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1 Assignment 1

1.2.3. Derive the heat equation for a rod assuming constant thermal properties with variable
cross-sectional area A(x) assuming no sources.

Denote by A the the cross-sectional area.
Physical quantities:

• Thermal energy density e(x, t) = the amount of thermal energy per unit volume.

• Heat flux φ(x, t) = the amount of thermal energy flowing across boundaries per unit
surface area per unit time.

• Heat sources Q(x, t) = 0.

• Temperature u(x, t).

• Specific heat c = the heat energy that must be supplied to a unit mass of a substance
to raise its temperature one unit.

• Mass density ρ(x) = mass per unit volume.

• Fourier’s Law: the heat flux is proportional to the temperature gradient

φ = −K0∇u. (1)

Conservation of heat energy:
Rate of change of heat energy in time = Heat energy flowing across boundaries per unit

time + Heat energy generated insider per unit time

• heat energy = e(x, t)A(x)∆x.

• Heat energy flowing across boundaries per unit time = φ(x, t)A(x)−φ(x+∆x, t)A(x+
∆x).

Then
∂

∂t
[e(x, t)A(x)∆x] = φ(x, t)A(x)− φ(x + ∆x, t)A(x + ∆x).

Dividing it by ∆x and letting ∆x go to zero give

A(x)
∂e

∂t
= −A(x)

∂φ

∂x
− φ(x)

∂A

∂x
. (2)

Heat energy per unit mass = c(x)u(x, t)ρA∆x. So

e(x, t)A(x)∆x = c(x)u(x, t)ρA(x)∆x,

and then
e(x, t) = c(x)u(x, t)ρ.
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It then follows from Fourier’s law that

cρA(x)
∂u

∂t
= A(x)

∂

∂x

(
K0

∂u

∂x

)
+ K0

∂A

∂x

∂u

∂x
. (3)

and then the heat equation

A(x)
∂u

∂t
= k

(
A(x)

∂2u

∂x2
+

∂A

∂x

∂u

∂x

)
, (4)

where k = K0

cρ
is the thermal diffusivity.

1.2.9. Consider a thin one-dimensional rod without source of thermal energy whose lateral
surface is not insulated. Let w(x, t) dente the heat energy flowing out of the lateral sides
per unit surface area per unit time. Assume that w(x, t) is proportional to the temperature
difference between the rod u(x, t) and a known outside temperature γ(x, t). Derive the
equation for the temperature.

Denote by A the the cross-sectional area, and P the lateral perimeter.
Physical quantities:

• Thermal energy density e(x, t) = the amount of thermal energy per unit volume.

• Heat flux φ(x, t) = the amount of thermal energy flowing across boundaries per unit
surface area per unit time.

• Temperature u(x, t).

• Specific heat c = the heat energy that must be supplied to a unit mass of a substance
to raise its temperature one unit.

• Mass density ρ(x) = mass per unit volume.

• Fourier’s Law: the heat flux is proportional to the temperature gradient

φ = −K0∇u. (5)

Conservation of heat energy:
Rate of change of heat energy in time = Heat energy flowing across boundaries per unit

time + Heat energy generated insider per unit time

• heat energy = e(x, t)A∆x.

• Heat energy flowing across boundaries per unit time = φ(x, t)A− φ(x + ∆x, t)A.

• Heat energy flowing out of the lateral sides per unit time = w(x, t)P∆x = [u(x, t) −
γ(x, t)]h(x)P∆x, where h(x) is a proportionality.
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Then

∂

∂t
[e(x, t)A(x)∆x] = φ(x, t)A(x)− φ(x + ∆x, t)A(x + ∆x)− [u(x, t)− γ(x, t)]h(x)P∆x.

Dividing it by A∆x and letting ∆x go to zero give

∂e

∂t
= −∂φ

∂x
− P

A
[u(x, t)− γ(x, t)]h(x). (6)

Heat energy per unit mass = c(x)u(x, t)ρA∆x. So

e(x, t)A∆x = c(x)u(x, t)ρA∆x,

and then
e(x, t) = c(x)u(x, t)ρ.

It then follows from Fourier’s law that

cρ
∂u

∂t
=

∂

∂x

(
K0

∂u

∂x

)
− P

A
[u(x, t)− γ(x, t)]h(x). (7)
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2 Assignment 2

1.4.1. Determine the equilibrium temperature distribution for a one-dimensional rod with
constant thermal properties with the following sources and boundary conditions:

(a) Q = 0, u(0) = 0, u(L) = T.
(f) Q = K0x

2, u(0) = T, u′(L) = 0.

Solution. (a) Equilibrium satisfies

u′′(x) = 0,

whose general solution is
u = c1 + c2x.

