1. A brief Introduction to Maple

Here we give a selection of maple commands.
assign
If we type the following
$[>a:=1 ;$
maple returns

$$
1
$$

and every time we type
[$>a ;$
maple returns
1
If we further type
$[>b:=2 ;$
maple returns
2
and if suppose we type
$[>a+b ;$
maple returns
unassign
Sometimes we wish to then unassign variables. Here we use the command

$$
\left[>a:==^{\prime} a^{\prime}\right.
$$

(single quotes) then maple returns

$$
a
$$

and the variable a has been unassigned. It should be noted that the maple command restart would also work but would unassign all variables (and undo all of your work!)

Expressions
Sometimes we would like to group a bunch of terms. Here we can also use the assign command. For example

$$
\left[>\text { expr }:=x * y+y^{2} ;\right.
$$

maple returns

$$
\operatorname{expr}:=x y+y^{2}
$$

and every time we type
[> expr;
maple returns

$$
x y+y^{2}
$$

and any operation with expr would replace expr with $x y+y^{2}$. So, for example

$$
\left[>e x p r^{2}+x ;\right.
$$

maple returns

$$
\left(x y+y^{2}\right)^{2}+x
$$

expand
Sometimes we wish to expand an expression. Here we us the following command.
$\left[>\right.$ expand $\left(\right.$ expr $\left.^{2}+x\right)$;
were maple returns

$$
x^{2} y^{2}+2 x y^{3}+y^{4}+x
$$

factor

Sometimes we wish to factor an expression. The command we use is

$$
\left[>\text { factor }\left(x^{2}+2 x+1\right)\right.
$$

were maple returns

$$
(x+1)^{2}
$$

simplify
Sometimes we wish to simplify expressions. The command here is.

$$
\left[>\operatorname{simplify}\left(\sin (x)^{2}+\cos (x)^{2}\right) ;\right.
$$

were maple returns

This is especially helpful using trig functions.

subs

Sometimes we wish to make a substitution into an expression. For example, suppose we wish to substitute $x=3$ into expr above. If we were to assign $x=3$, this would fix x. However we can use the subs command to make a single substitution with assigning x. This is done with the following command.

$$
[>\operatorname{subs}(x=3, \operatorname{expr}) ;
$$

maple then returns

$$
3 y+y^{2}
$$

and if we were to type expr, maple would return

$$
x y+y^{2}
$$

collect

Sometimes we wish to group terms in an expression according to a particular variable. For example, consider the following expression.

$$
x y^{3}+y^{3}+y x^{2}-2 x y+6 x
$$

If we wanted to group the terms according to x or y we would use the collect command. To collect in terms of x
[$>$ collect (expr, x);
maple then returns

$$
y x^{2}+\left(y^{3}-2 y+6\right) x+y^{3}
$$

or to collect in terms of y
[$>$ collect (expr,y);
then maple would return

$$
(x+1) y^{3}+\left(x^{2}-2 x\right) y+6 x
$$

op

Sometimes we wish to extract a particular term from within an expression. For example consider

$$
x^{2} y+x-2 y^{4}-3 x^{3}
$$

Suppose we wish to obtain the 3rd term. To do this we use the following command
[$>$ op $(3, \%)$;
maple then returns

$$
-2 y^{4}
$$

noting that in maple, the symbol \% means "the expression above"
coeff
Sometimes we wish to extract a particular group of terms from within an expression. For example, consider

$$
e x p r:=x^{2} y+x y-2 y^{4}-3 x^{3} y^{4}+x
$$

and we wanted the obtain the terms that multiply y. We could collect in terms of y, then use the op command to obtain the y terms, then divide by y. However, we can use the coeff command to do this. i.e.

$$
[>\operatorname{coeff}(\operatorname{expr}, y)
$$

maple then returns

$$
x^{2}+x
$$

or to obtain the terms multiply by y^{4}, we would use

$$
\left[>\operatorname{coeff}\left(\operatorname{expr}, y^{4}\right) ;\right.
$$

maple then returns

$$
-2-3 x^{3}
$$

If you want the answer in descending order, use the command

$$
[>\operatorname{sort}(\%) ;
$$

where maple would return

$$
-3 x^{3}-2
$$

nops

Sometimes we wish to determine the number of terms in an equation. For example, consider the following expression.

