Math 1191
 Mathematica Introduction

Lab 4

Fall, 2005

Mathematica functions related to calculus:

- Differentiation. Suppose you have a function f defined in Mathematica. You can find the derivative of f in different ways:
-f ' $[\mathrm{x}]$ This will spit back the first derivative of f. For multiple derivatives, you can use multiple '", for example f '' ' $[\mathrm{x}]$ will give the third derivative of f. Note that this command will only work if f is defined to be a single-variable function.
$-\mathrm{D}[\mathrm{f}[\mathrm{x}], \mathrm{x}]$ This will also give the first derivative of f with respect to x. The advantage of the D[] command is that you can find partial derivatives of multivariable functions. For example if $g(x, y)=\sin (x)+y^{4}$ then $g_{x}(x, y)=\cos (x)$ and $g_{y}(x, y)=4 y^{3}:$
$\operatorname{In}[1]:=\mathrm{g}\left[\mathrm{x}_{-}, \mathrm{y}_{-}\right]:=\operatorname{Sin}[\mathrm{x}]+\mathrm{y}^{\wedge} 4$
In [2]: $=\mathrm{D}[\mathrm{g}[\mathrm{x}, \mathrm{y}], \mathrm{x}]$
Out[2]:= $\operatorname{Cos}[\mathrm{x}]$
$\operatorname{In}[3]:=\mathrm{D}[\mathrm{g}[\mathrm{x}, \mathrm{y}], \mathrm{y}]$
Out[3]:=4 $\mathrm{y}^{\wedge} 3$
The D[] command can also be used to find the nth derivative with respect to a variable:

```
In[4]:= D[x^4, {x,4}]
Out[4]:= 24
```

- Integration. For integration, the basic command is Integrate[] for both indefinite and definite integrals. To compute $\int \sin (x) d x$ and $\int_{0}^{\pi} \sin (x) d x$:

```
In[5]:= Integrate[Sin[x],x]
Out[5]:= -Cos[x]
In[6]:= Integrate[Sin[x],{x,0,Pi}]
Out[6]:= 2
```

Note Mathematica does not include a constant of integration for indefinite integrals.

Some integrals do not have closed form solutions, so Mathematica may respond with some strange functions as output. In this example, 'Erf $[\mathrm{x}]$ ' is defined to be the integral of $e^{-x^{2}}$, so Mathematica is not helpful.

```
In [7]:= Integrate[Exp[-x^2], \(x\) ]
Out[7]: \(=\frac{1}{2} \sqrt{\pi} \operatorname{Erf}[\mathrm{x}]\)
```

You can also numerically integrate a function (which can be useful if the function is very complicated) with NIntegrate []. This command only works for definite integrals.

```
In[8]:= NIntegrate[Exp [-x^2],{x,-2, 2}]
Out[8]:= 1.76416
```

You can also compute improper integrals (limits at infinity and where function becomes infinite):

```
In[9]:= Integrate[1/(1 + x^2),{x,0,Infinity}]
Out[9]:= \frac{\pi}{2}
```

Note that Mathematica will alert you if it cannot get the integral to converge.

- Limits. In addition to the regular command Limit [], there is also a package available, Calculus'Limit', that has an enhanced Limit[] command. If you get results that you think are a little fishy, you might try loading that package and using the enhanced command.

Using Limit [] is easy. Simply specify the value you are approaching and, if desired, a direction (use -1 for approaching from the right, 1 for the left):

```
In[10]:= Limit[Exp[2 - x],x -> 2]
Out[10]:= 1
In[11]:= Limit[1/(1 + x), x -> Infinity]
Out[11]:= 0
In[12]:= Limit[(Sin[x])^x, x -> 0, Direction->-1]
Out[12]:= 1
```

Animation. You can animate graphics with the Animate[] command, available in the Graphics 'Animation' package. Animations are essentially 'flip book' graphics-Mathematica creates all the individual graphics first (when you use the Animate [] command), then when you double-click on one of the cells in the animation, it displays each rapidly to give the appearance of movement.

```
In[13]:= <<Graphics'Animation'
In[14]:= Animate[Plot[Sin[a*x],{x,-Pi,Pi}],{a,1,4}]
```

A more involved example:

```
In[15]:= m[x_, a_] := Which[x < a, NIntegrate[Sin[t^2],{t,0,x}]]
In[16]:= Animate[Plot[m[x,a],{x,-2,a},
    PlotRange -> {{-2, 2}, {-1, 1}}], {a,-1.9,1.9}]
```


Assignment

1. Let $f(x)=\cos (3 x)+\sin (x)$. Plot f and its first two derivatives on the same pair of axes, using blue for $f(x)$, red for $f^{\prime}(x)$, and green for $f^{\prime \prime}(x)$.
2. Recall that the critical points for a differentiable function $f(x)$ are where $f^{\prime}(x)=0$. Let $f(x)=\left(1-x^{2}\right) \arctan (x)$. Find numerical approximations for all critical points of f.
3. Recall that the equation of the tangent line to the graph of $y=f(x)$ at the point $(a, f(a))$ is $t(x)=f^{\prime}(a)(x-a)+f(a)$. Use an animation to show the movement of the tangent line around the curve for $y=\sin (2 x) \cos (x)$ as a ranges from $-\pi$ to π. (You should use PlotRange to keep the vertical axis constant.)
4. Find $\int x \sin (x) d x$ and $\int_{0}^{\pi} x \sin (x) d x$.
5. Numerically integrate $\int_{1}^{\infty} 1 /\left(x^{2}+\sin (x)\right)$.
6. Find $\lim _{x \rightarrow 0} \frac{\sin (x)}{x}$ and $\lim _{x \rightarrow 0} \frac{\cos (x)}{x}$.
7. Mathematica does not find $\lim _{x \rightarrow 0} \frac{|x|}{x}$ correctly. Show that this limit does not exist by showing that the left-hand and right-hand limits are not equal.
8. Find $\lim _{x \rightarrow \infty}(1+1 / x)^{x}$.
9. (EXTRA) The Mathematics Problem of the Week last week was to find the line with positive slope which is tangent to the curves $y=x^{2}+4$ and $y=-x^{2}+4 x-8$. Use Mathematica to help you find the equation of the line by following these steps:
(a) Let $f(x)=x^{2}+4$ and $g(x)=-x^{2}+4 x-8$. The equation of the tangent line passing through $(a, f(a))$ is $s(x)=f^{\prime}(a)(x-a)+f(a)$ and the equation of the tangent line passing through $(b, g(b))$ is $t(x)=g^{\prime}(b)(x-b)+g(b)$. (Hint: define s and t as functions of two variables, x and a or x and b.)
(b) We want to find the values of a and b so that $s(x)=t(x)$ for all x. So in particular, $s(0)=t(0)$. This will give us one equation relating a and b. We can get another equation by setting the slopes of the lines equal: $f^{\prime}(a)=g^{\prime}(b)$. Solving this pair of equations will give us our values of a and b.

Plot the curves and the tangent line to show that they do indeed satisfy the requirements of the problem.

