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Abstract

In this paper, we discuss the existence of positive periodic solutions to the nonlinear differential equation

u′′(t) + a(t)u(t) = f (t, u(t)), t ∈ R,

wherea : R → [0,+∞) is anω-periodic continuous function witha(t) �≡ 0, f : R × [0,+∞) → [0,+∞) is
continuous andf (·, u) : R → [0,+∞) is also anω-periodic function for eachu ∈ [0,+∞). Using the fixedpoint
index theory in a cone, we get an essential existence result because of its involving the first positive eigenvalue of
the linear equation with regard to the above equation.
© 2005 Published by Elsevier Ltd
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1. Introduction

In this paper, we are concerned with the existence of positive periodic solutions to the nonlinear
differential equation

u′′(t) + a(t)u(t) = f (t, u(t)), t ∈ R, (1.1)

where we assume that

∗ Corresponding author.
E-mail address:fyli@sxu.edu.cn (F. Li).

0893-9659/$ - see front matter © 2005 Published by Elsevier Ltd
doi:10.1016/j.aml.2005.02.014

http://www.elsevier.com/locate/aml


F. Li, Z. Liang / Applied Mathematics Letters 18 (2005) 1256–1264 1257

(H1) a : R → [0,+∞) is anω-periodic continuous function anda(t) �≡ 0;
(H2) f : R × [0,+∞) → [0,+∞) is continuous andf (·, u) : R → [0,+∞) is also anω-periodic

function for eachu ∈ [0,+∞).

A functionu is said to be a positiveω-periodic solution to Eq. (1.1) if andonly if

(i) u ∈ C2(R), u(t + ω) = u(t), u(t) ≥ 0 for all t ∈ R andu(t) �≡ 0;
(ii) u′′(t) + a(t)u(t) = f (t, u(t)), t ∈ R.

It is easy to verify that the positiveω-periodic solution to Eq. (1.1) is equivalent tothe positive solution
to the following periodic boundary value problems (PBVPs):

u′′(t) + a(t)u(t) = f (t, u(t)), t ∈ [0, ω], (1.2)

u(0) = u(ω), u′(0) = u′(ω). (1.3)

Recently, the fixed point index theory has successfully been used to deal with the existence of positive
solutions to two-point boundary value problems, and a great number of satisfactory results have been
attained; see [1–4]. Now some authors are trying to apply the fixed point index theory to periodic
boundary value problems; see [5,6]. Motivated by the method of [5], we study the existence of positive
solutions to periodic boundary value problems (1.2) and (1.3) by using the theory and obtain some further
results. These results are essential because they involve the first positive eigenvalue of the linear problem
corresponding to the PBVPs (1.2) and (1.3). We also improve the conditions concerninga andM given
in [5]. Functiona can have a zero point andM can equal(π/ω)2, while in [5] it is assumed thata(t) > 0
for all t ∈ [0, ω] and 0< M < (π/ω)2.

2. Preliminaries

In this section, we will give some lemmas which are very important for proving the main result of this
paper. We assume throughout thata satisfies(H1) and f satisfies(H2). Let M = maxt∈[0,ω] a(t). C[0, ω]
denotes the usual continuous function space with norm‖u‖ = maxt∈[0,ω] |u(t)| for all u ∈ C[0, ω] and
C+[0, ω] = {u ∈ C[0, ω] : u(t) ≥ 0, t ∈ [0, ω]} denotes the cone [7–9] in C[0, ω]. We definea partial
ordering≤ with respect toC+[0, ω] by u ≤ v iff v − u ∈ C+[0, ω]. Sometimes we shall writeu < v to
indicate thatu ≤ v butu �= v.

Lemma 1. If 0 < M ≤ (π/ω)2, then for each h∈ C[0, ω], there exists aunique solution u satisfying
the linear periodic boundary value problems

u′′(t) + Mu(t) = h(t), t ∈ [0, ω], (2.1)

u(0) = u(ω), u′(0) = u′(ω). (2.2)

The solutionu is given byu := T h, whereT satisfies

(i) T : C[0, ω] → C[0, ω] is a linear completely continuous operator and‖T‖ = 1/M;
(ii) T is a positive linear operator, i.e.T h ∈ C+[0, ω] for all h ∈ C+[0, ω];
(iii) T is also a strongly positive linear operator, i.e.(T h)(t) > 0, t ∈ [0, ω] for all h ∈ C+[0, ω] with

h(t) �≡ 0.