The boundary condition u(0) = 0 implies c1 = 0 and u(L) = T implies c2 = T/L so that

u = Tx/L.

(f) In equilibrium, u satisfies

u′′(x) = −Q/K0 = −x2,

whose general solution (by integrating twice) is

u = −x4/12 + c1 + c2x.

The boundary condition u(0) = T yields c1 = T, while u′(L) = 0 yields c2 = L3/3. Thus

u = −x4/12 + L3x/3 + T.

1.4.11. Suppose

∂u

∂t
=

∂2u

∂x2
+ x, u(x, 0) = f(x),

∂u

∂x
(0, t) = β,

∂u

∂x
(L, t) = 7.

(a) Calculate the total thermal energy in the one-dimensional rod (as a function of time).
(b) From part (a), determine a value of β for which an equilibrium exists. For this value

of β, determine lim
t→∞

u(x, t).

Solution. (a) Integrating the equation, we obtain:

d

dt

∫ L

0

u(x, t)dx =

∫ L

0

(
∂2u

∂x2
+ x

)
dx =

∂u

∂x

∣∣L
0

+
1

2
L2 = 7− β +

1

2
L2.

Integrating in t from 0 to t, we obtain the total thermal energy

∫ L

0

u(x, t)dx =

∫ L

0

f(x)dx +

(
7− β +

1

2
L2

)
t. (8)

(b) In order for an equilibrium to exist,
(
7− β + 1

2
L2

)
t must be 0. So

β = 7 +
1

2
L2.
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The equilibrium satisfies
φ′′(x) + x = 0.

Its general solution (after integrating twice) is

φ = −1

6
x3 + c1 + c2x.

The boundary condition yields

c2 = 7 +
1

2
L2.

So

φ = −1

6
x3 + c1 +

(
7 +

1

2
L2

)
x.

Since
lim
t→∞

u(x, t) = φ(x),

using (8), we obtain

∫ L

0

f(x)dx =

∫ L

0

u(x, t)dx

= lim
t→∞

∫ L

0

u(x, t)dx

=

∫ L

0

φ(x)dx

=

∫ L

0

(
−1

6
x3 + c1 +

(
7 +

1

2
L2

)
x

)
dx

= − 1

24
L4 + c1L +

1

2

(
7 +

1

2
L2

)
L2.

Solving it gives

c1 =

∫ L

0
f(x)dx− 7

2
L2 − 5

24
L4

L
,

and then

φ = −1

6
x3 +

(
7 +

1

2
L2

)
x +

∫ L

0
f(x)dx− 7

2
L2 − 5

24
L4

L
.

1.5.2. For conduction of thermal energy, the heat flux vector is φ = −K0∇u. If in
addition the molecules move at an average velocity V, a process called convection, then φ =
−K0∇u+cρuV. Derive the corresponding equation for heat flow, including both conduction
and convection of thermal energy (assuming constant thermal properties with no sources).

Solution. Physical quantities:

• Thermal energy density e(x, t) = the amount of thermal energy per unit volume.

• Heat flux φ(x, t) = the amount of thermal energy flowing across boundaries per unit
surface area per unit time.
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• Heat sources Q(x, t) = heat energy per unit volume generated per unit time.

• Temperature u(x, t).

• Specific heat c = the heat energy that must be supplied to a unit mass of a substance
to raise its temperature one unit.

• Mass density ρ(x) = mass per unit volume.

Conservation of heat energy:
Rate of change of heat energy in time = Heat energy flowing across boundaries per unit

time + Heat energy generated insider per unit time

• heat energy =
∫

R
e(x, t)dV .

• Heat energy flowing across boundaries per unit time =
∮

φ · ndS.

• Heat energy generated insider per unit time =
∫

R
Q(x, t)dV = 0.

Then
∂

∂t

∫

R

e(x, t)dV = −
∮

φ · ndS.

The divergence theorem give

∂

∂t

∫

R

e(x, t)dV = −
∫

R

∇ · φdV.

and then
∂e

∂t
= −∇ · φ. (9)

Heat energy per unit volume = c(x)u(x, t)ρ. So

e(x, t) = c(x)u(x, t)ρ.

It then follows that

cρ
∂u

∂t
= −∇ · (cρuV) +∇ · (K0∇u). (10)

and then the convection-diffusion equation

∂u

∂t
+∇ · (uV) = k∇2u, (11)

where k = K0

cρ
is called the thermal diffusivity.
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3 Assignment 3

2.3.2. (d) Find the eigenvalues and the corresponding eigenfunctions of the eigenvalue prob-
lem

−d2φ

dx2
= λφ,

φ(0) = 0,
dφ

dx
(L) = 0.

