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Abstract. In this paper, we consider Burgers’ equation with a time delay.
By using the Liapunov function method, we show that the delayed Burgers’
equation is exponentially stable if the delay parameter is sufficiently small. We
also give an explicit estimate of the delay parameter in terms of the viscosity
and initial conditions, which indicates that the delay parameter tends to zero
if the initial states tend to infinity or the viscosity tends to zero. Furthermore,
we present numerical simulations for our theoretical results.

1. Introduction. In this paper, we are concerned with the problem of asymptotic
behavior of solutions of the time-delayed Burgers’ equation

ut(x, t) − εuxx(x, t) + u(x, t− τ)ux(x, t) = 0, 0 < x < 1, t > 0, (1)

u(0, t) = u(1, t) = 0, t > 0, (2)

u(x, s) = u0(x, s), 0 < x < 1, −τ ≤ s ≤ 0, (3)

where subscripts denote derivatives, ε > 0 denotes the viscosity, τ > 0 is the delay
parameter and u0(x, s) is an initial state in an appropriate function space. Even
though Burgers’ equation, a one-dimensional version of Navier-Stokes equations,
does not model any specific physical flow problem, it would be the first step to
understand the turbulence exhibited in a flow.

To explain our motivation of introducing a time delay into Burgers’ equation,
we consider an ideal one-dimensional flow of fluid with the flow velocity u = u(x, t)
(although such a flow does not exist in reality because interesting flows are at least
2D). The rate of change of u “following the fluid”, which we denote by Du

Dt , is (see
[2, page 4])

Du

Dt
=

d

dt
u[x(t), t] =

∂

∂t
u(x, t) +

dx(t)
dt

∂

∂x
u(x, t)

=
∂

∂t
u(x, t) + u(x, t)

∂

∂x
u(x, t),

(4)

where x(t) is understood to change with time at the local flow velocity u = dx
dt , so

as to “follow the fluid”. However, we might have a delay τ to follow the fluid. In
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this case the rate of change of u “following the fluid” with the delay τ should be
Du

Dt
=

d

dt
u[x(t− τ), t] =

∂

∂t
u(x, t) +

d

dt
x(t− τ)

∂

∂x
u(x, t)

=
∂

∂t
u(x, t) + u(x, t− τ)

∂

∂x
u(x, t).

(5)

This clearly shows how we obtain the time-delayed term u(x, t−τ)ux(x, t) in Burg-
ers’ equation (1).

There has been the existing literature about delayed reaction-diffusion equations,
on which our work is based. Indeed, the inequality

ut(x, t) − ∆u(x, t) ≤ u(x, t)(1 − u(x, t− τ)

was investigated by Luckhaus [23], who showed that nonnegative solutions of the
Dirichlet problem in a bounded interval remain bounded as time goes to infinity,
whereas in a more dimensional domain, in general, this holds only if the delay is
not too large. On the other hand, the scalar delay reaction-diffusion equation

ut − µ∆u = f(u(t), u(t− τ))

was studied by Friesecke [14, 15], who showed that in one space dimension, all
nonnegative solutions stay bounded as t → ∞ and this ceases to remain true in two
or more dimensions: if the dealy is large and the diffusion coefficient small, there
exists a large set of trajectories whose total mass tends exponentially to infinity
as t → ∞. Moreover, Oliva [25] considered dissipative scalar reaction-diffusion
equations that include the ones of the form

ut − ∆u = f(u(t)),

subjected to boundary conditions that include small delays. The author showed
that the global unique solutions exist in a convenient fractional power space and,
for a sufficiently small delay, all bounded solutions are asymptotic to the set of
equilibria as t tends to infinity. The literature reviewed here is only small part of
it and lots of others worth mention, for instance, [19, 26, 28]. Even though there
have been extensive studies on the delayed reaction-diffusion equations, to our
knowledge, it seems that little attention has been paid to a equation that contains
a delay term of the form u(x, t− τ)ux(x, t).

