
Math 1592 Solutions of Quiz 5

Problem 1. (10 points, 5 each) Find the radius and interval of convergence of the
following power series:
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Geometric Series. By the geometric series, the series converges if |x|
2

< 1 and

diverges if |x|
2
≥ 1. From |x|

2
< 1,we get |x| < 2. So the radius is R = 2 and interval

of convergence is (−2, 2).
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By Root test. Let un = (−1)n+1(x−5)n

n5n . Then
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By the root test, the series converges if |x−5|
5

< 1 and diverges if |x−5|
5

> 1. From
|x−5|

5
< 1, we get |x−5| < 5. So the radius is R = 5 and it converges on the interval

(0, 10). To determine the interval of convergence, we need to check the endpoints.
At x = 0, we have
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.

By the p-series test, it diverges. At x = 6, we have
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It is an alternating series and convergent. So the interval of convergence is (0, 10].

Problem 2. (10 points, 5 each) Find a power series for the function:

1. f(x) = 1
2−x

, c = 5.

By geometric series.
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=
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2. f(x) = ln(1 + x), c = 0.

Using the geometric series, we get

1

1 + x
= 1− x + x2 + · · ·+ (−1)nxn + · · ·

By integration, we get

ln(1 + x) + C = x− 1

2
x2 +

1

3
x3 + · · ·+ (−1)n

n + 1
xn+1 + · · ·

Set x = 0, we get C = 0. So

ln(1 + x) + C = x− 1

2
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3
x3 + · · ·+ (−1)n
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xn+1 + · · ·
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