Solutions of Self-test 1 of Chapter 3

- 1. Chapter 3 Review Exercises 2. $f(x) = \sqrt{x^2 + 3}$. $f'(x) = \frac{2x}{2\sqrt{x^2 + 3}}$, $f'(1) = \frac{2}{2\sqrt{x^2 + 3}} = 1/2$. So $\sqrt{x^2 + 3} \approx f(1) + f'(1)(x 1) = 2 + \frac{1}{2}(x 1)$.
- 2. Chapter 3 Review Exercises 10. $\lim_{x \to 0} \frac{\sin x}{x^2 + 3x} = \lim_{x \to 0} \frac{\frac{d}{dx}(\sin x)}{\frac{d}{dx}(x^2 + 3x)} = \lim_{x \to 0} \frac{\cos x}{2x + 3} = \frac{1}{3}$

3. Chapter 3 Review Exercises 12.
$$\lim_{x \to \infty} \frac{x^2}{e^{3x}} = \lim_{x \to \infty} \frac{\frac{d}{dx}(x^2)}{\frac{d}{dx}(e^{3x})} = \lim_{x \to \infty} \frac{2x}{3e^{3x}} = \lim_{x \to \infty} \frac{\frac{d}{dx}(2x)}{\frac{d}{dx}(3e^{3x})} = \lim_{x \to \infty} \frac{2}{9e^{3x}} = 0.$$

- 4. Chapter 3 Review Exercises 24. $f(x) = (x^2 1)^{2/3}$.
 - (a) $f'(x) = \frac{4x}{3(x^2-1)^{1/3}}$. f'(x) = 0 at x = 0 and is undefined at $x = \pm 1$. So the critical numbers are x = -1, 0 and x = 1.
 - (b) f'(x) is negative for x < -1, positive for -1 < x < 0, negative for 0 < x < 1, and positive for x > 1. So f(x) is decreasing for x < -1, increasing for -1 < x < 0, decreasing for 0 < x < 1, and increasing for x > 1.
 - (c) Local minima at $x = \pm 1$ and local maximum at x = 0.
 - (d) $f''(x) = \frac{4(x^2-3)}{9(x^2-1)^{4/3}}$. f''(x) = 0 at $x = \pm\sqrt{3}$ and is undefined at $x = \pm 1$. f''(x) is positive for $x < -\sqrt{3}$, negative for $-\sqrt{3} < x < \sqrt{3}$, and positive for $x > \sqrt{3}$. So f(x) is concave up for $x < -\sqrt{3}$, concave down for $-\sqrt{3} < x < \sqrt{3}$, and concave up for $x > \sqrt{3}$.
 - (e) The inflection points are $x = \pm \sqrt{3}$.

- 5. Chapter 3 Review Exercises 30. $f(x) = x^2 e^{-x}$ on [-1, 4].
 - (a) Find all critical numbers: $f'(x) = 2xe^{-x} x^2e^{-x} = xe^{-x}(2-x)$. Setting f'(x) = 0 gives the critical numbers x = 0 and 2.
 - (b) Compute the values of the function at endpoints and critical numbers:

$$f(-1) = e$$
, $f(0) = 0$, $f(2) = 4/e^2$, $f(4) = 16/e^4$.

- (c) Compare: f(-1) = e is the absolute maximum and f(0) = 0 is the absolute minimum.
- 6. Exercises 3.7: 15. V(x) = (10 2x)(6 2x)x. $0 \le x \le 3$. $V'(x) = -2(6 2x)x 2(10 2x)x + (10 2x)(6 2x) = 4(3x^2 16x + 15) = 0$. V''(x) = 4(6x 16). $x = \frac{8}{3} \pm \frac{\sqrt{19}}{3}$. $x = \frac{8}{3} + \frac{\sqrt{19}}{3} > 3$ is beyond the range. $V''\left(\frac{8}{3} \frac{\sqrt{19}}{3}\right) = 4\left(6\left(\frac{8}{3} \frac{\sqrt{19}}{3}\right) 16\right) < 0$. So V has the maximum at $x = \frac{8}{3} \frac{\sqrt{19}}{3}$.

7. Exercises 3.8: 9. $x = 6, \frac{dx}{dt} = 3, y = \sqrt{10^2 - 6^2} = 8.$

$$10^{2} = [x(t)]^{2} + [y(t)]^{2}.$$
$$0 = 2x(t)\frac{dx}{dt} + 2y(t)\frac{dy}{dt}$$
$$\frac{dy}{dt} = -\frac{x}{y}\frac{dx}{dt} = -\frac{6}{8}(3) = -2.25ft/s.$$