Solutions of Problem 4

Determine the convergence of the following series. If convergent and possible, find their sums:

1. $\sum_{n=0}^{\infty} 2(-1.03)^{n}$.

This is a geometric series. It diverges since $-1.03<-1$.
2. $\sum_{n=0}^{\infty} 5\left(-\frac{1}{3}\right)^{n}$.

This is a geometric series. It converges and its sum is

$$
\sum_{n=0}^{\infty} 5\left(-\frac{1}{3}\right)^{n}=\frac{5}{1+\frac{1}{3}}=\frac{15}{4} .
$$

3. $\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}$

This is a telescoping series.

$$
\begin{gathered}
\frac{1}{(n+1)(n+2)}=\frac{1}{n+1}-\frac{1}{n+2} \\
\sum_{n=1}^{\infty} \frac{1}{(n+1)(n+2)}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdots=\frac{1}{2} .
\end{gathered}
$$

4. $\sum_{n=1}^{\infty} \frac{n}{\sqrt{n^{2}+1}}$

Since

$$
\lim _{n \rightarrow \infty} \frac{n}{\sqrt{n^{2}+1}}=\lim _{n \rightarrow \infty} \frac{1}{\sqrt{1+\frac{1}{n^{2}}}}=\frac{1}{\sqrt{1+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}}}=1
$$

By the n-th term test, it diverges.
5. $\sum_{n=1}^{\infty} \frac{1}{n}$

This is the harmonic series and it diverges.
6. $\sum_{n=1}^{\infty} \frac{1}{n^{1.00001}}$

This is p-series. It converges since $p=1.00001>1$.
7. $\frac{\ln 2}{2}+\frac{\ln 3}{3}+\frac{\ln 4}{4}+\frac{\ln 5}{5}+\frac{\ln 6}{6}+$. Since

$$
\int_{2}^{\infty} \frac{\ln x}{x} d x=\int_{2}^{\infty} \ln x d \ln x=\left.\frac{1}{2}(\ln x)^{2}\right|_{2} ^{\infty}=\infty
$$

by the integral test, the series diverges.

