MATH 3331-Differential Equations Sample Test 1

Problem 1. Use the direction field of the following equation to roughly sketch its solution.

$$
y^{\prime}=-y / x, \quad y(1)=1
$$

Problem 2. Find the equilibrium points of the equation

$$
\frac{d y}{d t}=(5-y)(2+y)
$$

Then sketch the phase portrait of the equation and classify equilibrium points as stable, unstable, and semistable where applicable.
Problem 3. Solve the following first order differential equations
(1) $x \frac{d y}{d x}-y=2 x y^{2}, y(1)=1$.

This is a Bernoulli's equation. Dividing the equation by y^{2} gives

$$
\begin{gathered}
x y^{-2} \frac{d y}{d x}-y^{-1}=2 x \\
-x \frac{d}{d x}\left(y^{-1}\right)-y^{-1}=2 x
\end{gathered}
$$

Set $u=y^{-1}$. Then

$$
\frac{d u}{d x}+\frac{1}{x} u=-2
$$

Integrating factor is

$$
\mu(x)=x
$$

Multiplying the equation by x gives

$$
\begin{gathered}
x \frac{d u}{d x}+u=-2 x . \\
\frac{d u x}{d x}=-2 x . \\
u x=-x^{2}+C .
\end{gathered}
$$

$$
\frac{x}{y}=-x^{2}+C
$$

By the initial condition, we have

$$
\begin{gathered}
1=-1+C \\
C=2
\end{gathered}
$$

So the solution is

$$
y=\frac{x}{2-x^{2}}
$$

(2) $\frac{d y}{d x}=\frac{x y+2 y^{2}}{x^{2}+x y}$

This is a homogeneous equation. Set $y=u x . \frac{d y}{d x}=u+x \frac{d u}{d x}$. Substituting them into the equation gives

$$
\begin{gathered}
u+x \frac{d u}{d x}=\frac{u+2 u^{2}}{1+u} \\
x \frac{d u}{d x}=\frac{u^{2}}{1+u} \\
\frac{u+1}{u^{2}} d u=\frac{d x}{x} \\
-\frac{1}{u}+\ln |u|=\ln |x|+C \\
-\frac{x}{y}+\ln \left|\frac{y}{x}\right|=\ln |x|+C .
\end{gathered}
$$

(3) $\frac{d y}{d x}=\frac{y}{2 x+y^{3} e^{y}}$

Rewrite the equation as

$$
y d x-\left(2 x+y^{3} e^{y}\right) d y=0
$$

So we have

$$
\begin{gathered}
M=y, \quad N=-\left(2 x+y^{3} e^{y}\right) . \\
\frac{\partial M}{\partial y}=1, \quad \frac{\partial N}{\partial x}=-2 . \\
\frac{\frac{\partial N}{\partial x}-\frac{\partial M}{\partial y}}{M}=-\frac{3}{y}
\end{gathered}
$$

So the integrating factor is

$$
\mu(y)=y^{-3}
$$

Multiplying the equation by y^{-3} gives

$$
\begin{gathered}
y^{-2} d x-\left(2 x y^{-3}+e^{y}\right) d y=0 . \\
y^{-2} d x+x d\left(y^{-2}\right)-d\left(e^{y}\right)=0 . \\
d\left(y^{-2} x\right)-d\left(e^{y}\right)=0 . \\
y^{-2} x-e^{y}=C .
\end{gathered}
$$

Problem 4. Blood carries a drug into an organ at a rate of $5 \mathrm{~cm}^{3} / \mathrm{sec}$ and leaves at the same rate. The organ has a liquid volume of $125 \mathrm{~cm}^{3}$. We assume that the mixture in the organ is homogeneous. If the concentration of the drug in the blood entering the organ is $0.2 \mathrm{~g} / \mathrm{cm}^{3}$, what is the concentration of the drug in the organ at time t if there was no trace of the drug initially? When will the concentration of the drug in the organ reach $0.1 \mathrm{~g} / \mathrm{cm}^{3}$?

Solution. Let $x(t)$ denote the amount of the drug in the organ at time t. Then we have

$$
\begin{align*}
\frac{d x}{d t} & =0.2 \times 5-5 \times \frac{x}{125} \tag{0.1}\\
x(0) & =0 \tag{0.2}
\end{align*}
$$

Solving the equation gives

$$
x(t)=25\left(1-e^{-t / 25}\right)
$$

So the concentration of the drug in the organ at time t is

$$
\frac{x(t)}{125}=\frac{1}{5}\left(1-e^{-t / 25}\right) .
$$

Let T be the time at which the concentration of the drug in the organ reaches $0.1 \mathrm{~g} / \mathrm{cm}^{3}$. Then we have

$$
0.1=\frac{1}{5}\left(1-e^{-T / 25}\right) .
$$

So $T=25 \ln 2=17.33$ seconds.

