Self-test 2 of Chapter 3

Please work on the following problems and then grade them yourself. The solutions are on the other side. Please don't look at them before you do them yourself.

Exercises 3.2: 6, 16
Exercises 3.3: 32
Exercises 3.4: 12
Exercises 3.5: 2, 10
Exercises 3.7: 5
Exercises 3.8: 8

1. Exercises 3.2: 6. $\lim _{x \rightarrow 0} \frac{\sin x}{e^{3 x}-1}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}(\sin x)}{\frac{d}{d x}\left(e^{3 x}-1\right)}=\lim _{x \rightarrow 0} \frac{\cos x}{3 e^{3 x}}=1 / 3$.
2. Exercises 3.2: 16. $\lim _{x \rightarrow \infty} \frac{e^{3 x}}{x^{4}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(e^{3 x}\right)}{\frac{d}{d x}\left(x^{4}\right)}=\lim _{x \rightarrow \infty} \frac{3 e^{3 x}}{4 x^{3}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(3 e^{3 x}\right)}{\frac{d}{d x}\left(4 x^{3}\right)}=$ $\lim _{x \rightarrow \infty} \frac{9 e^{3 x}}{12 x^{2}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(9 e^{3 x}\right)}{\frac{d}{d x}\left(12 x^{2}\right)}=\lim _{x \rightarrow \infty} \frac{27 e^{3 x}}{24 x}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(27 e^{3 x}\right)}{\frac{d}{d x}(24 x)}=\lim _{x \rightarrow \infty} \frac{81 e^{3 x}}{24}=81 / 24$.
3. Exercises 3.3: 32. $f(x)=x^{4}-8 x^{2}+2$ on $[-3,1]$.
(a) Find all critical numbers: $f^{\prime}(x)=4 x^{3}-16 x$. Setting $f^{\prime}(x)=0$ gives the critical numbers $x=0,-2$ and 2 .
(b) Compute the values of the function at endpoints and critical numbers:

$$
f(-3)=11, \quad f(-2)=-14, \quad f(0)=2, \quad f(1)=-5
$$

(c) Compare: $f(-3)=11$ is the absolute maximum and $f(-2)=-14$ is the absolute minimum.
4. Exercises 3.4, problem $12 f(x)=x^{5}-5 x^{2}+1$. $f^{\prime}(x)=5 x^{4}-10 x$. Critical numbers are $x=0, \sqrt[3]{3}$. Since $f^{\prime}(x)$ is positive on the interval $(-\infty, 0)$, negative on the interval $(0, \sqrt[3]{3})$, and positive on the interval $(\sqrt[3]{3}, \infty), f(x)$ has a local maximum at $x=0$ and a local minimum at $x=\sqrt[3]{3}$.
5. Exercises 3.5, problem $2 f(x)=x^{4}-6 x^{2}+2 x+3 . f^{\prime}(x)=4 x^{3}-12 x+2$. $f^{\prime \prime}(x)=12 x^{2}-12$. $f^{\prime \prime}(x)$ is positive for $x<-1$, negative for $-1<x<1$, and positive for $x>1$. So $f(x)$ is concave up for $x<-1$, concave down for $-1<x<1$, and concave up for $x>1$.
6. Exercises 3.5, problem $10 f(x)=x^{4}+4 x^{2}+1$. $f^{\prime}(x)=4 x^{3}+8 x$. Critical number is $x=0 . f^{\prime \prime}(x)=12 x^{2}+8 . f^{\prime \prime}(0)=8>0$. So it follows from the second derivative test $f(x)$ has a local minimum at $x=0$
7. Exercises 3.7: 5. $A=x y .2 x+3 y=120 . ~ y=40-\frac{2 x}{3} . ~ A(x)=x\left(40-\frac{2 x}{3}\right)$. $A^{\prime}(x)=40-\frac{4 x}{3}=0 . x=30 . A^{\prime \prime}(x)=-\frac{4}{3}$. So the second derivative test insures that A has a maximum at $x=30 . y=40-\frac{2 \cdot 30}{3}=20$. Thus the dimensions are 20×30 feet.
8. Exercises 3.8: 8. $r=200, \frac{d r}{d t}=5$.

$$
\begin{gathered}
A(t)=\pi[r(t)]^{2} \\
\frac{d A}{d t}=2 \pi r(t) \frac{d r}{d t} \\
\frac{d A}{d t}=2 \pi \cdot 200 \cdot 5=2000 \pi f t^{2} / \mathrm{min}
\end{gathered}
$$

