Math 1592 Solutions of Quiz 7

Problem 1. (5 points) Find the component form of the vector \mathbf{v} and sketch the vector with its initial point at the origin.

Problem 2. (5 points) Given that $\mathbf{u}=\langle\mathbf{1}, \mathbf{2}, \mathbf{3}\rangle, \mathbf{v}=\langle\mathbf{2}, \mathbf{2},-\mathbf{1}\rangle$, and $\mathbf{w}=\langle\mathbf{4}, \mathbf{0},-\mathbf{4}\rangle$, find the vector $\mathbf{z}=\mathbf{2 u}+\mathbf{4 v}-\mathbf{w}$ and its length $\|\mathbf{z}\|$.
$\mathrm{z}=2\langle 1,2,3\rangle+4\langle 2,2,-1\rangle-\langle 4,0,-4\rangle=\langle 2+8-4,4+8-0,6-4-(-4)\rangle=\langle 6,12,6\rangle$.

$$
\|z\|=\sqrt{6^{2}+12^{2}+6^{2}}=\sqrt{216}
$$

Problem 3. (5 points) Given that $\mathbf{u}=\mathbf{2 i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{v}=\mathbf{i}-\mathbf{k}$, find $\mathbf{u} \cdot(\mathbf{2 v})$ and $(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}$.
$u \cdot(2 v)=\langle 2,-1,1\rangle \cdot(2\langle 1,0,-1\rangle)=\langle 2,-1,1\rangle \cdot\langle 2,0,-2\rangle=2 \cdot 2+(-1) \cdot 0+1 \cdot(-2)=2$.

$$
(\mathbf{u} \cdot \mathbf{v}) \mathbf{v}=(\langle 2,-\mathbf{1}, \mathbf{1}\rangle \cdot\langle\mathbf{1}, \mathbf{0},-\mathbf{1}\rangle) \mathbf{v}=(\mathbf{2} \cdot \mathbf{1}+(-\mathbf{1}) \cdot \mathbf{0}+\mathbf{1} \cdot(-\mathbf{1}))(\mathbf{i}-\mathbf{k})=\mathbf{i}-\mathbf{k}
$$

Problem 4. (5 points) Find the angle θ between two vectors $\mathbf{u}=\langle\mathbf{1}, \mathbf{1}\rangle$ and $\mathbf{v}=$ $\langle 2,-2\rangle$.

$$
\begin{gathered}
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{0}{\sqrt{2} \sqrt{8}}=0 . \\
\theta=\pi / 2
\end{gathered}
$$