(i) If λ > 0, φ = c1 cos(
√

λx) + c2 sin(
√

λx). φ(0) = 0 implies c1 = 0, while dφ
dx

(L) = 0

implies c2

√
λ cos(

√
λL) = 0. Thus

√
λL = −π

2
+ nπ (n = 1, 2, · · · ). Then the eigenvalues

are λn =
(−π

2
+ nπ

)2
/L2 and the corresponding eigenfunctions are φn = sin

(
(−π

2
+nπ)x

L

)

(n = 1, 2, · · · ).
(ii) If λ = 0, φ = c1 + c2x. φ(0) = 0 implies c1 = 0, while dφ

dx
(L) = 0 implies c2 = 0. Thus

λ = 0 is not an eigenvalue.
(ii) If λ < 0, φ = c1 exp(

√−λx) + c2 exp(−√−λx). φ(0) = 0 implies c1 + c2 = 0, while
dφ
dx

(L) = 0 implies c1

√−λ exp(
√−λL) − c2

√−λ exp(−√−λL) = 0. Solving this system for
c1, c2 gives c1 = c2 = 0. Thus λ < 0 is not an eigenvalue.

2.3.3. (c) Solve the initial boundary value problems:

∂u

∂t
= k

∂2u

∂x2
, (12)

u(0, t) = 0, u(L, t) = 0, (13)

u(x, 0) = 2 cos

(
3πx

L

)
. (14)

Solution. The problem has infinite series solution

u(x, t) =
∞∑

n=1

cn sin
(nπx

L

)
e−

kn2π2t
L2 .

The initial condition yields

2 cos

(
3πx

L

)
= u(x, 0) =

∞∑
n=1

cn sin
(nπx

L

)
.

So

cn =
2

L

∫ L

0

2 cos

(
3πx

L

)
sin

(nπx

L

)
dx.

2.3.8. Solution. (a) The equation for the equilibrium is

k
d2u

dx2
− αu = 0, (15)

u(0) = 0, u(L) = 0. (16)
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The general solution is u = c1 exp(
√

α
k
x) + c2 exp(−√

α
k
x). u(0) = 0 implies c1 + c2 = 0,

while u(L) = 0 implies c1 exp(
√

α
k
L) + c2 exp(−√

α
k
L) = 0. Solving this system for c1, c2

gives c1 = c2 = 0. Thus u = 0.
(b) Separation of variable, u = φ(x)G(t), yields two ODEs:

dG

dt
= −(λk + α)G

and

−d2φ

dx2
= λφ,

φ(0) = 0, φ(L) = 0.

The G-equation has solution
G(t) = Ce−αte−λkt.

The eigenvalue problem has the eigenvalues

λn =
n2π2

L2
, n = 1, 2, · · · (17)

and the corresponding eigenfunctions

φn = sin
(nπx

L

)
, n = 1, 2, · · · (18)

Thus by superposition,

u(x, t) = e−αt

∞∑
n=1

cn sin
(nπx

L

)
e−

kn2π2t
L2 .

The initial condition gives

f(x) = u(x, 0) =
∞∑

n=1

cn sin
(nπx

L

)
,

which gives

cn =
2

L

∫ L

0

f(x) sin
(nπx

L

)
dx.

Since

lim
t→∞

e−
kn2π2t

L2 = 0, lim
t→∞

e−αt = 0,

we have
lim
t→∞

u(x, t) = 0.

The u(x, t) converges to the only equilibrium 0.
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4 Assignment 4

2.4.1. (a). The solution is

u(x, t) = a0 +
∞∑

n=1

an cos
(nπx

L

)
e−

kn2π2t
L2 .

where

a0 =
1

L

∫ L

L/2

dx =
1

2
,

an =
2

L

∫ L

L/2

cos
(nπx

L

)
dx =

2

L
· L

nπ
sin

(nπx

L

) ∣∣∣
L

L/2
= − 2

nπ
sin

(nπ

2

)
.

2.4.1. (b). The solution is

u(x, t) = a0 +
∞∑

n=1

an cos
(nπx

L

)
e−

kn2π2t
L2 .

where

a0 =
1

L

∫ L

0

(
6 + 4 cos

(
3πx

L

))
dx = 6,

a3 =
2

L

∫ L

0

(
6 + 4 cos

(
3πx

L

))
cos

(nπx

L

)
dx = 4,

and others are 0.

