Solutions of Problem 6

Problem 1. Find the radius and interval of convergence of the following power series:
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Geometric Series. By the geometric series, the series converges if |L2\ < 1 and diverges if % >1.

From % < 1,we get |z| < 2. So the radius is R = 2 and interval of convergence is (—2,2).
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By the ratio test. Let u, = % Then
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By the ratio test, the series converges for any x. So the radius is R = oo and interval of convergence
is (—o00, 00).
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By the ratio test. Let u, = n! (%)n Then
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for any = # 0. By the ratio test, the series diverges for any x # 0. So the radius is R = 0 and
interval of convergence is {0}.
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By Root test. Let u,41 = (CE= e Then
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By the root test, the series converges if @ < 1 and diverges if @ > 1. From @ <1, we

get |z — 2] < 4. So the radius is R = 4 and it converges on the interval (—2,6). To determine the

interval of convergence, we need to check the endpoints. At x = —2, we have
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By the alternating series test, it converges. At x = 6, we have
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It is harmonic series and divergent. So the interval of convergence is [—2, 6).

Problem 2. Find a power series for the function:



. fx) = ﬁ, c=5.
By geometric series.
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fl@)=In(1+z), c=0.
Using the geometric series, we get
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By integration, we get

In(l+2z)+C =

Set £ =0, we get C' = 0. So

In(l+2z)+C=

flx) = =%, c=0.
By the partial fractions, we have
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f(z) =sinz?, c=0.

By direct substitution.
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flx)=cosz, c=n/4
By Taylor series.

and so on. Therefore
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—sinz  f'(7/4)
—cosz f'(w/4)
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