesh
(line) step to match non-orthogonal boundary, which may in turn complicate its
algorithm. Our proposed FEMOL cannot only match the complex boundary easily
but also yield highly accurate results efficiently. A systematic comparison is shown in
Table V among results obtained by the FEMOL, FD scheme [22] and measurements [23].
Although the FD method presents almost the same accuracy as the FEMOL, our
technique requires a much coarser mesh scheme and it does not need any extrapolation for
accurate calculations of the eigen-values as the FD method does. The Figure 6 shows the
field profile for the first and higher modes in an eight-sided polygon.

Table IV. Numerical results of odd-ordered TM cutoff wave-numbers for the symmetric bending
waveguide, calculated by the proposed FEMOL and the method of lines (MOL).

y ¼ 308 y ¼ 458

J FEMOL MOL method FEMOL MOL method

Eo
1 3.632 3.630 3.892 3.893

Eo
2 4.913 4.907 5.426 5.422

Eo
3 6.462 6.458 6.569 6.575

Eo
4 6.557 6.542 6.995 7.012

Figure 5. (a) Physical topology of a 2D eight-sided domain with complex shape. The dotted lines stand for
mesh lines that partition the whole domain into a group of small segments; and (b) Adaptive mesh

refinement by PLTMG for the 2D eight-sided domain.
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Table V. Calculated and measured results for TM cutoff wave-numbers of the
eight-sided polygon structure.

FEMOL FD method [18] Experiment [19]

1 1.000 1.000 1.000
2 1.200 1.201 1.198
3 1.428 1.428 1.427
4 1.605 1.605 1.605
5 1.690 1.690 1.691
6 1.905 1.905 1.906
7 2.043 2.043 2.045
8 2.132 2.132 2.135
9 2.205 2.204 2.206
10 2.268 2.268 2.269

Figure 6. Field profile for the first and higher modes in an eight-sided polygon: (a) The first TM mode;
(b) the second TM mode; (c) the third TM mode; and (d) the fourth TM mode.
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Our above examples indicate that the developed FEMOL is able to preserve nearly all of
the useful features and versatility of the FEM while enhancing the accuracy of solution
and reducing a great deal of work in the mesh design and input format as required in the
FE algorithm. As shown in the previous sections, the accuracy of this new technique is
governed by the ODE systems characterizing the mesh line direction and by the FE
interpolation along the discrete direction. To generate a reasonably accurate solution on
the basis of a semi-discrete scheme, the resulting ODE system should lead to a solution
with sufficient accuracy. This can be achieved by the adaptive capability in the ODE
solver. The adapt is usually prone to more computational resource, which can however be
compensated by avoiding a large amount of preparatory labour in mesh design and
accuracy control.

4. CONCLUSIONS

In this paper, a hybrid scheme called FEMOL is introduced for efficiently solving irregular
electromagnetic problems. Basic algorithmic concepts and theoretical frameworks of this new
approach are described in detail through modelling and analysis of elliptical problems governed
by Helmholtz equation. Results of three selected examples with arbitrary cross-sections are
presented to show the efficiency and accuracy of this new method. At first glance, there seems to
be nothing special here rather than the combination of two trivial techniques. In fact, our
detailed description shows a number of original and interesting concepts proposed in this new
scheme leading to a powerful and efficient semi-analytical numerical algorithm. In particular,
the application of semi-discrete FE rather than finite difference (FD) usually implemented in the
conventional MOL allows a parametric element mapping even with arbitrarily curved nodal
lines and end-sides. Therefore, the FEMOL is an easy and convenient approach in dealing with
a problem defined on arbitrary domain. As compared with other familiar approaches such as
FEM, MOL and FD techniques, the proposed FEMOL shows a resemblance in algorithmic
behaviour to the FEM and MOL but exhibits more features over its counterparts. This method
can easily be extended and applied to model 3D electromagnetic field boundary value problems
with complex and irregular geometry.
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