Solutions of Self-test 1 of Chapter 3

1. Chapter 3 Review Exercises 2. $f(x)=\sqrt{x^{2}+3} . \quad f^{\prime}(x)=\frac{2 x}{2 \sqrt{x^{2}+3}}, f^{\prime}(1)=$ $\frac{2}{2 \sqrt{1^{2}+3}}=1 / 2$. So $\sqrt{x^{2}+3} \approx f(1)+f^{\prime}(1)(x-1)=2+\frac{1}{2}(x-1)$.
2. Chapter 3 Review Exercises 10. $\lim _{x \rightarrow 0} \frac{\sin x}{x^{2}+3 x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x)}{\frac{d}{d x}\left(x^{2}+3 x\right)}=\lim _{x \rightarrow 0} \frac{\cos x}{2 x+3}=$ $1 / 3$.
3. Chapter 3 Review Exercises 12. $\lim _{x \rightarrow \infty} \frac{x^{2}}{e^{3 x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(x^{2}\right)}{\frac{d}{d x}\left(e^{3 x}\right)}=\lim _{x \rightarrow \infty} \frac{2 x}{3 e^{3 x}}=$ $\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(2 x)}{\frac{d}{d x}\left(3 e^{3 x}\right)}=\lim _{x \rightarrow \infty} \frac{2}{9 e^{3 x}}=0$.
4. Chapter 3 Review Exercises 24. $f(x)=\left(x^{2}-1\right)^{2 / 3}$.
(a) $f^{\prime}(x)=\frac{4 x}{3\left(x^{2}-1\right)^{1 / 3}} . f^{\prime}(x)=0$ at $x=0$ and is undefined at $x= \pm 1$. So the critical numbers are $x=-1,0$ and $x=1$.
(b) $f^{\prime}(x)$ is negative for $x<-1$, positive for $-1<x<0$, negative for $0<x<1$, and positive for $x>1$. So $f(x)$ is decreasing for $x<-1$, increasing for $-1<x<0$, decreasing for $0<x<1$, and increasing for $x>1$.
(c) Local minima at $x= \pm 1$ and local maximum at $x=0$.
(d) $f^{\prime \prime}(x)=\frac{4\left(x^{2}-3\right)}{9\left(x^{2}-1\right)^{4 / 3}} . f^{\prime \prime}(x)=0$ at $x= \pm \sqrt{3}$ and is undefined at $x= \pm 1 . f^{\prime \prime}(x)$ is positive for $x<-\sqrt{3}$, negative for $-\sqrt{3}<x<\sqrt{3}$, and positive for $x>\sqrt{3}$. So $f(x)$ is concave up for $x<-\sqrt{3}$, concave down for $-\sqrt{3}<x<\sqrt{3}$, and concave up for $x>\sqrt{3}$.
(e) The inflection points are $x= \pm \sqrt{3}$.

5. Chapter 3 Review Exercises 30. $f(x)=x^{2} e^{-x}$ on $[-1,4]$.
(a) Find all critical numbers: $f^{\prime}(x)=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x)$. Setting $f^{\prime}(x)=0$ gives the critical numbers $x=0$ and 2.
(b) Compute the values of the function at endpoints and critical numbers:

$$
f(-1)=e, \quad f(0)=0, \quad f(2)=4 / e^{2}, \quad f(4)=16 / e^{4}
$$

(c) Compare: $f(-1)=e$ is the absolute maximum and $f(0)=0$ is the absolute minimum.
6. Exercises 3.7: 15. $V(x)=(10-2 x)(6-2 x) x .0 \leq x \leq 3 . V^{\prime}(x)=-2(6-$ $2 x) x-2(10-2 x) x+(10-2 x)(6-2 x)=4\left(3 x^{2}-16 x+15\right)=0 . \quad V^{\prime \prime}(x)=$ $4(6 x-16) . x=\frac{8}{3} \pm \frac{\sqrt{19}}{3} . x=\frac{8}{3}+\frac{\sqrt{19}}{3}>3$ is beyond the range. $V^{\prime \prime}\left(\frac{8}{3}-\frac{\sqrt{19}}{3}\right)=$ $4\left(6\left(\frac{8}{3}-\frac{\sqrt{19}}{3}\right)-16\right)<0$. So V has the maximum at $x=\frac{8}{3}-\frac{\sqrt{19}}{3}$.
7. Exercises 3.8: 9. $x=6, \frac{d x}{d t}=3, y=\sqrt{10^{2}-6^{2}}=8$.

$$
\begin{gathered}
10^{2}=[x(t)]^{2}+[y(t)]^{2} \\
0=2 x(t) \frac{d x}{d t}+2 y(t) \frac{d y}{d t} \\
\frac{d y}{d t}=-\frac{x}{y} \frac{d x}{d t}=-\frac{6}{8}(3)=-2.25 \mathrm{ft} / \mathrm{s}
\end{gathered}
$$

