Math Software - Calculus

Limits

Maple has the ability to calculate limits. We can evaluate limits at either a point or at infinity. See the following examples The first is

$$
\lim _{x \rightarrow 1} \frac{x^{2}-1}{x-1}
$$

Here we would use the Maple command
$\left[>\operatorname{limit}\left(\left(x^{2}-1\right) /(x-1), x=0\right) ;\right.$
in which maple would return

$$
2 .
$$

The second is

$$
\lim _{x \rightarrow \infty} \frac{e^{x}-1}{e^{x}+1}
$$

Here we would use the Maple command

$$
[>\operatorname{limit}((\exp (x)-1) /(\exp (x)+1), x=\text { infinity }) ;
$$

in which maple would return

Not all limits exists, for example consider

$$
\lim _{x \rightarrow \infty} \frac{x^{3}-1}{x-1}
$$

Here we would use the Maple command

$$
\left[>\operatorname{limit}\left(\left(x^{3}-1\right) /(x-1)\right), x=\text { infinity }\right) ;
$$

in which maple would return
∞.
We can also approach from two different sides. For example, we could approach from the left or right. Here we would use the commands

$$
\begin{aligned}
& {\left[>\operatorname{limit}\left(\left(x^{3}+1\right) /(x-1)\right), x=1, \text { left }\right) ;} \\
& {\left[>\operatorname{limit}\left(\left(x^{3}+1\right) /(x-1)\right), x=1, \text { right }\right)}
\end{aligned}
$$

in which Maple would give $-\infty$ and ∞ respectively.

Derivatives

Maple has the ability to calculate derivatives. The command is diff. For example [$>\operatorname{diff}\left(x^{2}, x\right)$;
maple gives

$$
2 x
$$

or $\quad[>\operatorname{diff}(\sin (x) * y, x)$;
maple gives

$$
\cos (x) y
$$

For second and higher order derivatives (either ordinary or partial) we use the command $\left[>\operatorname{diff}\left(x^{3} * y^{2}+1 / x / y^{3}, x, y\right) ;\right.$
maple gives

$$
6 x^{2} y+\frac{3}{x^{2} y^{4}}
$$

For higher order derivatives we can also use a $\$$ sign, i.e.
[$>\operatorname{diff}(f(x), x \$ 4)$;
maple gives

$$
\frac{d^{4}}{d x^{4}} f(x)
$$

Maple sometimes uses a D to denote derivatives. To convert to the diff format use the maple command convert. For example
$[>\operatorname{convert}(D[1](f)(x)$, diff $) ;$
maple gives

$$
\frac{d}{d x} f(x)
$$

Integrals

Maple can also integrate. Here we use the int command. For example, to calculate the indefinite integral

$$
\int x^{2} d x
$$

[$>\operatorname{int}\left(x^{2}, x\right) ;$
maple gives

$$
\frac{x^{3}}{3}
$$

Please note that maple doesn't include the constant of integration. This is something that you need to do manually. To calculate the definite integral

$$
\int_{0}^{3} x^{2} d x
$$

$$
\left[>\operatorname{int}\left(x^{2}, x=0 . .3\right)\right.
$$

maple gives

3.

For multiple integral, it is necessary to nest the int command. So to evaluate

$$
\iint 4 x y d x d y
$$

we would type

$$
[>\operatorname{int}(\operatorname{int}(4 * x * y, x), y)
$$

maple gives

$$
x^{2} y^{2}
$$

with again, no constants of integration.

Problems

1. If $y=x^{3}+3 * x^{2}+4 * x-3$, find (i) the derivative of y, (ii) the derivative of y at $x=1$ and then (iii) the equation of the tangent at $x=1$. Plot both the function and its tangent.
2. Graph the curve $y=x^{3}-4 x$ and find the area under the curve on the interval $[-2,2]$.
3. Integrate the function $y=x \sin x$ on the interval $[0, \pi]$ and in general.
4. Calculate $\frac{\partial^{4} z}{\partial^{3} x \partial y}$ where $z=x^{4} y^{2}-x^{3}-y^{4}$.
5. Find the following double integral $\iint 6 x^{2} y-4 x \cos x-7 y e^{y} d x d y$.
