MATH 1592-Review of Chapter 10

1 Main Topics

1. Vectors:

- Component form.
- Standard unit vectors $\mathbf{i}, \mathbf{j}, \mathbf{k}$.
- norm.
- Algebraic operation.
- Dot product: $\mathbf{u} \cdot \mathbf{v}=u_{1} v_{1}+u_{2} v_{2}+u_{3} v_{3}$.
- Cross product: $\mathbf{u} \times \mathbf{v}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|$
- Angle between two vectors: $\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}$.
- Parallel vectors: $\mathbf{u}=c \mathbf{v}$.
- Orthogonal: $\mathbf{u} \cdot \mathbf{v}=0$.
- $\|\mathbf{u} \times \mathbf{v}\|=\|\mathbf{u}\|\|\mathbf{v}\| \sin \theta$, the area of parallelogram having \mathbf{u} and \mathbf{v} as adjacent sides.
- $\mathbf{u} \times \mathbf{v}$ is orthogonal to both \mathbf{u} and \mathbf{v} sides.
- Direction Cosines.
- Applications: force, velocity, torque, work, and so on.

2. Space Coordinates and distance formula.
3. Surfaces in space:

- The line equation: $x=x_{1}+a t, y=y_{1}+b t, z=z_{1}+c t$ (parametric) and $\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$ (symmetric) where the direction vector $\mathbf{v}=\langle a, b, c\rangle$ is parallel to the line.
- The plane equation: $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$ or $a x+b y+c z+d=0$, where the normal vector $\mathbf{n}=\langle a, b, c\rangle$ is orthogonal to the plane.
- The angle between two planes: $\cos \theta=\frac{\left|\mathbf{n}_{1} \cdot \mathbf{n}_{2}\right|}{\left\|\mathbf{n}_{1}\right\|\left\|\mathbf{n}_{2}\right\|}$, where $\mathbf{n}_{\mathbf{1}}$ and $\mathbf{n}_{\mathbf{2}}$ are two normal vectors of the planes.
- Distance between a point Q and a plane: $D=\frac{|\overrightarrow{P Q} \cdot \mathbf{n}|}{\|\mathbf{n}\|}$, where P is a point in the plane and \mathbf{n} is normal to the plane.
- Distance between a point Q and a line: $D=\frac{|\overrightarrow{P Q} \times \mathbf{u}|}{\|\mathbf{u}\|}$, where P is a point one the line and \mathbf{u} is a direction vector for the line.
- Sphere: $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=r^{2}$.
- Cylinder.
- General quadric surface: $A X^{2}+B y^{2}+C z^{2}+D x y+E x z+F y z+G x+H y+I z+J=$ 0.
- Surfaces of revolution.

4. Conversion between cylindrical and rectangular coordinates:

$$
x=r \cos \theta, y=r \sin \theta, z=z
$$

5. Conversion between spherical and rectangular coordinates:

$$
x=\rho \sin \phi \cos \theta, y=\rho \sin \phi \sin \theta, z=\rho \cos \phi .
$$

2 Review Exercises

Review all homework problems and the Review Exercises for Chapter 10 on page 780: 1, 3, $5,7,12,15,17,19,21,23,25,27,30,35,39,41,43,45,47,48,49,52,53,55,59,63,65,67$, 69.

