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Abstract

We consider the problem of water seepage through a dam where water enters the dam at
a vertical height of 4.00m, and the water level upon exiting the dam is at 3.00m. The
basic physics of groundwater flow is discussed and it is shown that the governing equation
for groundwater flow in a homogeneous, isotropic aquifer under steady-state conditions
is Laplace’s equation. We compute the total head at each point in a two-dimensional
cross-section of the dam using a numerical finite element method using both a three-node
triangular element mesh and a six-node triangular element mesh. The bottom of the dam
rests on impermeable bedrock, making the lower boundary a no flow boundary. The top
boundary is also assumed to be a no flow boundary. However, the vertical location of the
upper boundary is unknown. Total head is the the sum of pressure head and elevation head.
Thus, on the upper boundary, total head must equal elevation since pressure is zero. Using
this information, the location of the upper boundary is then determined iteratively using
Dupuit assumptions to form an initial guess. The approximations using both the three-
node triangular element mesh and the six-node triangular element mesh show the same
general resulting pattern of total head over the domain of the problem. As well, results are
compared and match reasonably well with those presented by Wang and Anderson (1982).
Possible improvements/extensions of the model are also discussed.



1 Background: The physics of groundwater flow

Groundwater flows in the direction of decreasing potential energy caused by differences in
pressure and elevation. A common measure of this potential energy is the total head, h,
which is simply the sum of pressure head and elevation head:

h = £ +z (1)
Pwd
where P is the pressure acting on a unit mass of water, p,, is the density of water, g is the
acceleration due to gravity, and z is the elevation of the water. Equation (1) assumes that
water is an incompressible fluid (the density is the same at all pressures).
As water flows down the head gradient, energy is lost due to friction from the boundary
and decreasing elevation. The volume rate of flow per unit area is directly proportional to
the rate of change of head as given by the differential form of Darcy’s Law:

qg=—-KVh (2)

where q is the volume rate of flow per unit area, known as the specific discharge or Darcy
velocity, and K is the hydraulic conductivity of the liquid.

For steady-state conditions, continuity requires that the amount of water flowing into
a representative elemental volume be equal to the amount flowing out. The amount of
water is measured by volume, which is equivalent to measuring mass since we have already
assumed that water is an incompressible fluid. As well, the elemental volume cannot contain
any sources or sinks. Thus, factors such as precipitation and evaporation are ignored. With
these assumptions, continuity requires that the following equation holds:
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In other words, the sum of the net change in the discharge rate of all component directions
must equal zero.
Substituting the components of equation (2) into equation (3), we have
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Now, if we assume that the hydraulic conductivity, K, is independent of z, y, and z (which
is true under homogeneous, isotropic conditions) then equation (4) becomes
0’h  0°h  0°h
BT gy 5
Ox? + oy? + 072 (5)

which is Laplace’s equation in three dimensions - the governing equation for groundwater
flow through an isotropic, homogeneous aquifer under steady-state conditions.



2 Introduction to the problem

We consider here the seepage through a dam problem introduced in [4] for the homogeneous,
isotropic case. We wish to estimate the value of the groundwater head throughout a two-
dimensional cross section of a dam as seen in Figure 1. The formulation of the problem
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Figure 1: Two-dimensional cross section of a dam.

is as follows. The dam at y = 0 rests on impermeable bedrock, so the bottom boundary
is a no flow boundary. The upper boundary is also a no flow boundary (no precipitation,
evaporation, etc.). In addition, the total head at each point on the upper boundary must
equal its elevation. The reason for this is that there is no pressure acting on the upper
boundary, making total head equal to elevation (see equation (1)). The total head on the
left and right boundaries are known and are 4.00m and 3.00m, respectively. Note that
we do not know the vertical location of the upper boundary except that at x = 0.00m,
y = 4.00m.

Since we are dealing with the homogeneous, isotropic case for the cross-section of a
dam with no accumulation or loss of water from the system, the equation to be solved for
this problem is Laplace’s equation in two dimensions:

9?h  0%h
922 T2 =0 (6)
3 Numerical method

We will use the following assumptions to find a reasonable initial guess for the location of
the upper boundary.



Dupuit assumptions
1. The exit point coincides with the tailwater (i.e. no seepage face - see Figure 1).
2. The hydraulic gradient is constant along a vertical line (flow is horizontal).
3. The hydraulic gradient is equal to the slope of the free surface.

