Solutions of Part of Assignment 7

1. Exercises 3.1. 5. $f(x)=\sin 3 x$. $f^{\prime}(x)=3 \cos 3 x, f^{\prime}(0)=3 \cos 0=3$. So $\sin 3 x \approx f^{\prime}(0)(x-0)=3 x$.
2. Exercises 3.1. 9. $f(x)=\sqrt[4]{x}$. $f^{\prime}(x)=\frac{1}{4} x^{-3 / 4} . f^{\prime}(16)=\frac{1}{4} 16^{-3 / 4}=1 / 32$. So $\sqrt[4]{16.04} \approx f^{\prime}(16)(16.04-16)=0.4 / 32=1 / 80$.
3. Exercises 3.2. 5. $\lim _{x \rightarrow 0} \frac{e^{2 x}-1}{x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(e^{2 x}-1\right)}{\frac{d}{d x}(x)}=\lim _{x \rightarrow 0} \frac{2 e^{2 x}}{1}=2$.
4. Exercises 3.2. 15. $\lim _{x \rightarrow \infty} \frac{x^{3}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(x^{3}\right)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{3 x^{2}}{e^{x}}=\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}\left(3 x^{2}\right)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{6 x}{e^{x}}=$ $\lim _{x \rightarrow \infty} \frac{\frac{d}{d x}(6 x)}{\frac{d}{d x}\left(e^{x}\right)}=\lim _{x \rightarrow \infty} \frac{6}{e^{x}}=0$.
5. Exercises 3.2. 37. Let $L=\lim _{x \rightarrow 0^{+}}(1 / x)^{x}$. Then $\ln L=\ln \lim _{x \rightarrow 0^{+}}(1 / x)^{x}=\lim _{x \rightarrow 0^{+}} \ln (1 / x)^{x}=$ $\lim _{x \rightarrow 0^{+}} x \ln (1 / x)=\lim _{x \rightarrow 0^{+}} x(-\ln x)=\lim _{x \rightarrow 0^{+}} \frac{-\ln x}{\frac{1}{x}}=\lim _{x \rightarrow 0^{+}} \frac{-\frac{d}{d x}(\ln x)}{\frac{d}{d x}\left(\frac{1}{x}\right)}=\lim _{x \rightarrow 0^{+}} \frac{-\frac{1}{x}}{-\frac{1}{x^{2}}}=$ $\lim _{x \rightarrow 0^{+}} x=0$. So $\lim _{x \rightarrow 0^{+}}(1 / x)^{x}=L=1$.
6. Exercises 3.3.7. $f(x)=x^{3}-3 x+1$. Set $f^{\prime}(x)=3 x^{2}-3=0$. Solving it gives the critical numbers $x=-1$ and $x=1$. Local minimum at 1 and local maximum at -1 .
7. Exercises 3.3.17. $f(x)=\frac{x^{2}-2}{x+2} . f^{\prime}(x)=\frac{\frac{d}{d x}\left(x^{2}-2\right)(x+2)-\left(x^{2}-2\right) \frac{d}{d x}(x+2)}{(x+2)^{2}}=\frac{2 x(x+2)-\left(x^{2}-2\right)}{(x+2)^{2}}=$ $\frac{x^{2}+4 x+2}{(x+2)^{2}}$. Setting $f^{\prime}(x)=0$ gives $x^{2}+4 x+2=0$. Solving it gives the critical numbers $x=-2+\sqrt{2}$ and $x=-2-\sqrt{2}$. Local minimum at $x=-2+\sqrt{2}$ and local maximum at $x=-2-\sqrt{2}$.
8. Exercises 3.3.33. $f(x)=x^{2 / 3}$ on [-4, -2].
(a) Find all critical numbers: $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}$. Since $f^{\prime}(x)$ is undefined at $x=0$ and $f(x)$ is defined at $x=0,0$ is the critical number.
(b) Compute the values of the function at endpoints and critical numbers:

$$
f(-4)=(-4)^{2 / 3}=4^{2 / 3}, \quad f(-2)=(-2)^{2 / 3}=2^{2 / 3}, \quad f(0)=0^{2 / 3}=0
$$

(c) Compare: $f(-4)=4^{2 / 3}$ is the absolute maximum and $f(0)=0$ is the absolute minimum.