Burgers’ equation without delay has been extensively studied (see, e.g., [5, 6, 7,
8, 16, 17, 18, 22, 24]). It has been proved that the equation is globally exponentially
stable at least in the norm of H1. We also recall that uniformly stabilized wave
equations and flexible beam equations can be destabilized by a small delay in a
feedback control no matter how small the delay is (see, e.g., [4, 9, 10, 11, 12, 13, 20]).
So the question is: does a small delay also destabilize Burgers’ equation? The
answer is No. As in the case of scalar delayed reaction-diffusions, we shall show
that the delayed Burgers’ equation is still exponentially (but not globally) stable
if the delay parameter τ = τ(ε, u0) is sufficiently small. We also give an explicit
estimate of τ in terms of ε and u0, which indicates that τ tends to zero if the initial
state tends to infinity or ε → 0. Furthermore, we present numerical simulations for
our theoretical results.

2. Exponential Stability. We now introduce notation used throughout the pa-
per. Hs(0, 1) denotes the usual Sobolev space (see [1, 21]) for any s ∈ R. For s ≥ 0,
Hs
0(0, 1) denotes the completion of C∞

0 (0, 1) in Hs(0, 1), where C∞
0 (0, 1) denotes

the space of all infinitely differentiable functions on (0, 1) with compact support in
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(0, 1). The norm on L2(0, 1) is denoted by ‖ · ‖. Let X be a Banach space and
a < b. We denote by Cn([a, b];X) the space of n times continuously differentiable
functions defined on [a, b] with values in X with the supremum norm and we write
C([a, b];X) for C0([a, b];X).

We first briefly show that problem (1)-(3) is well posed. Define the linear operator
A by

Aw = εwxx

with the domain D(A) = H2(0, 1) ∩ H1
0 (0, 1). It is well known that A generates

an analytic semigroup eAt on L2(0, 1). We further define the nonlinear operator
F : C([−τ, 0],H1

0 (0, 1)) → L2(0, 1) by

F (ϕ) = −ϕ(−τ)ϕx(0) for ϕ ∈ C([−τ, 0],H1
0 (0, 1)). (6)

It is clear that F is locally Lipschitz. Denote

ut(s) = u(t + s), −τ ≤ s ≤ 0.

We then transform problem (1)-(3) into the following integral equation

u(t) = u0(t), −τ ≤ t ≤ 0, (7)

u(t) = eAtu0(0) +
∫ t

0

eA(t−s)F (us)ds, t > 0. (8)

By Theorem 1 of [25], for every initial value u0 = u0(x, s) ∈ C([−τ, 0],H1
0 (0, 1)),

there exists a T = T (u0) > 0 such that problem (1)-(3) has a unique mild solution
u on [−τ, T ] with

u ∈ C([−τ, T ],H1
0 (0, 1)).

Moreover, if the initial condition is more regular, for instance, Hölder continuous,
then u is a classical solution. Furthermore, for any τ > 0, the solution of (1)-
(3) does not blow up in finite time. Indeed, integrating by parts, we obtain for
0 ≤ t ≤ τ

d

dt

∫ 1

0

u2x(t) dx = 2
∫ 1

0

ux(t)uxt(t) dx

= −2
∫ 1

0

uxx(t)ut(t) dx

= −2ε
∫ 1

0

u2xx(t) dx + 2
∫ 1

0

u(t− τ)uxx(t)ux(t) dx

≤ −2ε
∫ 1

0

u2xx(t) dx + 2‖u0‖C([−τ,0],H1
0 (0,1))

∫ 1

0

|uxx(t)ux(t)| dx
(use Young’s inequality))

≤ ε−1‖u0‖2C([−τ,0],H1
0 (0,1))

∫ 1

0

u2x(t) dx,

(9)

which implies that ∫ 1

0

u2x(t) dx ≤ M(‖u0‖C([−τ,0],H1
0 (0,1))

),

where M(‖u0‖C([−τ,0],H1
0 (0,1))

) is a positive constant depending on ‖u0‖C([−τ,0],H1
0 (0,1))

.
Repeating the above procedure, we can prove that for nτ ≤ t ≤ (n + 1)τ (n =
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1, 2, . . . ) ∫ 1

0

u2x(t) dx ≤ M(n, ‖u0‖C([−τ,0],H1
0 (0,1))

).

In summary, we have proved

Theorem 2.1. For any initial condition u0 = u0(x, s) ∈ C([−τ, 0],H1
0 (0, 1)). prob-

lem (1)-(3) has a unique global mild solution u on [−τ,∞) with

u ∈ C([−τ,∞),H1
0 (0, 1)).