Under Dupuit assumptions, flow is one-dimensional. An analytical solution can therefore
be obtained by solving

0?h?
with boundary conditions h = 4.00m at = 0.00m and h = 3.00m at = 6.00m.[4] The
analytical solution of this boundary value problem is

h(z) =+v—-1.17x + 16 (8)

We will use equation (8) to determine a close initial guess for the location of the upper
boundary (see Figure 1). We will solve the problem using the finite element method and
compare the resulting head at the upper boundary with the guess given by equation (8).
If they do not agree to two decimal places, we will use the newly calculated head at the
upper boundary as the new vertical location (recall that head must equal elevation on the
upper boundary) and repeat the procedure again each time comparing head to the vertical
location until we have two decimal place agreement along the upper boundary.

The dam seepage problem presented in [4] was solved using a three-node triangular
finite element mesh. We will also solve the problem using the same triangular element
mesh, and then we extend the numerical method to six-node triangular elements.

4 Finite element method using three-node triangular ele-
ments
We discretize the domain into 18 three-node triangular elements as shown in Figure 2. It

should be noted that the actual locations of nodes 5, 9, and 13 are not yet known and will
be determined by the numerical procedure described in the previous section.

4.1 Shape functions
The shape functions for the three-node triangular master element are
Ni(u,v) =u

No(u,v) =v 9)
Ni3(u,v) =1 —u —v.
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Figure 2: Three-node triangular element mesh. Note that the actual vertical locations of
nodes 5, 9, and 13 are unknown.

The mapping that relates the coordinates of the master element to general element €2 is

z(u,v) =Tne N1(u,v) + Tng Na(u, v) + g N3 (u, v) (10)
y(“’a U) :yn‘l'iNl (U, U) + ynSNQ (U, ’U) + yngN?,(U, ’U)

where n§(Zng, Yns), 15(Tng, Yng), N§(Tng,yng) are the vertices of the general three-node
triangular element.

4.2 Finite element solution

The finite element approximation to this problem using a three-node triangular element
mesh is given by

16
happroz = Zhjwj($>y) (11)
j=1

where each h; is the total head at node j generated by the program poisson.m in Matlab
(found in [2]) and w;(z,y) is the basis function representing node j. The basis function
for a particular node j is formed using the shape functions of the elements associated with



node j. See Appendix A for all computer codes and data files used by poisson.m to solve
this problem.

4.3 Results

Only three iterations were required to achieve two decimal place agreement between head
and elevation on the upper boundary. The values for the unknown node locations at each
iteration are summarized in the following table. (Run 0 contains the starting values deter-
mined by equation (8).)

Node 5 9 13
Run 0 | 3.70 | 3.36 | 3.00
Run 1| 3.73 | 3.42 | 3.10
Run 2 | 3.72 | 3.41 | 3.11
Run 3| 3.72 | 3.41 | 3.11

From the above table, we see that we have a seepage face of 3.11m - 3.00m = 0.11m.
The following table contains the resulting head calculated at each node in the domain
using the three-node triangular finite element procedure.

Node | Head (m)
1 4.00
2 4.00
3 4.00
4 4.00
) 3.72
6 3.70
7 3.69
8 3.69
9 3.41
10 3.38
11 3.36
12 3.36
13 3.11
14 3.00
15 3.00
16 3.00

Figure 3 is a colour contour map of the domain with colours representing the total head
at each point according to the colour map to the right of the plot. The values in between
the nodes are interpolated using the finite element basis functions.
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Figure 3: Colour contour map of total head over problem domain calculated using a three-
node triangular element mesh (generated using the Matlab code topo.m found in [2]).

5 Finite element method using six-node triangular elements

We discretize the domain into 18 six-node triangular elements as shown in figure 4. It
should be noted that the actual locations of nodes 8, 15, 22, 29, 36, 43, 16, 23, 30, 37, 43
and 44 are not yet known and will be determined numerically.

5.1 Shape functions

The shape functions for the six-node triangular master element are

No(u,v) = —4u(u+v—1)

Ns(u,v) =u(2u — 1)

Ny(u,v) =4uv (12)
Ns(u,v) =v(2v — 1)

The mapping that relates the coordinates of the master element to general element ). is

6
x(u, ’U) = Z xanz(u, 1})
i=1 (13)

6
y(u,v) = Z yani<u7 v)
i=1

6



Figure 4: Six-node triangular element mesh.

where nf(wng, yng), 1=1,2,...,6 are the vertices of the general six-node triangular element.

5.2 Finite element solution

The finite element approximation to this problem is given by

49
happroz = Z hjwj (:Uy y) (14)
j=1

where each h; is the total head at node j generated by the program steady.m in Matlab
(from [2]) and w;(z,y) is the basis function representing node j. The basis function for
a particular node j is formed using the shape functions of the elements associated with
node j. See Appendix B for all computer codes/data files used by steady.m to solve this
problem.

5.3 Results

Only three iterations were required to achieve two decimal place agreement between head
and elevation on the upper boundary. The values for the unknown node locations at each



iteration are summarized in the following table. (Run 0 contains the starting values deter-
mined by equation (8).)

