1 Main Topics

1. Vectors:

- Component form.
- Standard unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
- norm.
- Algebraic operation.
- Dot product: $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + u_3 v_3$.

• Cross product:
$$\mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_1 & u_2 & u_3 \\ v_1 & v_2 & v_3 \end{vmatrix}$$

- Angle between two vectors: $\cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$.
- Parallel vectors: $\mathbf{u} = c\mathbf{v}$.
- Orthogonal: $\mathbf{u} \cdot \mathbf{v} = 0$.
- $\|\mathbf{u} \times \mathbf{v}\| = \|\mathbf{u}\| \|\mathbf{v}\| \sin \theta$, the area of parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides.
- $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} sides.
- Direction Cosines.
- Applications: force, velocity, torque, work, and so on.
- 2. Space Coordinates and distance formula.
- 3. Surfaces in space:
 - The line equation: $x = x_1 + at$, $y = y_1 + bt$, $z = z_1 + ct$ (parametric) and $\frac{x-x_1}{a} = \frac{y-y_1}{b} = \frac{z-z_1}{c}$ (symmetric) where the direction vector $\mathbf{v} = \langle a, b, c \rangle$ is parallel to the line.
 - The plane equation: $a(x x_1) + b(y y_1) + c(z z_1) = 0$ or ax + by + cz + d = 0, where the normal vector $\mathbf{n} = \langle a, b, c \rangle$ is orthogonal to the plane.
 - The angle between two planes: $\cos \theta = \frac{|\mathbf{n_1} \cdot \mathbf{n_2}|}{\|\mathbf{n_1}\| \|\mathbf{n_2}\|}$, where $\mathbf{n_1}$ and $\mathbf{n_2}$ are two normal vectors of the planes.
 - Distance between a point Q and a plane: $D = \frac{|\overline{PQ} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$, where P is a point in the plane and \mathbf{n} is normal to the plane.
 - Distance between a point Q and a line: $D = \frac{|\overrightarrow{PQ} \times \mathbf{u}|}{\|\mathbf{u}\|}$, where P is a point one the line and \mathbf{u} is a direction vector for the line.
 - Sphere: $(x x_0)^2 + (y y_0)^2 + (z z_0)^2 = r^2$.
 - Cylinder.
 - General quadric surface: $AX^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0.$
 - Surfaces of revolution.

4. Conversion between cylindrical and rectangular coordinates:

$$x = r \cos \theta, \ y = r \sin \theta, \ z = z.$$

5. Conversion between spherical and rectangular coordinates:

 $x = \rho \sin \phi \cos \theta, \ y = \rho \sin \phi \sin \theta, \ z = \rho \cos \phi.$

2 Review Exercises

Review all homework problems and the Review Exercises for Chapter 10 on page 780: 1, 3, 5, 7, 12, 15, 17, 19, 21, 23, 25, 27, 30, 35, 39, 41, 43, 45, 47, 48, 49, 52, 53, 55, 59, 63, 65, 67, 69.