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Abstract

In this paper, we discuss the existence of positive periodic solutions to the nonlinear differential equation
u’(t) +amu) = ft,ut), teR

wherea : R — [0, +00) is anw-periodic continuous function wita(t) # 0, f : R x [0, +00) — [0, +00) is
continuous and (-, u) : R — [0, +00) is also anw-periodic function for each € [0, +00). Using the fkedpoint
index theory in a cone, we get an essential existencétiescause of its involving the first positive eigenvalue of
the linear equation with regard to the above equation.
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1. Introduction

In this paper, we & corcerned with the existence of positive periodic solutions to the nonlinear
differentid equation

u’(t) +at)ut) = f(t,ut)), teR, (1.1)
where we assume that
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(H1) a: R— [0, +00) is anw-periodic continuous function araft) = 0;
(H2) f : Rx [0, +00) — [0, +00) is continuous andf (-, u) : R — [0, +00) is also anw-periodic
function for eachu € [0, +00).

A functionu is said to be a positive-periodic solution to Eq.1.1) if and only if

() u e C3(R), u(t + ) = u(t), u(t) > Oforallt € Randu(t) = 0;
(i) u’(t) +a)u(t) = ft,ul),te R

Itis easy to verify that the positive-periodic solution to Eqg.X.1) is equivalent tathe positive solution
to the following periodic boundary value problems (PBVPSs):

u”(t) +at)ut) = f(t,u), tel0,wl, (1.2)
u0) = u(w), U (0) =U(w). (1.3)

Recently, the fixed point index theory has successfully been used to deal with the existence of positive
solutions to two-point boundary value problems, and a great number of satisfactory results have been
attained; seel-4. Now some athors are trying to apply the fixed point index theory to periodic
boundary value problems; se&§]. Motivated by the méhod of [5], we sudy the existence of positive
solutions to periodic boundary value problerhgf and (L.3) by using thelhieory and obtain some further
results. These results are essential because they involve the first positive eigenvalue of the linear problem
corresponding to the PBVP%.Q) and (L.3). We also improve the conditions concerniagindM given
in [5]. Functiona can have a zero point atd can equalr /)2, whilein [5] it is assumed thaa(t) > 0O
forallt € [0, w] and 0< M < (/w)?.

2. Preliminaries

In this section, we will give some lemmas which aegywimportant for proving the main result of this
paper. We assume throughout taatatisfiegH;) and f satisfiegHy). LetM = max¢o,,) a(t). C[0, w]
denotes the usual continuous function space with nfrin= maxco ] u(t)| for all u € C[0, w] and
C*[0,w] = {u € C[0, w] : u(t) > 0,t € [0, w]} denotes the con&dfd in C[0, w]. We definea partial
ordering< with respect taC*[0, w] by u < v iff v — u € CT[0, w]. Sometines we shall writal < v to
indicate thati < v butu # v.

Lemmal If0 < M < (rr/a))z, then br each he CJ[0, w], there exits aunique solution u satisfying
the linear periodic boundary value problems

u’(t) + Mu@t) =ht), te[0 ol (2.1)
u0) = u(w), U (0) = U (w). (2.2)
The solutioru is given byu := T h, whereT sdisfies

@) T :C[0, w] — C[0, w] is alinear completely continuous operator dfid| = 1/M;
(i) T is a positive linear operator, i.&h € CT[0, ] for allh € CT[0, w];
(iii) T is also a strongly positive linear operator, i@&.h)(t) > 0,t € [0, w] for all h € C*[0, w] with
h(t) # 0.

Proof. Let
r{t) =apcosp(t —w/2), tel0,w],
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whereg = VM, ag = Z/ST:L/S(U/Z It is obvious thatr € C?[0, w], r(t) > 0,t € [0, w] and

¢y + Mrt) =0, r(0) =r(), r'©0 =r'(v)+1 (2.3)
LetG: [0, w] x [0, w] — [0, +00) be as follows:

ra—os), 0<s=<t<o,
rNw+t—-y), O<t<s=<ow.

