Math 1592 Solutions of Quiz 3

Problem 1. (10 points, 5 each) Determine the convergence of the following sequences. If convergent, find the limits:

1. $a_{n}=\frac{5 n^{2}}{n^{2}+2}$.

Method 1: Use the L'Hôpital's Rule.

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}}{n^{2}+2}=\lim _{x \rightarrow \infty} \frac{5 x^{2}}{x^{2}+2}=\lim _{x \rightarrow \infty} \frac{10 x}{2 x}=5
$$

Method 2: Use limit properties.

$$
\lim _{n \rightarrow \infty} \frac{5 n^{2}}{n^{2}+2}=\lim _{n \rightarrow \infty} \frac{5}{1+\frac{2}{n^{2}}}=\frac{5}{1+\lim _{n \rightarrow \infty} \frac{2}{n^{2}}}=5
$$

2. $a_{n}=(-1)^{n}$.

Diverges because the sequence alternates between -1 and 1 .
Problem 2. (10 points, 5 each) Determine the convergence of the following series. If convergent, find their sums:

1. $\sum_{n=0}^{\infty} 2\left(\frac{3}{4}\right)^{n}$.

This is a geometric series. Because $3 / 4<1$, it is convergent and its sum is

$$
\sum_{n=0}^{\infty} 2\left(\frac{3}{4}\right)^{n}=\frac{2}{1-\frac{3}{4}}=8
$$

2. $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{2}+1}$

Since

$$
\lim _{n \rightarrow \infty} \frac{n^{2}}{n^{2}+1}=\lim _{n \rightarrow \infty} \frac{1}{1+\frac{1}{n^{2}}}=\frac{1}{1+\lim _{n \rightarrow \infty} \frac{1}{n^{2}}}=1 \neq 0
$$

the series diverges.

