MATH 3331 - Final Review

1 Solving Equations

1. how to solve separable equations $\frac{d y}{d x}=g(x) h(y)$.

$$
\int \frac{d y}{h(y)}=\int g(x) d x
$$

2. how to solve first order linear equations $y^{\prime}+P(x) y=f(x)$.
(a) Use integrating factor: $\mu(x)=e^{\int P(x) d x}$
(b) Multiply the equation by $\mu(x)$ to obtain

$$
\frac{d}{d x}\left[e^{\int P(x) d x} y\right]=e^{\int P(x) d x} f(x)
$$

(c) Integrate both sides of this last equation.
3. how to solve exact equations $M d x+N d y=0, \quad \frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =M(x, y) \\
f(x, y) & =\int M(x, y) d x+g(y) \\
\frac{\partial f}{\partial y} & =\frac{\partial}{\partial y} \int M(x, y) d x+g^{\prime}(y)=N(x, y)
\end{aligned}
$$

Solution is

$$
f(x, y)=C
$$

4. how to use the substitution $u=y / x$ to solve homogeneous equations of the form $\frac{d y}{d x}=g(y / x)$.
5. how to use the substitution $u=y^{1-n}$ to solve Bernoulli equations $y^{\prime}+p(x) y=q(x) y^{n}$.
6. how to solve higher-order homogeneous linear equations with constant coefficients (Section 4.3).

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =0 \\
a m^{2}+b m+c & =0
\end{aligned}
$$

- Distinct real roots m_{1} and m_{2} :

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x} ;
$$

- Repeated real roots $m_{1}=m_{2}$:

$$
y=c_{1} e^{m_{1} x}+c_{2} x e^{m_{1} x} ;
$$

- Conjugate complex roots $m_{1}=\alpha+i \beta$ and $m_{2}=\alpha-i \beta$:

$$
y=e^{\alpha x}\left(c_{1} \cos (\beta x)+c_{2} \sin (\beta x)\right)
$$

- Similar formulas for higher-order equations.

7. how to use the method of undetermined coefficients to solve higher-order nonhomogeneous linear equations (Section 4.4).

$$
\begin{gather*}
a y^{\prime \prime}+b y^{\prime}+c y=f(x) \\
a m^{2}+b m+c=0 \tag{1}\\
f(x)=\left(p_{n} x^{n}+\cdots+p_{1} x+p_{0}\right) e^{\lambda x} \cos (\mu x)+\left(q_{l} x^{l}+\cdots+q_{1} x+q_{0}\right) e^{\lambda x} \sin (\mu x)
\end{gather*}
$$

The form of a particular solution:
$y_{p}(x)=x^{r}\left(A_{k} x^{k}+\cdots+A_{1} x+A_{0}\right) e^{\lambda x} \cos (\mu x)+x^{r}\left(B_{k} x^{k}+\cdots+B_{1} x+B_{0}\right) e^{\lambda x} \sin (\mu x)$
where $k=\max (n, l)$ and $r=0$ if $\lambda+i \mu$ is not a root of (1) or $r=j$ if $\lambda+i \mu$ is a root of (1) with the multiplicity j.
8. how to use the method of variation of parameters to solve higher-order nonhomogeneous linear equations (Section 4.6).

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=f(x)
$$

- Step 1. Find the general solutions of the associated homogeneous equations

$$
\begin{equation*}
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0 . \tag{2}
\end{equation*}
$$

- Step 2. Determine a particular solution of the form:

$$
y_{p}(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)
$$

where y_{1} and y_{2} are solutions of (2 and

$$
\begin{gathered}
u_{1}^{\prime}=\frac{W_{1}}{W}, \quad u_{2}^{\prime}=\frac{W_{2}}{W} \\
W=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|, \quad W_{1}=\left|\begin{array}{ll}
0 & y_{2} \\
f(x) & y_{2}^{\prime}
\end{array}\right|, \quad W_{2}=\left|\begin{array}{ll}
y_{1} & 0 \\
y_{1}^{\prime} & f(x)
\end{array}\right| .
\end{gathered}
$$

- Step 3. The general solutions are

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)+u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x) .
$$

9. how to use the substitution $x=e^{t}$ to solve Cauchy-Euler equations $a x^{2} y^{\prime \prime}+b x y^{\prime}+c y=$ $f(x)$ (Section 4.7).
10. how to solve boundary value problems.

- Step 1. Find general solutions.
- Step 2. Use boundary conditions to determine the constants in the general solutions.

11. how to solve initial value problems.

- Step 1. Find general solutions.
- Step 2. Use initial conditions to determine the constants in the general solutions.