2.4.2. Solution.

∂u

∂t
= k

∂2u

∂x2
, (19)

∂u

dx
(0, t) = 0, u(L, t) = 0, (20)

u(x, 0) = f(x). (21)

Look for a solution of the form of separation of variables:

u(x, t) = φ(x)G(t), (22)

Substitute the above expression into the equation (19), we obtain

φ(x)G′(t) = kφ′′(x)G(t),

and then
G′(t)
kG(t)

=
φ′′(x)

φ(x)
= −λ, (23)
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where λ is constant to be determined. The boundary condition (20) yields that

φu

dx
(0) = φ(L) = 0.

We then have an eigenvalue problem

−d2φ

dx2
= λφ,

φ

dx
(0) = 0, φ(L) = 0.

Auxiliary equations:
m2 = −λ.

• Case 1: λ < 0. Distinct real roots m1 =
√−λ and m2 = −√−λ:

φ(x) = c1e
√−λx + c2e

−√−λx.

The boundary conditions imply that c1 = c2 = 0. So no non-zero solutions exist and
then λ < 0 is not an eigenvalue.

• Case 2: λ = 0. Repeated real roots m1 = m2 = 0:

φ = c1 + c2x.

The boundary conditions imply that c1 = c2 = 0. So no non-zero solutions exist and
then λ < 0 is not an eigenvalue.

• Case 3: λ > 0. Conjugate complex roots m1 = i
√

λ and m2 = −i
√

λ:

φ = c1 cos(
√

λx) + c2 sin(
√

λx).

φ′(0) = 0 implies that c2 = 0. φ(L) = 0 gives

cos(
√

λL) = 0.

So
√

λL = π
2

+ nπ (n = 0, 1, 2, · · · ) and then we obtain the eigenvalues

λn =

(
π
2

+ nπ
)2

L2
, n = 0, 1, 2, · · · (24)

and the corresponding eigenfunctions

φn = cos

((
π
2

+ nπ
)
x

L

)
, n = 0, 1, 2, · · · (25)
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On the other hand, it follows from (23) that

dG

dt
= −λkG, (26)

which has solutions

G(t) = ce−λkt = ce−
(π
2 +nπ)2kt

L2 .

We then derive the infinite series solution:

u(x, t) =
∞∑

n=1

an cos

((
π
2

+ nπ
)
x

L

)
e−

(π
2 +nπ)2kt

L2 .

The initial condition gives

f(x) = u(x, 0) =
∞∑

n=1

an cos

((
π
2

+ nπ
)
x

L

)
. (27)

To determine an, we multiply (27) by cos

(
(π

2
+nπ)x

L

)
and integrate from 0 to L. We then

find

an =
2

L

∫ L

0

f(x) cos

((
π
2

+ nπ
)
x

L

)
dx, n ≥ 1. (28)

2.5.1. (c) Solve Laplace’s equation

∂2u

∂x2
+

∂2u

∂y2
= 0, (29)

∂u

∂x
(0, y) = 0, u(L, y) = g(Y ), u(x, 0) = 0, u(x,H) = 0, (30)

Look for a solution of the form of separation of variables:

u(x, y) = h(x)φ(y), (31)

Substitute the above expression into the equation (29), we obtain

φ(y)h′′(x) + φ′′(y)h(x) = 0,

and then
h′′(x)

h(x)
= −φ′′(y)

φ(y)
= λ, (32)

where λ is constant to be determined. The boundary condition yields that

φ(0) = φ(H) = 0, h′(0) = 0.

We then have an eigenvalue problem
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−d2φ

dx2
= λφ,

φ(0) = 0, φ(H) = 0,

which has the eigenvalues

λn =
n2π2

H2
, n = 1, 2, · · · (33)

and the corresponding eigenfunctions

φn = sin
(nπy

H

)
, n = 1, 2, · · · (34)

On the other hand, it follows from (32) that

h′′(x) =
n2π2

H2
h(x), h′(0) = 0. (35)

The general solutions are
h(x) = c1e

nπx
H + c2e

−nπx
H .

The boundary condition h′(0) = 0 gives

c1
nπ

H
− c2

nπ

H
= 0.

So
h(y) = c1

(
e

nπx
H + e−

nπx
H

)
.

We then derive the infinite series solution:

u(x, t) =
∞∑

n=1

an sin
(nπy

H

) (
e

nπx
H + e−

nπx
H

)
.

The boundary condition u(L, y) = g(y) gives

g(y) = u(L, y) =
∞∑

n=1

an sin
(nπy

H

) (
e

nπL
H + e−

nπL
H

)
. (36)

To determine an, we multiply the above by sin
(

nπy
H

)
and integrate from 0 to H. We then

find

an =
2
(
e

nπL
H + e−

nπL
H

)

H

∫ H

0

g(y) sin
(nπy

H

)
dy, n ≥ 1. (37)
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5 Assignment 5

See the solutions in the textbook.
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