Proof. Let

r (t) = α0 cosβ(t − ω/2), t ∈ [0, ω],
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whereβ = √
M, α0 = 1

2β sinβω/2. It is obvious thatr ∈ C2[0, ω], r (t) ≥ 0, t ∈ [0, ω] and

r ′′(t) + Mr (t) = 0, r (0) = r (ω), r ′(0) = r ′(ω) + 1. (2.3)

Let G : [0, ω] × [0, ω] → [0,+∞) be as follows:

G(t, s) =
{

r (t − s), 0 ≤ s ≤ t ≤ ω,

r (ω + t − s), 0 ≤ t ≤ s ≤ ω.

Thenfrom (2.3) and the maximumprinciple we can easily show that

u(t) := (T h)(t) =
∫ ω

0
G(t, s)h(s) ds =

∫ t

0
r (t − s)h(s) ds +

∫ ω

t
r (ω + t − s)h(s) ds (2.4)

is the unique solution to the problems (2.1) and (2.2). SinceG is continuous, we can see thatT :
C[0, ω] → C[0, ω] is a linear completely continuous operator. Obviously, 1/M is a solution of the
problems (2.1) and (2.2) for h(t) ≡ 1, so we get∫ ω

0
G(t, s) ds = 1

M
, t ∈ [0, ω]. (2.5)

From (2.5) for all h ∈ C[0, ω], we then have that|(T h)(t)| ≤ ∫ ω

0 G(t, s)|h(s)| ds ≤ 1
M ‖h‖, t ∈ [0, ω],

that is‖T h‖ ≤ 1
M ‖h‖, so‖T‖ ≤ 1/M. On theother hand, forh0 ≡ 1, (T h0)(t) = ∫ ω

0 G(t, s) ds =
1/M, t ∈ [0, ω], so‖T h0‖ = 1/M. Thus‖T‖ = 1/M. By the fact thatG is nonnegative and (2.4), it is
easy to see thatT h ∈ C+[0, ω] for all h ∈ C+[0, ω].

For arbitrary givenh ∈ C+[0, ω] with h(t) �≡ 0, now we prove that(T h)(t) = ∫ ω

0 G(t, s)h(s) ds >

0, t ∈ [0, ω]. We only need to prove that for eacht ∈ [0, ω], G(t, s)h(s) �≡ 0 in s ∈ [0, ω]. Since
h(s) �≡ 0, there exists0 ∈ (0, ω) andδ > 0 such that h(s) > 0 ass ∈ [s0 − δ, s0 + δ] ⊂ [0, ω].
Whent ∈ [0, s0), G(t, s0)h(s0) = r (ω + t − s0)h(s0) = α0 cosβ(t − s0 + ω/2)h(s0), while −ω/2 <

ω/2−s0 ≤ t −s0+ω/2 < ω/2; this implies thatβ(t −s0+ω/2) ∈ (−π/2, π/2), soG(t, s0)h(s0) > 0.
Similarly, whent ∈ (s0, ω], G(t, s0)h(s0) = r (t − s0)h(s0) = α0 cosβ(t − s0 − ω/2)h(s0) > 0. When
t = s0, G(t, s0 + δ)h(s0 + δ) = G(s0, s0 + δ)h(s0 + δ) = α0 cosβ(ω/2 − δ)h(s0 + δ) > 0. The proof
is completed.

Lemma 2. Let (Bh)(t) = (M − a(t))h(t), t ∈ [0, ω] for all h ∈ C[0, ω]. Then B: C[0, ω] → C[0, ω]
is a positive linear continuous operator, and‖T B‖ < 1 if 0 < M ≤ (π/ω)2.

Proof. It is easy to see thatB : C[0, ω] → C[0, ω] is a positive linear continuous operator and
‖B‖ ≤ M.

