Math 1592 Solutions of Quiz 5

Problem 1. (10 points, 5 each) Find the radius and interval of convergence of the following power series:

1. $\sum_{n=0}^{\infty}\left(\frac{x}{2}\right)^{n}$.

Geometric Series. By the geometric series, the series converges if $\frac{|x|}{2}<1$ and diverges if $\frac{|x|}{2} \geq 1$. From $\frac{|x|}{2}<1$, we get $|x|<2$. So the radius is $R=2$ and interval of convergence is $(-2,2)$.
2. $\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}$

By Root test. Let $u_{n}=\frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}$. Then

$$
\lim _{n \rightarrow \infty} \sqrt[n]{\left|u_{n}\right|}=\lim _{n \rightarrow \infty} \sqrt[n]{\left|\frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}\right|}=\lim _{n \rightarrow \infty} \frac{|x-5|}{5 \sqrt[n]{n}}=\frac{|x-5|}{5} .
$$

By the root test, the series converges if $\frac{|x-5|}{5}<1$ and diverges if $\frac{|x-5|}{5}>1$. From $\frac{|x-5|}{5}<1$, we get $|x-5|<5$. So the radius is $R=5$ and it converges on the interval $(0,10)$. To determine the interval of convergence, we need to check the endpoints. At $x=0$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(0-5)^{n}}{n 5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{2 n+1}}{n}=-\sum_{n=0}^{\infty} \frac{1}{n}
$$

By the p-series test, it diverges. At $x=6$, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(x-5)^{n}}{n 5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}(10-5)^{n+1}}{n 5^{n}}=\sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{n}
$$

It is an alternating series and convergent. So the interval of convergence is $(0,10]$.
Problem 2. (10 points, 5 each) Find a power series for the function:

1. $f(x)=\frac{1}{2-x}, \quad c=5$.

By geometric series.

$$
\begin{aligned}
f(x) & =\frac{1}{2-x}=\frac{1}{-3-(x-5)}=-\frac{1}{3} \frac{1}{1+\frac{(x-5)}{3}} \\
& =-\frac{1}{3}\left(1-\frac{(x-5)}{3}+\left(\frac{(x-5)}{3}\right)^{2}+\cdots++\left(-\frac{(x-5)}{3}\right)^{n}+\cdots\right) .
\end{aligned}
$$

2. $f(x)=\ln (1+x), \quad c=0$.

Using the geometric series, we get

$$
\frac{1}{1+x}=1-x+x^{2}+\cdots+(-1)^{n} x^{n}+\cdots
$$

By integration, we get

$$
\ln (1+x)+C=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots+\frac{(-1)^{n}}{n+1} x^{n+1}+\cdots
$$

Set $x=0$, we get $C=0$. So

$$
\ln (1+x)+C=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots+\frac{(-1)^{n}}{n+1} x^{n+1}+\cdots
$$