To state our main result about the exponential stability, we introduce the fol-
lowing notations. For a given initial condition u0 = u0(x, s) ∈ C([−τ, 0],H1

0 (0, 1)),
denote

K = K(u0)
= sup

−τ≤s≤0
‖u0x(s)‖

+
√

8[‖u0(0)‖2 + ‖u0x(0)‖2] exp
[
ε−1

(
‖u0x‖2L2

τ
+ ‖u0(0)‖2

)]
, (10)

σ = σ(ε, u0)

= sup
{
δ > 0 : [‖u0(0)‖2 + ‖u0x(0)‖2] exp

[
ε−1eωτ

(
‖u0x‖2L2

τ
+ ω−1‖u0(0)‖2

)]

≤ K2/4 for 0 ≤ τ ≤ δ
}
, (11)

τ0 = τ0(ε, u0) = min
{
σ,

(
√

5 − 1)ε
2K2

}
, (12)

ω = ω(ε, τ,K) = ε−
√

τ(εK2 + τK4) > 0, for 0 ≤ τ < τ0, (13)

where ‖ · ‖ denotes the L2 norm and

‖u0x‖2L2
τ

=
∫ 0

−τ

∫ 1

0

u20x(x, s)dxds.

In (13), we have ω > 0 for 0 ≤ τ < τ0 because

ε−
√

τ(εK2 + τK4) > 0

is equivalent to
K4τ2 + εK2τ − ε2 < 0,

which in turn is equivalent to

− (
√

5 + 1)ε
2K2

< τ <
(
√

5 − 1)ε
2K2

.

Theorem 2.2. For any initial condition u0 = u0(x, s) ∈ C([−τ, 0],H1
0 (0, 1)), let

τ0 = τ0(ε, u0) be given by (12). Then, for τ < τ0, the solution of (1)-(3) satisfies

‖ux(t)‖ ≤ K

2
e−ωt/2, ∀ t ≥ 0. (14)

Proof. Let

T0 = sup{δ : ‖ux(t)‖ ≤ K on 0 ≤ t ≤ δ}. (15)

Since ‖ux(0)‖ < K and ‖ux(t)‖ is continuous, we have T0 > 0. We shall prove that
T0 = +∞. For this, we argue by contradiction. If T0 < +∞, then we have

‖ux(t)‖ ≤ K, ∀ − τ ≤ t < T0 (16)
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and

‖ux(T0)‖ = K. (17)

Using equations (1)-(3), we obtain

d

dt

∫ 1

0

u2(t) dx = 2
∫ 1

0

u(t)ut(t) dx

= 2ε
∫ 1

0

u(t)uxx(t) dx− 2
∫ 1

0

u(t)u(t− τ)ux(t) dx

( note that
∫ 1
0
u2(t)ux(t) dx = 0)

= −2ε
∫ 1

0

u2x(t) dx− 2
∫ 1

0

[u(t− τ) − u(t)]u(t)ux(t) dx

( note that |u(x, t)| ≤ ‖ux(t)‖ for 0 ≤ x ≤ 1)

≤ −2ε
∫ 1

0

u2x(t) dx + 2
∫ 1

0

u2x(t) dx
( ∫ 1

0

|u(t− τ) − u(t)|2 dx
)1/2

= −2ε
∫ 1

0

u2x(t) dx + 2
∫ 1

0

u2x dx
(∫ 1

0

∣∣∣
∫ t

t−τ

us(s)ds
∣∣∣2 dx)1/2

≤ −2ε
∫ 1

0

u2x(t) dx + 2
√
τ

∫ 1

0

u2x(t) dx
( ∫ 1

0

∫ t

t−τ

u2s(s)ds dx
)1/2

.