For allh ∈ C[0, ω], it follows from (2.4) that

|(T Bh)(t)| ≤
∫ ω

0
G(t, s)(M − a(s))|h(s)| ds

≤ ‖h‖
∫ ω

0
G(t, s)(M − a(s)) ds

= ‖h‖(1 − (T a)(t))

≤ ‖h‖ max
t∈[0,ω]

(1 − (T a)(t)), t ∈ [0, ω].
By assumption(H1) and Lemma 1, it follows that (T a)(t) > 0 for all t ∈ [0, ω], and therefore
‖T B‖ ≤ maxt∈[0,ω](1 − (T a)(t)) < 1. The proof is completed.
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Remark 1. Lemma 2improves on the results in [5]. In our Lemma 2, first note thata can have a zero
point in [0, ω]; that is,a need not be positive at all points in[0, ω]. Secondly 0< M ≤ (π/ω)2; that is
to sayM can equal(π/ω)2.

Lemma 3. If 0 < M ≤ (π/ω)2, then for each h∈ C[0, ω], the following linear PBVPs:

u′′(t) + a(t)u(t) = h(t), t ∈ [0, ω], (2.6)

u(0) = u(ω), u′(0) = u′(ω) (2.7)

have a unique solution u, where u:= Ph and

(i) P : C[0, ω] → C[0, ω] is a positive linear completely continuous operator;
(ii) Ph ≥ T h for all h ∈ C+[0, ω];
(iii) P is also a strongly positive operator, i.e.(Ph)(t) > 0, t ∈ [0, ω] for all h ∈ C+[0, ω] with

h(t) �≡ 0.

Proof. Clearly, problems (2.6) and (2.7) are equivalent to the operator equationu = T Bu+ Th, namely

(I − T B)u = T h. (2.8)

Since‖T B‖ < 1 by Lemma 2, I − T B has a bounded inverse(I − T B)−1. Therefore, Eq. (2.8) has a
unique solutionu = (I − T B)−1T h := Ph, andP = (I − T B)−1T is linear completely continuous
becauseT is completely continuous. Using the Neumann expansion equation, we have

P = (I + T B + (T B)2 + · · · + (T B)n + · · ·)T = T + T BT + (T B)2T + · · · + (T B)nT + · · · .
This implies thatP is positive becauseT and B are both positive. It is obvious thatPh ≥ T h for all
h ∈ C+[0, ω]. This implies also thatP is strongly positive sinceT is strongly positive. The proof is
completed.

Lemma 4. If 0 < M ≤ (π/ω)2, let r(P) be the spectral radius of operator P; then r(P) > 0 and there
existsϕ > 0 such that Pϕ = r (P)ϕ. Alsoλ1 = 1/r (P) is the first positive eigenvalue of linear PBVPs
corresponding to the problems(1.2) and(1.3), and∫ ω

0
ϕ(t)(Pu)(t)dt = 1

λ1

∫ ω

0
ϕ(t)u(t)dt for all u ∈ C[0, ω]. (2.9)

Proof. It follows from Lemma 3that Ph ≥ T h for all h ∈ C+[0, ω], especially P1 ≥ T1 = 1/M, and
therefore Pn1 ≥ 1/Mn. Hence, the spectral radius of operatorP satisfiesr (P) = limn→∞ ‖Pn‖1/n ≥
1/M > 0. Obviously,C+[0, ω] is a total cone of C[0, ω], i.e. C[0, ω] = C+[0, ω] − C+[0, ω].
According to the Krein–Rutman theorem [10], r (P) is an eigenvalue with a positive eigenvector,
i.e. there existsϕ > 0 such that Pϕ = r (P)ϕ. SincePϕ = r (P)ϕ is equivalent to the following PBVPs:

ϕ′′(t) + a(t)ϕ(t) = 1

r (P)
ϕ(t), t ∈ [0, ω],

ϕ(0) = ϕ(ω), ϕ′(0) = ϕ′(ω),

λ1 = 1/r (P) is an eigenvalue value of linear PBVPs corresponding to PBVPs (1.2) and (1.3), and we
can easily prove thatλ1 = 1/r (P) is the first positive eigenvalue of the linear problems.