G(,s) = {

Thenfrom (2.3) and the manum principle we can easily show that

w

w t
ut) := (Thy =/ G(t,s)h(s)ds:/ r{t —s)h(s) ds+/ r(w—+t—s)h(s)ds (2.4)
0 0 t

is the ungue solution to the problem2.() and @.2). SinceG is continuous, we can see that :
C[0, w] — C[0, w] is alinear completely continuous operator. ObviouslyMLis a soution of the
problems 2.1) and @.2) for h(t) = 1, so we get

/wG(t, s)ds = i t € [0, w]. (2.5)
0 M

From @.5) for all h € C[0, w], we then lave that (T h)(t)| < fo“’ G(t, s)|h(s)|ds < %th,t € [0, w],
thatis||Th| < & Ihll, so Tl < 1/M. On theother hand, fohg = 1, (Tho)(t) = 5’ G(t,s)ds =
1/M,t € [0, w], sO|Thg|| = 1/M. Thus||T| = 1/M. By the fact thatG is nonnegative and2(4), it is
easy to see thdth € CT[0, w] for allh e C*[0, w].

For arbitrary giverh € C*[0, w] with h(t) # 0, now we prove thatT h)(t) = fé“ G(t, s)h(s)ds >
0,t € [0, w]. We only need to prove that for eadhe [0, w], G(t,s)h(s) # 0ins € [0, w]. Since
h(s) # 0, there exisgg € (0, w) andé > 0 such hath(s) > 0 ass € [s9 — 38,S + 8] C [0, w].
Whent € [0, 5p), G(t, sp)h(sp) = r(w +t — Sp)h(s9) = agcosB(t — s + w/2)h(sp), while —w/2 <
w/2—5 <t—+w/2 < w/2;thisimplies thaid(t —sp+w/2) € (—n /2, 7/2),s0G(t, SH)h(s9) > O.
Similarly, whent € (59, w], G(t, so)h(sg) = r (t — sp)h(sp) = agcosp(t — sp — w/2)h(sp) > 0. When
t =59, G(t, 50+ 8)h(sg+ 8) = G(sp, o+ 8)h(Sg + 8) = apgcosB(w/2 — §)h(sp + 8) > 0. The proof
is completed.

Lemmaz2. Let(Bh)(t) = (M —a(t))h(t), t € [0, w] for all h € C[0, w]. Then B: C[0, w] — C[0, w]
is a positive linear ontinuous operator, anfiT B|| < 1if 0 < M < (/w)2.

Proof. It is easy to see thaB : C[0,w] — C[0, w] is a positive linear continuous operator and

Bl < M.
For allh € C[0, w], it follows from (2.4) that

|<TBh><t>|s/o G(t, (M — a(s)lh(s)| ds

< |Ih]] fw G(t,s)(M —a(s))ds
0

= i1 — (Ta)t)
< IIhIItr?(;’:lX](l— (Tayt), t € [0, w].

By assumption(H;) and Lemma 1 it follows that (Ta)(t) > O for allt € [0, w], and theefore
T Bl < maxe(o,,)(1— (Ta)(t)) < 1. The proof is completed.
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Remark 1. Lemma 2improves @ the results ing]. In our Lemma 2 first note thata can have a zero
point in [0, w]; that is,a need not be positive at all points i, w]. Secondly 0< M < (n/a))z; that is
to sayM can equalr/w)?.

Lemma3. If0< M < (n/a))z, then br each he C[0, w], the following linear PBVPs:
u’(t) +aMu) =h), tel0, wl, (2.6)
u0) = u(w), U (0) = U (w) (2.7)

have a unique solution u, wheret& Phand

(i) P:C[0, w] — C[0, w] is a positive linear completely continuous operator;

(i) Ph>Thfordlh € CT[0, w];

(i) P is dso a grongly positive operator, i.e.(Ph)(t) > 0,t € [0, »] for all h € CT[0, ] with
h(t) £ 0.

