Solutions of part of Assignment 8

1. Exercises 3.4, problem $1 f(x)=x^{3}-3 x+2 . \quad f^{\prime}(x)=3 x^{2}-3$. Critical numbers are $x= \pm 1$. Since $f^{\prime}(x)>0$ on the intervals $(-\infty,-1)$ and $(1, \infty), f(x)$ is increasing. Since $f^{\prime}(x)<0$ on the interval $(-1,1), f(x)$ is decreasing.
2. Exercises 3.4, problem $11 f(x)=x^{4}+4 x^{3}-2 . f^{\prime}(x)=4 x^{3}+12 x^{2}$. Critical numbers are $x=0,-3$. Since $f^{\prime}(x)$ is positive on the interval $(-3, \infty)$ and negative on the interval $(-\infty,-3), f(x)$ has a local minimum at $x=-3$ and no extremum at $x=0$.
3. Exercises 3.5, problem $7 f(x)=x^{4 / 3}+4 x^{1 / 3} \cdot f^{\prime}(x)=\frac{4}{3} x^{1 / 3}+\frac{4}{3} x^{-2 / 3} \cdot f^{\prime \prime}(x)=$ $\frac{4}{9} x^{-2 / 3}-\frac{8}{9} x^{-5 / 3}=\frac{4}{9 x^{2 / 3}}\left(1-\frac{2}{x}\right)$. Since the quantity $\frac{4}{9 x^{2 / 3}}$ is never negative, the sign of the second derivative is the same as the sign of $1-\frac{2}{x}$. So $f^{\prime \prime}(x)$ is positive for $x>2$, negative for $x<2$. So $f(x)$ is concave up for $x>2$, concave down for $x<2$.
4. Exercises 3.5, problem $9 f(x)=x^{4}+4 x^{3}-1 . f^{\prime}(x)=4 x^{3}+12 x^{2}$. Critical numbers are $x=0,-3$. $f^{\prime \prime}(x)=12 x^{2}+24 x . f^{\prime \prime}(0)=0$. So the second derivative test is inconclusive. Since $f^{\prime}(x)$ does not change sign when x moving across 0 , by the first derivative test, $f(x)$ has no extremum at 0 . Since $f^{\prime \prime}(-3)=36$, it follows from the second derivative test $f(x)$ has a local minimum at $x=-3$
5. Exercises 3.7: 5. $A=x y .2 x+3 y=120 . ~ y=40-\frac{2 x}{3}$. $A(x)=x\left(40-\frac{2 x}{3}\right)$. $A^{\prime}(x)=40-\frac{4 x}{3}=0 . x=30 . A^{\prime \prime}(x)=-\frac{4}{3}$. So the second derivative test insures that A has a maximum at $x=30 . y=40-\frac{2 \cdot 30}{3}=20$. Thus the dimensions are 20×30 feet.
6. Exercises 3.8: 5. $r=3, \frac{d r}{d t}=1$.

$$
\begin{gathered}
A(t)=\pi[r(t)]^{2} \\
\frac{d A}{d t}=2 \pi r(t) \frac{d r}{d t} \\
\frac{d A}{d t}=2 \pi \cdot 3 \cdot 1=6 \pi \mathrm{~mm}^{2} / \mathrm{hr}
\end{gathered}
$$