(18)

We now want to estimate
∫ 1
0

∫ t

t−τ
u2s(s)ds dx. Since

ε
d

dt

∫ 1

0

u2x(t) dx = 2ε
∫ 1

0

ux(t)uxt(t) dx

= −2ε
∫ 1

0

uxx(t)ut(t) dx

= −2
∫ 1

0

u2t (t) dx− 2
∫ 1

0

u(t− τ)ux(t)ut(t) dx,

(19)

we have for 0 ≤ t ≤ T0 that

ε

∫ 1

0

u2x(t) dx + 2
∫ t

t−τ

∫ 1

0

u2s(s) dxds

= ε

∫ 1

0

u2x(t− τ) dx− 2
∫ t

t−τ

∫ 1

0

u(s− τ)ux(s)us(s) dxds

≤ εK2 + 2K
( ∫ t

t−τ

∫ 1

0

u2x(s) dxds
)1/2(∫ t

t−τ

∫ 1

0

u2s(s) dxds
)1/2

≤ εK2 + τK4 +
∫ t

t−τ

∫ 1

0

u2s(s) dxds,

(20)

which implies that
∫ t

t−τ

∫ 1

0

u2s(s) dxds ≤ εK2 + τK4, ∀ 0 ≤ t ≤ T0. (21)
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It therefore follows from (18) that for 0 ≤ t ≤ T0

d

dt

∫ 1

0

u2(t) dx ≤ −2ε
∫ 1

0

u2x(t) dx + 2
√
τ
√

εK2 + τK4

∫ 1

0

u2x(t) dx

≤ −2
(
ε−

√
τ(εK2 + τK4)

)∫ 1

0

u2x(t) dx

= −2ω
∫ 1

0

u2x(t) dx

(since
∫ 1
0
u2(t) dx ≤ ∫ 1

0
u2x(t) dx)

≤ −2ω
∫ 1

0

u2(t) dx,

(22)

where ω is defined by (13). Solving the above inequality gives
∫ 1

0

u2(t) dx ≤ e−2ωt

∫ 1

0

u0(x, 0)2 dx, ∀ 0 ≤ t ≤ T0. (23)

By the first part of (22), we have

d

dt

∫ 1

0

u2(t) dx + 2ω
∫ 1

0

u2x(t) dx ≤ 0. (24)

Multiplying (24) by eωt, we obtain

d

dt

(
eωt

∫ 1

0

u2(t) dx
)

+ 2ωeωt

∫ 1

0

u2x(t) dx ≤ ωeωt

∫ 1

0

u2(t) dx

≤ ωe−ωt

∫ 1

0

u0(x, 0)2 dx.
(25)

Integrating the above inequality from 0 to T0 gives

eωT0

∫ 1

0

u2(T0) dx + 2ω
∫ T0

0

eωt

∫ 1

0

u2x(t) dxdt ≤ (2 − e−ωT0)
∫ 1

0

u0(x, 0)2 dx,

(26)

which implies that

ω

∫ T0

0

eωt

∫ 1

0

u2x(t) dxdt ≤
∫ 1

0

u0(x, 0)2 dx. (27)

Consequently, we have
∫ T0

0

eωt

∫ 1

0

u2x(t− τ) dxdt =
∫ T0−τ

−τ

eω(s+τ)

∫ 1

0

u2x(s) dxds

≤
∫ 0

−τ

eω(s+τ)

∫ 1

0

u20x(s) dxds

+
∫ T0

0

eω(s+τ)

∫ 1

0

u2x(s) dxds

≤ eωτ

∫ 0

−τ

∫ 1

0

u20x(s) dxds + ω−1eωτ

∫ 1

0

u0(x, 0)2 dx.

(28)
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On the other hand, integrating by parts, we obtain

d

dt

∫ 1

0

u2x(t) dx = 2
∫ 1

0

ux(t)uxt(t) dx

= −2ε
∫ 1

0

u2xx(t) dx + 2
∫ 1

0

uxx(t)u(t− τ)ux(t) dx

≤ 1
ε

∫ 1

0

u2x(t− τ) dx
∫ 1

0

u2x(t) dx.

(29)

Using Lemma 2.1 below with

y =
∫ 1

0

u2x(t) dx,

g =
1
ε

∫ 1

0

u2x(t− τ) dx,

h = 0,
δ = ω,

C1 = ε−1
(
eωτ

∫ 0

−τ

∫ 1

0

u20x(s) dxds + ω−1eωτ

∫ 1

0

u0(x, 0)2 dx
)

(by (28)),

C2 = 0,

C3 = ω−1
∫ 1

0

u0(x, 0)2 dx (by (27)),

it follows that for 0 ≤ t ≤ T0∫ 1

0

u2x(t) dx ≤
∫ 1

0

[u0(x, 0)2 + u0x(x, 0)2] dx

× exp
[
ε−1

(
eωτ

∫ 0

−τ

∫ 1

0

u20x(s) dxds + ω−1eωτ

∫ 1

0

u0(x, 0)2 dx
)]

e−ωt

≤ K2

4
e−ωt.