Proof. Clearly, problemsZ.6) and @.7) are euivalent to the operator equatian= T Bu+ T h, nanely
(I —=TBu=Th. (2.8)

Since||TB| < 1 byLemma 2| — T B has a bounded invergé — T B) 1. Therdore, Eq. @.8) has a

unique solutioru = (I — TB)™1Th := Ph, andP = (I — T B)~!T is linear completely continuous
becausd is completely continuous. Using the Neumann expansion equation, we have

P=(+TB+(TB2+ - +(TB"+.. ) T=T+TBT+(TB?T+---+(TB"T+---.

This impies thatP is positive becaus& and B are both positive. It is obvious th&h > Th for all
h € C*[0, w]. This imgdies also thatP is strongly positive sincd is strongly positive. The proof is
completed.

Lemmad. If 0 < M < (r/w)?, letr(P) be the spectral radius of operator P; thetR) > 0 and there
existsp > Osuchthat R =r (P)g. Alsor1 = 1/r (P) is the first positive eigenvalue of linear PBVPs
corresponding to the problen($.2) and(1.3), and

/w e®(Pu)t)dt = %fwgo(t)u(t)dt forallu € C[0, w]. (2.9)
0 1Jo

Proof. It follows from Lemma 3thatPh > Thfor allh € C*[0, w], esgcially P1> T1 = 1/M, and
therefore P"1 > 1/M". Herce, the spectral radius of opera@rsatisfies (P) = limn_« ||P"|Y" >
1/M > 0. Obviously,C*[0, w] is a totalcone of C[0, w], i.e. C[0,w] = C*[0, w] — C*+[0, w].
According to the Krein—Rutman theoreri(], r (P) is an eigenvalue with a positive eigenvector,
i.e. there exist® > 0 suchhatPy = r(P)g. SinceP¢ = r (P)g is equivalent to the following PBVPs:

1
" () +ab)pt) = mfp(t), t € [0, w],

9(0) =p(), ¢'(0) =¢' (),
A1 = 1/r (P) is an eigenvalue value of linear PBVPs corresponding to PBYES &nd (L.3), and we
can easily prove that; = 1/r (P) is the first positive eigeralue of the linear problems.
SincePuis the unique solution of the following linear PBVPs:
w” (1) +ab)w(t) = u), tel0, wl,
w(0) = w(w), w'(0)=w(w),
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it follows that

/\1/0 O (Pu)(t)dt =f0 (@" (1) +a®e®)(Pu) ()t

= ¢ (O(Pu)(t) I6”—/0 w'(t)(PU)/(t)dt-i-/o a(e®(Pu)(t)dt
= —p®)(PU'(1) |6"+/0 [p®)(PW” (1) + p)a®)(Pu)(t)]dt

w
= / @(Hu(t)dt.
0
Hence 2.9 holds. The proof is completed.
Now, we define operatois, Q : C*[0, w] — C'[0, w] by

(Fu)(t) = f(t,u(t)),t € [0,w] forallue CT[0, w],

Q=PF. (2.10)
Noticing thate(t) = A1(Pe)(t) > 0,t € [0, w] from (iii) of Lemma 3 letb = mint¢(o,,) ¢ (t); then
b > 0, wherep > 0 andr (P)¢ = Py with " ¢(t)dt = A1. Choosing the sub-conk of C*[0, w]
given by

w
K= {u € CT0, ] : / u®)e(t)dt > 8||U||},
0

b

wheres§ = Tl —TB T’

we have thdollowing:
Lemmab5. Q(CT[0, w]) Cc K and Q: CT[0, w] — K is completely continuous.