12. how to solve homogeneous linear systems of differential equations.

$$
\begin{aligned}
\mathbf{X}^{\prime} & =\mathbf{A X}, \\
\operatorname{det}(\mathbf{A}-\lambda \mathbf{I}) & =0 \\
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{K} & =0
\end{aligned}
$$

(a) Distinct real eigenvalues:

$$
\mathbf{X}=c_{1} \mathbf{K}_{\mathbf{1}} e^{\lambda_{1} t}+c_{1} \mathbf{K}_{\mathbf{2}} e^{\lambda_{2} t}
$$

(b) Repeated real eigenvalues:

$$
\begin{gathered}
\mathbf{X}=c_{1} \mathbf{K}_{\mathbf{1}} e^{\lambda_{1} t}+c_{2}\left(\mathbf{K}_{\mathbf{1}} t e^{\lambda_{1} t}+\mathbf{P} e^{\lambda_{1} t}\right) . \\
(\mathbf{A}-\lambda \mathbf{I}) \mathbf{P}=\mathbf{K} .
\end{gathered}
$$

(c) Complex eigenvalues: $\lambda_{1}=\alpha+\beta i, \lambda_{2}=\alpha-\beta i$

$$
\begin{aligned}
& \mathbf{X}_{\mathbf{1}}=e^{\alpha t}\left[\frac{1}{2}\left(\mathbf{K}_{\mathbf{1}}+\overline{\mathbf{K}}_{\mathbf{1}}\right) \cos (\beta t)-\frac{i}{2}\left(-\mathbf{K}_{\mathbf{1}}+\overline{\mathbf{K}}_{\mathbf{1}}\right) \sin (\beta t)\right], \\
& \mathbf{X}_{\mathbf{2}}=e^{\alpha t}\left[\frac{i}{2}\left(-\mathbf{K}_{\mathbf{1}}+\overline{\mathbf{K}}_{\mathbf{1}}\right) \cos (\beta t)+\frac{1}{2}\left(\mathbf{K}_{\mathbf{1}}+\overline{\mathbf{K}}_{\mathbf{1}}\right) \sin (\beta t)\right],
\end{aligned}
$$

13. how to use the method of variation of parameters to solve homogeneous linear systems of differential equations $\mathbf{X}^{\prime}=\mathbf{A X}+\mathbf{F}(t)$.

$$
\mathbf{X}=\boldsymbol{\Phi}(t) \mathbf{C}+\boldsymbol{\Phi}(t) \int \boldsymbol{\Phi}^{-1}(t) \mathbf{F}(t) d t
$$

2 Mathematical Modeling with Differential Equations

1. how to determine important variable and specify the relationships among them to build a model for real problems.
2. how to use Newtonian mechanics such as Newton second law and analyze forces to build a model.
3. spring-mass systems.
4. the Malthusian model.
5. Logistic model.
6. the first-order reaction model.
7. the second-order reaction model.
8. the falling body model.
9. the mixture model.

3 Qualitative Analysis

1. how to sketch a phase line, classify equilibrium points as stable, unstable, semistable, attractor, and repeller.
2. how to use direction fields to roughly describe the behavior of solutions as $x \rightarrow \infty$.

4 Theoretical Problems

1. how to show that a solution set is fundamental.
2. how to show that a group of functions are linearly independent.

5 Demonstration Questions

1. Solve the following separable equation

$$
\frac{d y}{d x}=\frac{6 x^{5}-2 x+1}{\cos y+e^{y}} .
$$

2. Solve the first order linear equation

$$
\frac{1}{x} \frac{d y}{d x}-\frac{2 y}{x^{2}}=x \cos x
$$

3. Solve the exact equation

$$
\left(1+e^{x} y+x e^{x} y\right) d x+\left(x e^{x}+2\right) d y=0 .
$$

4. Solve the homogeneous equation

$$
\left(x y+y^{2}+x^{2}\right) d x+x^{2} d y=0 .
$$

5. Solve the Bernoulli's equation

$$
y^{\prime}-5 y=-\frac{5}{2} x y^{3} .
$$

6. Solve the higher-order equations

$$
\begin{gathered}
y^{\prime \prime}-y^{\prime}-12 y=0 . \\
y^{\prime \prime}-2 y^{\prime}+y=0 . \\
y^{\prime \prime}+y=0 . \\
y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}+y=0 . \\
y^{\prime \prime}-y^{\prime}-12 y=e^{4 x} . \\
y^{\prime \prime}-2 y^{\prime}+2 y=e^{2 x}(\cos x-3 \sin x) . \\
y^{\prime \prime}+y=2 x \sin x . \\
y^{\prime \prime}+y=\ln x .
\end{gathered}
$$

7. Use the substitution $x=e^{t}$ to solve Cauchy-Euler equations

$$
3 x^{2} y^{\prime \prime}+11 x y^{\prime}-3 y=0, \quad x>0
$$

8. Solve the boundary value problem

$$
y^{\prime \prime}+y=x^{2}+1, \quad y(0)=5, \quad y(1)=0 .
$$

9. Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}-8 y=2 e^{-2 x}-e^{-x}, \quad y(0)=1, \quad y^{\prime}(0)=0
$$

10. Solve the linear system

$$
\begin{aligned}
x^{\prime} & =2 y+e^{t} \\
y^{\prime} & =-x+3 y-e^{t} .
\end{aligned}
$$

11. For modeling problems, you can practice the following problems in the textbook: Exercises 1.3: 2, 9, 19; Exercises 3.1: 1, 3, 19; Exercises 3.2: 1, 9; Exercises 5.1: 29;
12. For the following equation, sketch a phase line, classify equilibrim points as stable, unstable, semistable, attractor, and repeller

$$
y^{\prime}=(y-1)^{2}(y-2)(y-3) .
$$

13. Use the direction field of the following equation to roughly sketch its solutions?

14. Show that $\{\cos x, \sin x\}$ is a fundamental solution set of

$$
y^{\prime \prime}+y=0 .
$$

15. Show that $1, x, x^{2}, x^{3}$ are linearly independent on $(-\infty, \infty)$.