SincePu is the unique solution of the following linear PBVPs:

w′′(t) + a(t)w(t) = u(t), t ∈ [0, ω],
w(0) = w(ω), w′(0) = w′(ω),
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it follows that

λ1

∫ ω

0
ϕ(t)(Pu)(t)dt =

∫ ω

0
(ϕ′′(t) + a(t)ϕ(t))(Pu)(t)dt

= ϕ′(t)(Pu)(t) |ω0 −
∫ ω

0
ϕ′(t)(Pu)′(t)dt +

∫ ω

0
a(t)ϕ(t)(Pu)(t)dt

= −ϕ(t)(Pu)′(t) |ω0 +
∫ ω

0
[ϕ(t)(Pu)′′(t) + ϕ(t)a(t)(Pu)(t)]dt

=
∫ ω

0
ϕ(t)u(t)dt.

Hence (2.9) holds. The proof is completed.

Now, we define operatorsF, Q : C+[0, ω] → C+[0, ω] by

(Fu)(t) = f (t, u(t)), t ∈ [0, ω] for all u ∈ C+[0, ω],
Q = P F. (2.10)

Noticing thatϕ(t) = λ1(Pϕ)(t) > 0, t ∈ [0, ω] from (iii) of Lemma 3, let b = mint∈[0,ω] ϕ(t); then
b > 0, whereϕ > 0 andr (P)ϕ = Pϕ with

∫ ω

0 ϕ(t)dt = λ1. Choosing the sub-coneK of C+[0, ω]
given by

K =
{

u ∈ C+[0, ω] :
∫ ω

0
u(t)ϕ(t)dt ≥ δ‖u‖

}
,

whereδ = b
λ1α0‖(I −T B)−1‖ , we have thefollowing:

Lemma 5. Q(C+[0, ω]) ⊂ K and Q : C+[0, ω] → K is completely continuous.

Proof. For arbitrary givenu ∈ C+[0, ω], from (2.9) anddefinitions ofQ andF it follows that∫ ω

0
ϕ(t)(Qu)(t)dt =

∫ ω

0
ϕ(t)(P Fu)(t)dt

= 1

λ1

∫ ω

0
ϕ(t) f (t, u(t))dt

≥ b

λ1

∫ ω

0
f (t, u(t))dt.

(2.11)

On the other hand,

‖Qu‖ = ‖P Fu‖
= ‖(I − T B)−1T Fu‖
≤ ‖(I − T B)−1‖‖T Fu‖
= ‖(I − T B)−1‖ max

t∈[0,ω]

∫ ω

0
G(t, s) f (s, u(s)) ds

≤ ‖(I − T B)−1‖ max
(t,s)∈[0,ω]×[0,ω]

G(t, s)
∫ ω

0
f (s, u(s)) ds

= α0‖(I − T B)−1‖
∫ ω

0
f (s, u(s))ds.
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Using this and (2.11), we have∫ ω

0
ϕ(t)(Qu)(t)dt ≥ b

λ1α0‖(I − T B)−1‖‖Qu‖ = δ‖Qu‖.

Hence,Qu ∈ K ; therefore Q(C+[0, ω]) ⊂ K . It is obvious thatQ : C+[0, ω] → K is completely
continuous. The proof is completed.

The proof of the main theorem of this paper is based on fixed point index theory in [7–9]. For r > 0,
let Kr = {u ∈ K : ‖u‖ < r } and∂Kr = {u ∈ K : ‖u‖ = r }, which is the relative boundary ofKr in K .
The following two theorems [7–9] are needed in our argument.

Theorem A. Let Q : Kr → K be acompletely continuous operator. IfµQu �= u for all u ∈ ∂Kr and
µ ∈ (0, 1], then i(Q, Kr , K ) = 1.

Theorem B. Let Q : Kr → K be acompletely continuous operator. If there existsϕ ∈ K with ϕ �= 0
such that

u �= Qu + µϕ for all u ∈ ∂Kr andµ ≥ 0,

then i(Q, Kr , K ) = 0.