(30)

Hence

‖ux(T0)‖ ≤ K

2
e−ωT0/2,

which is in contradiction with (17). Therefore, we have proved that T0 = +∞ and
then (14) follows from (30).

Lemma 2.1. Let g, h and y be three positive and integrable functions on (t0, T ) such
that y′ is integrable on (t0, T ). Assume that

dy

dt
≤ gy + h for t0 ≤ t ≤ T, (31)

∫ T

t0

g(s)ds ≤ C1, (32)

∫ T

t0

eδsh(s)ds ≤ C2, (33)

∫ T

t0

eδsy(s)ds ≤ C3, (34)
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where δ, C1, C2 and C3 are positive constants. Then

y(t) ≤ [C2 + δC3 + y(t0)]eC1e−δ(t−t0) for t0 ≤ t ≤ T. (35)

Proof. Multiplying (31) by eδt, we obtain

d

dt
(eδty) ≤ eδtgy + eδth + δeδty for t ≥ t0. (36)

By Gronwall’s inequality (see, e.g., [27, p.90]), we deduce

eδty(t) ≤ eδt0y(t0) exp
( ∫ t

t0

g(s)ds
)

+
∫ t

t0

(
eδsh(s) + δeδsy(s)

)
exp

(
−

∫ s

t

g(τ)dτ
)
ds

≤ (C2 + δC3)eC1 + eδt0+C1y(t0), (37)

which implies (35).

Remark 1. Note that there is no boundedness assumption on the solution u in
the above theorem because of the nature of Burgers’ equation. Usually, we need a
boundedness assumption such as

sup
t≥0

sup
0≤x≤1

‖u(x, t)‖ < ∞

to obtain further stability results in the study of long-time behavior of delayed
systems due to the complex nature of other equations( see, e.g., [14, Theorem 1],
[25, Theorem 5]).

Remark 2. It can been seen from (12) that τ tends to zero if the initial state tends
to infinity or ε → 0.

3. Numerical Simulations. In this section we give numerical simulations for the
theoretical results of the last section. The approximation scheme we used here for
problem (1)-(3) is the central difference approximation (see, e.g., [3, Chap.2]):

1
δ
(ui,j+1 − ui,j) =

ε

h2
(ui−1,j − 2ui,j + ui+1,j)

−u0(i/20, jδ − τ)(ui+1,j − ui,j)/h, if jδ − τ ≤ 0, (38)
1
δ
(ui,j+1 − ui,j) =

ε

h2
(ui−1,j − 2ui,j + ui+1,j)

−ui,j−K(ui+1,j − ui,j)/h, if jδ − τ > 0, (39)

where

δ =
3

15000
, (40)

h =
1
20

, (41)

ui,j = u(ih, jδ), i = 0, 1, . . . , 20, j = 0, 1, . . . , 15000, (42)

and K denotes the largest integer less than τ/δ. The initial condition we take here
is

u0(x, s) = 20(1 − s) sin(5πx).

For simplicity, we take ε = 1. Since r = δε
h2 = 4

50 < 1
2 , our difference scheme is

convergent (see, e.g., [3, p.45]).
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Figure 1. H1 norm of an approximate solution with ε = 1, τ =
0.9 and u0(x, s) = 20(1 − s) sin(5πx).
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Figure 2. H1 norm of an approximate solution with ε = 1, τ = 1
and u0(x, s) = 20(1 − s) sin(5πx).

In Figures 1 and 2, V denotes the H1 norm given by V (t) =
( ∫ 1

0
u2(x, t)dx

)1/2
.

It can be seen from Figures 1 that the H1 norm of approximate solution of (1)-(3)
with τ = 0.9 decays to zero quickly. When τ increases to 1, Figures 2 shows that
the H1 norm of approximate solution oscillatorily grows up. This accords with our
theoretical results.
Acknowledgments. The author thanks Professors S. Ruan and E. Zuazua for their
valuable comments. This work was supported by the Killam Postdoctoral Fellow-
ship.
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