Proof. For arbitrary giveru € CT[0, »], from (2.9) anddefinitions ofQ andF it follows that

/o @(t)(QU)(t)dt=/o et)(PFu)(t)dt
_ 1 /wgo(t) f(t, u(t))dt (2.11)
A1 Jo

> B /w f(t, u(t))dt.
A1 Jo

On the other hand,

IQull = [P Ful
= (1 = TB) ITFu|
< (1 = TB) T Ful

= ||(I = TB)™1 max /w G(t,s) f(s,u(s)) ds
te[0,0] Jo

<l =TB™Y max G(t,s)f f (s, u(s)) ds
(t,9)€[0,w]x[0,w] 0

= all(l = TB)? f Tt u(s))ds.
0
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Using this andZ2.11), we have

/o pO(QuU)(H)dt = IQuIl = 8] Qul.

~ Maoll(l = TB)7Y

Hence,Qu e K; therdore Q(C'[0, w]) C K. Itis obvious thatQ : C*[0, w] — K is completely
continuous. The proof is completed.

The proof of the main theorem of this paper is based on fixed point index thecfy%$h Forr > 0,
letKy ={ue K :|u] <r}anddK; = {u e K : ||u] =r}, which is the relative boundary ¢f, in K.
The following two theorems/-9 are reeded in our argument.

Theorem A. Let Q : K; — K be acompletely continuous operator.4fQu # u forallu € 9K, and
u € (0,1],theni(Q, Ky, K) = 1.

TheoremB. Let Q: K; — K be acompletely continuous operator. If there exigte K with ¢ # 0
such that

U=# Qu+ ue forallu e dK, andu >0,
theni(Q, K, K) = 0.

3. Existence of positive periodic solutions

For conveaience, we give some notation:
f(t,u) f(t,u

0 = lim sup max , fo = liminf min ,
u—o+ tel0w] u u—0*+ te[0,w] u
i f(t,u . . f(,u
f°° = lim sup max ( ), foo = liminf min ( ).
u— 400 te[O,w] u U*>+OOtE[O,w] u

Theorem 1. Suppose thatH1) and (H) hold. If0 < M < (7/w)?, then Eq.(1.1) has at least one
positive periodic solution in each of the following cases:

() TO< 1 < foo:
(i) fo> a1 > <,

wherel is the first positive eigenvalue of the linear equation corresponding t¢IED.

Proof. By Lemma 5and the definition oK, anynonzero fixed point irkK of the operatoQ defined by
(2.10 is apositive sdution to PBVPs 1.2) and (L.3). And therefore it is thgositive periodic solution
to Eq. (1.1). We assume thap is a positive eigevector of operatoP with respect to the spectral radius
r(P)=1/11 andfg’ e ((t)dt = 11. We will show thatQ has a nonzero fixed point i& under conditions
(i) and (ii), respectively.

Suppose corition (i) holds. Sincef® < i1, by thedefinition of {9, there existg > 0 ande > 0
such that

f(t,u) <i1(l—s)u forallt € [0, w] andu € [O, rg]. 3.1)

Letr € (0,rg); we now pove thatuQu # u for all u € dK, andu € (0, 1]. In fact, if there exist
Up € dK; andug € (0, 1] such thatupQug = ug, thenug < Qup. Multiplying this inequality by,
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integrating o0, w], using €.9) and @.1), we have
[ ewuwd < [“oo@uod

- [ vnerwoa
1 w

== [ ftuompo
1Jo
1 w

< —- kl(l—e)/ @(Hup(t)dt
A1 0

=1-e) fow @(Hug(t)dt.
Sincefg" e®ug(t)dt > §|lugll = 8r > 0, thisimplies that 1< 1 — ¢, which is a ontradiction. Hence
Q satisfies the hypothesesfieorem A Therdore we have
i(Q,Kr,K)y=1 (3.2)
On the other hand, sinck, > A1, by thedefinition of f.,, there existRy > 0 ande > 0 such hat
f(t,u) > 11(l+e)u forallt € [0, w] andu > Rg.