3. Existence of positive periodic solutions

For convenience, we give some notation:

f 0 = lim sup
u→0+

max
t∈[0,ω]

f (t, u)

u
, f0 = lim inf

u→0+ min
t∈[0,w]

f (t, u)

u
,

f ∞ = lim sup
u→+∞

max
t∈[0,ω]

f (t, u)

u
, f∞ = lim inf

u→+∞ min
t∈[0,ω]

f (t, u)

u
.

Theorem 1. Suppose that(H1) and (H2) hold. If 0 < M ≤ (π/ω)2, then Eq. (1.1) has at least one
positive periodic solution in each of the following cases:

(i) f 0 < λ1 < f∞;
(ii) f0 > λ1 > f ∞,

whereλ1 is the first positive eigenvalue of the linear equation corresponding to Eq.(1.1).

Proof. By Lemma 5and the definition ofK , anynonzero fixed point inK of the operatorQ defined by
(2.10) is apositive solution to PBVPs (1.2) and (1.3). And therefore it is thepositive periodic solution
to Eq. (1.1). We assume thatϕ is a positive eigenvector of operatorP with respect to the spectral radius
r (P) = 1/λ1 and

∫ ω

0 ϕ(t)dt = λ1. We will show thatQ has a nonzero fixed point inK under conditions
(i) and (ii), respectively.

Suppose condition (i) holds. Sincef 0 < λ1, by thedefinition of f 0, there existr0 > 0 andε > 0
such that

f (t, u) ≤ λ1(1 − ε)u for all t ∈ [0, ω] andu ∈ [0, r0]. (3.1)

Let r ∈ (0, r0); we now prove thatµQu �= u for all u ∈ ∂Kr andµ ∈ (0, 1]. In fact, if there exist
u0 ∈ ∂Kr andµ0 ∈ (0, 1] such thatµ0Qu0 = u0, thenu0 ≤ Qu0. Multiplying this inequality byϕ,
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integrating on[0, ω], using (2.9) and (3.1), we have∫ ω

0
ϕ(t)u0(t)dt ≤

∫ ω

0
ϕ(t)(Qu0)(t)dt

=
∫ ω

0
ϕ(t)(P Fu0)(t)dt

= 1

λ1

∫ ω

0
f (t, u0(t))ϕ(t)dt

≤ 1

λ1
· λ1(1 − ε)

∫ ω

0
ϕ(t)u0(t)dt

= (1 − ε)

∫ ω

0
ϕ(t)u0(t)dt.

Since
∫ ω

0 ϕ(t)u0(t)dt ≥ δ‖u0‖ = δr > 0, thisimplies that 1≤ 1 − ε, which is a contradiction. Hence
Q satisfies the hypotheses ofTheorem A. Therefore we have

i (Q, Kr , K ) = 1. (3.2)

On the other hand, sincef∞ > λ1, by thedefinition of f∞, there existR0 > 0 andε > 0 such that

f (t, u) ≥ λ1(1 + ε)u for all t ∈ [0, ω] andu ≥ R0.

Since f (t, u) − λ1(1 + ε)u is continuous on[0, ω] × [0, R0], we may chooseC > 0 such that
f (t, u) − λ1(1 + ε)u ≥ −C for all (t, u) ∈ [0, ω] × [0, R0]. So altogether we have

f (t, u) ≥ λ1(1 + ε)u − C for all t ∈ [0, ω] andu ≥ 0. (3.3)

Let R > max(C/εδ, R0, r0). If there existu0 ∈ ∂KR andµ0 ≥ 0 such that u0 = Qu0 + µ0ϕ, then
u0 ≥ Qu0. Multiplying this inequality byϕ, integrating on [0, ω], using (2.9) and (3.3), andnoting that∫ ω

0 ϕ(t)dt = λ1, we have∫ ω

0
ϕ(t)u0(t)dt ≥

∫ ω

0
ϕ(t)(Qu0)(t)dt

=
∫ ω

0
ϕ(t)(P Fu0)(t)dt

= 1

λ1

∫ ω

0
f (t, u0(t))ϕ(t)dt

≥ 1

λ1

∫ ω

0
(λ1(1 + ε)u0(t) − C)ϕ(t)dt

= (1 + ε)

∫ ω

0
ϕ(t)u0(t)dt − C.

