Solutions of part of Assignment 8

1. **Exercises 3.4, problem 1** \(f(x) = x^3 - 3x + 2 \). \(f'(x) = 3x^2 - 3 \). Critical numbers are \(x = \pm 1 \). Since \(f'(x) > 0 \) on the intervals \((-\infty, -1)\) and \((1, \infty)\), \(f(x) \) is increasing. Since \(f'(x) < 0 \) on the interval \((-1, 1)\), \(f(x) \) is decreasing.

2. **Exercises 3.4, problem 11** \(f(x) = x^4 + 4x^3 - 2 \). \(f'(x) = 4x^3 + 12x^2 \). Critical numbers are \(x = 0, -3 \). Since \(f'(x) \) is positive on the interval \((-3, \infty)\) and negative on the interval \((-\infty, -3)\), \(f(x) \) has a local minimum at \(x = -3 \) and no extremum at \(x = 0 \).

3. **Exercises 3.5, problem 7** \(f(x) = x^{4/3} + 4x^{1/3} \). \(f'(x) = \frac{4}{3}x^{1/3} + \frac{4}{3}x^{-2/3} \). \(f''(x) = \frac{4}{9}x^{-2/3} - \frac{8}{9}x^{-5/3} = \frac{4}{9x^{5/3}} \left(1 - \frac{2}{3}\right) \). Since the quantity \(\frac{4}{9x^{5/3}} \) is never negative, the sign of the second derivative is the same as the sign of \(1 - \frac{2}{3} \). So \(f''(x) \) is positive for \(x > 2 \), negative for \(x < 2 \). So \(f(x) \) is concave up for \(x > 2 \), concave down for \(x < 2 \).

4. **Exercises 3.5, problem 9** \(f(x) = x^4 + 4x^3 - 1 \). \(f'(x) = 4x^3 + 12x^2 \). Critical numbers are \(x = 0, -3 \). \(f''(x) = 12x^2 + 24x \). \(f''(0) = 0 \). So the second derivative test is inconclusive. Since \(f'(x) \) does not change sign when \(x \) moving across 0, by the first derivative test, \(f(x) \) has no extremum at 0. Since \(f''(-3) = 36 \), it follows from the second derivative test \(f(x) \) has a local minimum at \(x = -3 \).

5. **Exercises 3.7**: 5. \(A = xy \). \(2x + 3y = 120 \). \(y = 40 - \frac{2x}{3} \). \(A(x) = x \left(40 - \frac{2x}{3}\right) \). \(A'(x) = 40 - \frac{4x}{3} = 0 \). \(x = 30 \). \(A''(x) = -\frac{4}{3} \). So the second derivative test insures that \(A \) has a maximum at \(x = 30 \). \(y = 40 - \frac{2 \cdot 30}{3} = 20 \). Thus the dimensions are \(20 \times 30 \) feet.

6. **Exercises 3.8**: 5. \(r = 3, \frac{dr}{dt} = 1 \).

\[
A(t) = \pi[r(t)]^2.
\]

\[
\frac{dA}{dt} = 2\pi r(t) \frac{dr}{dt}
\]

\[
\frac{dA}{dt} = 2\pi \cdot 3 \cdot 1 = 6\pi \text{ mm}^2/\text{hr}.
\]