Since f(t,u) — A1(1 4+ &)u is continuous on[0, w] x [0, Ry], we may chooseC > 0 such hat
ft,u) —21(1+e)u > —Cforall (t,u) € [0, w] x [0, Rg]. So albgether we have

f(t,u) >x11(l+e)u—C forallt € [0, w] andu > 0. (3.3)

Let R > max(C/e8, Ry, ro). If there existug € dKr andug > 0 such hatug = Qug + uog, then
Up > Qug. Multiplying this inequality bygp, integrding on [0, w], using @.9) and @.3), andnoting that
Jo ¢®dt = 11, we have

fo oMUt = fo o(®(Quo)(t)ct
_ fo o(® (P Fuo))dt
1 w
== f £t Uo(t)p (t)dt
1J0
_— / (a(1+ )Uo(t) — Crg(t)at
A Jo

- (1+e)/0 @(t)ug(t)dt — C.

By the definition ofK, we getfg" pM)up(t)dt > §|jugll = SR. Therdore it follows thatR < C/&6,
which is a contradiction with the choice 8 Hence hypotheses dheorem Bhold. Therefore we have

1(Q, Kr, K)=0. (3.4)
Now by the additivity of fixed point index3(2) and @.4), we have

I(Qv KR\KIW K) :I(Q’ KR’ K) _I(Q’ Kl’v K) - _1
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ThereforeQ has a fixed point irK g \ K.
Suppose condition (ii) holds. Sindg > A1, by thedefiniton of fg, there existg > 0 ande > 0 such
that

f(t,u) > 11(1+s)u forallt € [0, w] andu € [O, rg]. (3.5)
Letr € (O,rp). If there existug € 0K, andup > 0 such hatug = Qug + wrog, thenug > Qup.
Multiplying this inequality by, integrding on [0, w], using @.9) and @.5), we have

fo o OUoM)dt = fo o (PFuo)()dt
1 w
== f (L, U)o (bt
1.J0

> 5o [ pound

Sincefé" @(®ug(t)dt > 0, it follows that 1> 1+¢, which is a ontradiction. On the basis dheorem B
we have

1(Q, Kr, K)=0. (3.6)

On the other hand, sincE™® < A4, there existRy > 0 ands > 0 such hat

f(t,u) <x1(l—s)u forallt € [0, w] andu > Rg.
Becausef (t, u) — A1(1 — g)uis continuous on0, w] x [0, Ry], we can choos€ > 0 such hat

ft,u) <11(l—-e)u+C forallt € [0, w] andu € [0, Rg].
So altogether we have

ft,u) <11(l—s)u+C forallt € [0, w] andu > 0. (3.7)
Let R > max(C/g8, Ry, rp). If there existug € dKr andug € (0, 1] such thatug = uoQuo, then
Uo < Qug. Therdore

/o p(Huo(t)dt

A

fo o (P Fuo)(t)dt
1 w

== f F(t, Uo®)p(dt
1.J0

<L f (1(1— £)uo®) + Chp(t)ct
A Jo

—(1—¢) /O o(Huo(t)dt + C.

In addition,fé" pM)up(t)dt > §|lug|l = §R. We haveR < C/e8, which isa mntradiction. So

1(Q, Kgr, K) =1 (3.8)
From (3.6) and @3.9) it follows that

1(Q, Kr\ K, K) =i(Q, Kr, K) —=i(Q, Kr, K) =1,
ThereforeQ has a fixed point irK g \ K, which isnonzero. The proof is completed.
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Corollary 1. Suppose thatH1) and (H») hold. If0 < M < (r/w)? and one of the following cases:

(i) 19=0, fo, = oo (superlinear case);
(i) fo = o0, T = 0 (sublinea case),

is satisfied, then the E{L.1) has at least one positive periodic solution.

Remark 2. Conditions (i) and (ii) ofTheorem lare given by the first positive eigenvalue of the linear
differential equation corresponding to the Ef.1j, so the existence results are essential, and therefore
we have improved on the results Bl
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