By the definition ofK , we get
∫ ω

0 ϕ(t)u0(t)dt ≥ δ‖u0‖ = δR. Therefore it follows thatR ≤ C/εδ,
which is a contradiction with the choice ofR. Hence hypotheses ofTheorem Bhold. Therefore we have

i (Q, KR, K ) = 0. (3.4)

Now by the additivity of fixed point index, (3.2) and (3.4), we have

i (Q, KR \ Kr , K ) = i (Q, KR, K ) − i (Q, Kr , K ) = −1.
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ThereforeQ has a fixed point inKR \ Kr .
Suppose condition (ii) holds. Sincef0 > λ1, by thedefinition of f0, there existr0 > 0 andε > 0 such

that

f (t, u) ≥ λ1(1 + ε)u for all t ∈ [0, ω] andu ∈ [0, r0]. (3.5)

Let r ∈ (0, r0). If there existu0 ∈ ∂Kr andµ0 ≥ 0 such that u0 = Qu0 + µ0ϕ, thenu0 ≥ Qu0.
Multiplying this inequality byϕ, integrating on [0, ω], using (2.9) and (3.5), we have∫ ω

0
ϕ(t)u0(t)dt =

∫ ω

0
ϕ(t)(P Fu0)(t)dt

= 1

λ1

∫ ω

0
f (t, u0(t))ϕ(t)dt

≥ 1

λ
· λ1(1 + ε)

∫ ω

0
ϕ(t)u0(t)dt.

Since
∫ ω

0 ϕ(t)u0(t)dt > 0, it follows that 1≥ 1+ε, which is a contradiction. On the basis ofTheorem B,
we have

i (Q, Kr , K ) = 0. (3.6)

On the other hand, sincef ∞ < λ1, there existR0 > 0 andε > 0 such that

f (t, u) ≤ λ1(1 − ε)u for all t ∈ [0, ω] andu ≥ R0.

Becausef (t, u) − λ1(1 − ε)u is continuous on[0, ω] × [0, R0], we can chooseC > 0 such that

f (t, u) ≤ λ1(1 − ε)u + C for all t ∈ [0, ω] andu ∈ [0, R0].
So altogether we have

f (t, u) ≤ λ1(1 − ε)u + C for all t ∈ [0, ω] andu ≥ 0. (3.7)

Let R > max(C/εδ, R0, r0). If there existu0 ∈ ∂KR andµ0 ∈ (0, 1] such thatu0 = µ0Qu0, then
u0 ≤ Qu0. Therefore∫ ω

0
ϕ(t)u0(t)dt ≤

∫ ω

0
ϕ(t)(P Fu0)(t)dt

= 1

λ1

∫ ω

0
f (t, u0(t))ϕ(t)dt

≤ 1

λ1

∫ ω

0
(λ1(1 − ε)u0(t) + C)ϕ(t)dt

= (1 − ε)

∫ ω

0
ϕ(t)u0(t)dt + C.

In addition,
∫ ω

0 ϕ(t)u0(t)dt ≥ δ‖u0‖ = δR. We haveR ≤ C/εδ, which isa contradiction. So

i (Q, KR, K ) = 1. (3.8)

From (3.6) and (3.8) it follows that

i (Q, KR \ Kr , K ) = i (Q, KR, K ) − i (Q, Kr , K ) = 1.

ThereforeQ has a fixed point inKR \ Kr , which isnonzero. The proof is completed.
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Corollary 1. Suppose that(H1) and(H2) hold. If 0 < M ≤ (π/ω)2 and one of the following cases:

(i) f 0 = 0, f∞ = ∞ (superlinear case);
(ii) f0 = ∞, f ∞ = 0 (sublinear case),

is satisfied, then the Eq.(1.1) has at least one positive periodic solution.

Remark 2. Conditions (i) and (ii) ofTheorem 1are given by the first positive eigenvalue of the linear
differential equation corresponding to the Eq. (1.1), so the existence results are essential, and therefore
we have improved on the results in [5].
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