MATH 3110-Review of Chapter 4

1 Main Topics

1. Fundamental set of solutions (Section 4.1).
2. Linear independence/dependence. (Section 4.1).
3. The method of reduction of order (Section 4.2).
4. Methods of solving higher-order homogeneous linear equations with constant coefficients (Section 4.3):

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =0 \\
a m^{2}+b m+c & =0
\end{aligned}
$$

- Distinct real roots m_{1} and m_{2} :

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}
$$

- Repeated real roots $m_{1}=m_{2}$:

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x}
$$

- Conjugate complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$:

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

- Similar formulas for higher-order equations.

5. The method of undetermined coefficients (Section 4.4):

$$
\begin{gather*}
a y^{\prime \prime}+b y^{\prime}+c y=f(x) \\
a m^{2}+b m+c=0 \tag{1}\\
f(x)=\left(p_{n} x^{n}+\cdots+p_{1} x+p_{0}\right) e^{\lambda x} \cos (\mu x)+\left(q_{l} x^{l}+\cdots+q_{1} x+q_{0}\right) e^{\lambda x} \sin (\mu x)
\end{gather*}
$$

The form of a particular solution:
$y_{p}(x)=x^{r}\left(A_{k} x^{k}+\cdots+A_{1} x+A_{0}\right) e^{\lambda x} \cos (\mu x)+x^{r}\left(B_{k} x^{k}+\cdots+B_{1} x+B_{0}\right) e^{\lambda x} \sin (\mu x)$ where

- $k=\max (n, l)$,
- $r=0$ if $\lambda+i \mu$ is not a root of (1)
- or $r=j$ if $\lambda+i \mu$ is a root of (1) with the multiplicity j.

6. The method of variation of parameters (Section 4.6):

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

- Step 1. Find the general solutions of the associated homogeneous equations

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 . \tag{2}
\end{equation*}
$$

- Step 2. Determine a particular solution of the form:

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where y_{1} and y_{2} are solutions of (2 and

$$
\begin{gathered}
u_{1}^{\prime}=\frac{W_{1}}{W}, \quad u_{2}^{\prime}=\frac{W_{2}}{W}, \\
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|, \quad W_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right|, \quad W_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right| .
\end{gathered}
$$

- Step 3. The general solutions are

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) .
$$

7. The substitution $x=e^{t}$ to solve Cauchy-Euler equations $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=f(x)$ (Section 4.7).
8. Boundary value problems:

- Step 1. Find general solutions.
- Step 2. Use boundary conditions to determine the constants in the general solutions.

9. Initial value problems:

- Step 1. Find general solutions.
- Step 2. Use initial conditions to determine the constants in the general solutions.

2 Review Problems

Chapter 4 in Review (page 189): 2, 3, 6 (a), (b), (e), (h), 8, 9, 10, 11, 13, 15, 16, 17, 18, 20, 21, 23, 25, 29, 31.