$$
\left[>\text { expr }:=(x+y)^{15} ;\right.
$$

$$
\text { expr }:=(x+y)^{15}
$$

[$>$ expand (\%);

$$
\begin{array}{r}
x^{15}+15 y x^{14}+105 y^{2} x^{13}+455 y^{3} x^{12}+1365 y^{4} x^{11}+3003 y^{5} x^{10} \\
+5005 y^{6} x^{9}+6435 y^{7} x^{8}+6435 y^{8} x^{7}+5005 y^{9} x^{6}+3003 y^{10} x^{5} \\
+1365 y^{11} x^{4}+455 y^{12} x^{3}+105 y^{13} x^{2}+15 y^{14} x+y^{15}
\end{array}
$$

To have maple count the number of terms, we use

```
[ \(>\) nops (\%);
```

in which maple would return

16

This command is particularly useful if you have say, three large equations to solve and you'd like to choose the one with the least amount of terms.

Functions

Maple has the standard functions. For example, the trig functions $\sin (x), \cos (x), \tan (x)$, $\cot (x), \sec (x)$ and $\csc (x)$. It has all the inverse trig functions, $\arcsin (x), \arccos (x), \arctan (x)$, $\operatorname{arccot}(x), \operatorname{arcsec}(x)$ and $\operatorname{arccsc}(x)$. It has $\exp (x)$ and $\ln (x)$. In fact there are so many, we won't list all of them here.
Sometimes we want to define a certain function. For example, $y=x^{2}$. In maple, we can use function notation and define the function as

$$
\left[>f:=(x)->x^{2}\right.
$$

in which maple would return

$$
f:=x \rightarrow x^{2}
$$

Then, any time we type $f(x)$ maple returns x^{2}. So for example

$$
[>(f(x+h)-f(x)) / h ;
$$

maple gives

$$
\frac{(x+h)^{2}-x^{2}}{h}
$$

If we want functions of more than one variable, say x and y then

$$
\left[>f:=(x, y)->x^{2} * y+x+y\right.
$$

in which maple would return

$$
f:=(x, y) \rightarrow x^{2} y+x+y
$$

Solving equations

Maple can solve equations (and some systems). For example,

$$
\left[>\operatorname{solve}\left(x^{2} * y+2 * y-x, y\right)\right.
$$

would give

$$
\frac{x}{x^{2}+2}
$$

while
$\left[>\operatorname{solve}\left(x^{2} * y+2 * y-x, x\right) ;\right.$
would give

$$
\frac{1+\sqrt{1-8 y^{2}}}{2 y},-\frac{-1+\sqrt{1-8 y^{2}}}{2 y}
$$

For systems, we use the same command. Suppose we wish to solve the system of equations

$$
\begin{aligned}
4 x+3 y & =10 \\
3 x-y & =1
\end{aligned}
$$

then we would use the command

$$
[>\text { solve }(\{4 x+3 y=10,3 x-y=1\},\{x, y\}) ;
$$

would give

$$
\{x=1, y=2\}
$$

We could have achieved the same result by the command

$$
[>\text { solve }(\{4 x+3 y-10,3 x-y-1\},\{x, y\})
$$

where maple would assume that each equation is set to zero.
If we were to assign these values, we would use the assign command
[> assign(\%);
To unassign we could use the unassign command

$$
\left[>\text { unassign(}{ }^{\prime} x^{\prime}, ' y \text { ' }\right) ;
$$

Sometimes it is necessary to solve equations numerically. This is done with the command fsolve a floating point solver. For example,

$$
[>f \text { solve }(x-\cos (x)=0, x) ;
$$

would give

$$
.7390851332 .
$$

If there is more than one solution, we can give the range. For example,

$$
\left[>f \operatorname{solve}\left(x^{5}-3 * x^{3}-1=0, x=1 . .2\right) ;\right.
$$

would give

$$
1.782308780 .
$$

If we used just fsolve it would give us all three.

Assignment

1. Factor $x^{4}-2 x^{3}-13 x^{2}+14 x+24$.
2. Expand $(x+2 y)^{18}$ and find the coefficient of the term $x^{10} y^{8}$.
3. Solve $x^{3}+x-1=0$ numerically for x.
4. Collect the following according to t

$$
x^{2} y t^{3}+2 t x+6 y+4 x t^{2}-6 t^{3}+z t-7 y t^{2}+z^{3}
$$

5. Solve the following system for x, y and z

$$
\begin{aligned}
x+y+z & =2 \\
2 x-y+z & =7 \\
x-3 y+z & =10
\end{aligned}
$$

