
Solutions of Problem 6

Problem 1. Find the radius and interval of convergence of the following power series:
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Geometric Series. By the geometric series, the series converges if |x|2 < 1 and diverges if |x|2 ≥ 1.
From |x|

2 < 1,we get |x| < 2. So the radius is R = 2 and interval of convergence is (−2, 2).
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By the ratio test, the series converges for any x. So the radius is R = ∞ and interval of convergence
is (−∞,∞).
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for any x 6= 0. By the ratio test, the series diverges for any x 6= 0. So the radius is R = 0 and
interval of convergence is {0}.
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By Root test. Let un+1 = (x−2)n+1

(n+1)4n+1 . Then

lim
n→∞

n+1
√
|un+1| = lim

n→∞
n

√∣∣∣∣
(x− 2)n+1

(n + 1)4n+1

∣∣∣∣ = lim
n→∞

|x− 2|
4 n+1

√
n + 1

=
|x− 2|

4
.

By the root test, the series converges if |x−2|
4 < 1 and diverges if |x−2|

4 > 1. From |x−2|
4 < 1, we

get |x− 2| < 4. So the radius is R = 4 and it converges on the interval (−2, 6). To determine the
interval of convergence, we need to check the endpoints. At x = −2, we have
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By the alternating series test, it converges. At x = 6, we have
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It is harmonic series and divergent. So the interval of convergence is [−2, 6).

Problem 2. Find a power series for the function:
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1. f(x) = 1
2−x , c = 5.

By geometric series.
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2. f(x) = ln(1 + x), c = 0.

Using the geometric series, we get
1
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By integration, we get
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Set x = 0, we get C = 0. So
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3. f(x) = x
x2−1 , c = 0.

By the partial fractions, we have
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4. f(x) = sin x2, c = 0.

By direct substitution.
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5. f(x) = cosx, c = π/4.

By Taylor series.
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and so on. Therefore
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