Node 8 15 16 22 23 29 30 36 37 43 44
Run 0 | 3.85 | 3.70 | 2.85 | 3.53 | 2.85 | 3.36 | 2.68 | 3.19 [ 2.68 | 3.00 | 2.50
Run 1 | 3.87 | 3.73 | 2.87 | 3.57 | 2.87 | 3.40 | 2.70 | 3.22 | 2.70 | 3.04 | 2.52
Run 2 | 3.87 | 3.72 | 2.87 | 3.57 | 2.87 | 3.40 | 2.70 | 3.22 | 2.70 | 3.04 | 2.52
Run 3 | 3.87 | 3.72 | 2.87 | 3.57 | 2.87 | 3.40 | 2.70 | 3.22 | 2.70 | 3.04 | 2.52

From the above table, we see that we have a seepage face of 3.04m - 3.00m = 0.04m.

Note that the interior nodes in the above table are recalculated at each iteration as the
midpoint between the new location of the adjacent boundary node and y = 2.00m.

Figure 5 is a colour contour map of the domain with colours representing the total head
at each point according to the colour map to the right of the plot. The values in between
the nodes are interpolated using the finite element basis functions.
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Figure 5: Colour contour map of total head over problem domain calculated using a six-
node triangular element mesh (generated using the Matlab code topo.m found in [2]).

6 Conclusion and discussion

The following table summarizes the results obtained by [4] using a three-node triangular
element mesh.



Node | Head (m)
1 4.00
2 4.00
3 4.00
4 4.00
) 3.72
6 3.69
7 3.68
8 3.68
9 3.40
10 3.37
11 3.36
12 3.35
13 3.08
14 3.00
15 3.00
16 3.00

When compared to the results obtained in this paper for the three-node triangular
element mesh, we see that the difference in computed values is at most 0.03m. Most
importantly, the same overall pattern of head distribution is maintained by both the three-
node triangular element approximation and the six-node triangular element approximation,
and are consistent with the solution given by [4] in the above table.

Some finite element and finite difference approximations to this problem assume the
Dupuit assumptions hold and therefore no seepage face exists. We see that in the results
obtained by [4] as well as the results shown here using both the three-node triangular
element approximation and the six-node triangular element approximation all suggest the
presence of a seepage face.!

We conclude that our results, while not perfectly accurate, support the known findings
for the distribution of total head in the water seepage through a dam problem. One can
see the similar patterns in the colour maps in Figures 3 and 5.

This model could be improved by generating a finer mesh (more elements) to increase
accuracy, possibly through the use of a finite element mesh generator as opposed to gener-
ating the mesh by hand, as was done in this project. One could also try four or eight-node
quadrilateral elements.

Future work on this model could involve the consideration of the anisotropic case as
well as the case allowing precipitation and/or evaporation. Different domain shapes could
also be considered, as well as extending the model to consider flow in three dimensions.

!The seepage face for this problem (shown in Figure 1) is the difference in the vertical location of the
node that belongs to both the right and upper boundaries and the vertical height of the water level exiting
the dam (the tailwater).
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Appendix A

16 % NUMNP
18 % NUMEL
3 % NNPE
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% 1B

for I=1:NUMNP
if NPcode(I) ==

NPBC(I) = 1;
PHI(I) = 4.00;
QD = 0;
elseif NPcode(I) == 3
NPBC(I) = 1;
PHI(I) = 3.00;
QD = 0;
elseif NPcode(I) == 1
NPBC(I) = 0;
PHI(I) = 0;
QD = 0;
end
end
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COEF.m
Coefficients for poisson.m

RXI = k_x

RYI = k_Y

QVI = Q
RXI = 1;
RYI = 1;
QVI = 0;
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Appendix B

49 % NUMNP
18 % NUMEL
6 % NNPE

% NP array

% NP1 NP2 NP3 NP4 NP5 NP6
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17 % 1IB



INITIAL.m

Set problem parameters.

for Ix=1:NUMNP

if NPcode(Ix) ==
NPBC(Ix)= 1;

PHI(IX) = 4.00;

elseif NPcode(Ix) == 3
NPBC(Ix)= 1;

PHI(IX) = 3.00;

elseif NPcode(Ix) == 1

NPBC(Ix)= 0;
PHI(IX) = 0;
else
NPBC(Ix)=0;
end
end
COEF.m
d de d de de de
--(RX--) + --(RY--) + BX-- + BY-- + G@ + HV = 0
dx  dx dy dy dx dy
RXJ = 1;
RYJ = 1;
BXJ=0;
BYJ=0;
GV] = 0;
HV] = 0;
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