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Stability Enhancement by Boundary Control in 2-D
Channel Flow
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Abstract—In this paper, we stabilize the parabolic equilibrium
profile in a two-dimensional (2-D) channel flow using actuators
and sensors only at the wall. The control of channel flow was
previously considered by Speyer and coworkers, and Bewley and
coworkers, who derived feedback laws based on linear optimal
control, and implemented by wall-normal actuation. With an
objective to achieve global Lyapunov stabilization, we arrive at
a feedback law using tangential actuation (using teamed pairs
of synthetic jets or rotating disks) and only local measurements
of wall shear stress, allowing to embed the feedback in micro-
electromechanical systems (MEMS) hardware, without need
for wiring. This feedback is shown to guarantee global stability
in at least 2 norm, which by Sobolev’s embedding theorem
implies continuity in space and time of both the flow field and
the control (as well as their convergence to the desired steady
state). The theoretical results are limited to low values of Reynolds
number, however, we present simulations that demonstrate the
effectiveness of the proposed feedback for values five order of
magnitude higher.

Index Terms—Boundary feedback, Lyapunov stability,
Navier–Stokes equations, tangential velocity actuation, two-di-
mensional (2-D) channel flow.

I. INTRODUCTION

I N THIS PAPER, we address the problem of boundary con-
trol of a viscous incompressible fluid flow in a two-dimen-

sional (2-D) channel. Great advances have been made on this
topic by Speyer and coworkers [14], [38], [39], Bewley and
coworkers [4], [5], [7], and others employing optimal control
techniques in the computational fluid dynamics (CFD) setting.
Equally impressive progress was made on the topic of control-
lability of Navier–Stokes equations, which is, in a sense, a pre-
requisite to all other problems.

Our objective in this paper is to globallystabilize the
parabolic equilibrium profile in channel flow. This objective
is different than the efforts on optimal control [2], [3], [16],
[18]–[21], [26], [30], [31], [33], [34], [36], [60] or con-
trollability [10], [11], [13], [17], [22]–[25], [27]–[29], [35]
of Navier–Stokes equations. Optimal control of nonlinear
equations such as Navier–Stokes is not solvable in closed
form, forcing the designer to either linearize or use computa-
tionally expensive finite-horizon model-predictive methods.
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Controllability-based solutions, while a prerequisite to all other
problems, are not robust to changes in the initial data and model
inaccuracies. The stabilization objective indirectly addresses
the problems of turbulence and drag reduction, which are
explicit in optimal control or controllability studies. Coron’s
[12] result on stabilization of Euler’s equations is the first
result that directly addresses flow stabilization. Concerning
other nonlinear PDEs with convective nonlinearities, examples
of stabilization and controllability studies can be found in [45],
[54], [55] for the 1-D Korteweg–de Vries equation.

The boundary feedback control we derive in this paper is fun-
damentally different from those in [14], [38], [39], [4], [5], [7],
which usewall normalblowing and suction. Our analysis mo-
tivated by Lyapunov stabilization results intangentialvelocity
actuation. Tangential actuation is technologically feasible. The
work on synthetic jets of Glezer [59] shows that a teamed up pair
of synthetic jets can achieve an angle of 85from the normal di-
rection with the same momentum as wall normal actuation. The
patent of Keefe [43] provides the means for generating tangen-
tial velocity actuation using arrays of rotating disks.

An implementational advantage in our result is that, while it
uses only the measurement of wall shear stress as in the previous
efforts, it employs it in adecentralizedfashion. This means that
the feedback law can be embedded into the MEMS hardware
(without need for wiring).

The most notable contribution of this paper is in the form of
stability it achieves. Previous studies of the stability problem
for uncontrolled Navier–Stokes equations were in the case of
homogeneous Dirichlet boundary conditions [53], [61], peri-
odic boundary conditions [62] or the domain being the whole
space [32], [40]–[42], [46], [52], [58], [63]–[65]. In the case of
bounded domains, these stability results were estimated in terms
of or norm and it is rare to see stability, especially
stability. We obtain global stability (i.e., for arbitrarily large

initial data) which, in turn, ensures the continuity of the flow
field.

The only limitation in our result is that it is guaranteed only
for sufficiently low values of the Reynolds number. In simula-
tions we demonstrate that the control law has a stabilizing effect
far beyond the value required in the theorem (five or more or-
ders of magnitude).

Our feedback is not limited to 2-D channel flows. It applies
equally well to 3-D for stabilization. However, higher forms
of global stability are impossible to prove due to the same
technical obstacles that prevent proving uniqueness of solutions
in 3-D Navier–Stokes equations. Numerical evaluation of this
feedback in 3-D channel flow is nontrivial and is a topic of
future research.
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The paper is organized as follows. We formulate our problem
in Section II and design boundary feedback laws in Section III.
In order to state our main results, we first present some math-
ematical preliminaries in Section IV and then state the results
in Section V. In order to prove the results, we need technical
lemmas which are presented in Section VI. With these tech-
nical lemmas at hand, we prove our results in Section VII by
employing Lyapunov techniques and Galerkin’s methods. Fi-
nally, in Section VIII, we give numerical demonstrations that
strengthen our theoretical results.

II. PROBLEM STATEMENT

The channel flow can be described by the 2-D Navier–Stokes
equations

(1)

where , repre-
sents the velocity vector of a particle at and at time ,

is the pressure at and at time ,
is the kinematic viscosity and the positive constantrepresents
the width of the channel. Our goal is to regulate the flow to the
parabolic equilibrium profile (see Fig. 1)

(2)

(3)

(4)

where and are constants.
This profile is obtained as a fixed point of system (1).

To motivative our problem, let us consider the vorticity

(5)

With (2) and (3), we get the equilibrium vorticity as

(6)

Suppose the vorticity at the walls is kept at its equilibrium values

(7)

and the wall-normal component of the velocity at the walls is
zero

(8)

The objective of these no-feedback boundary conditions might
be the reduction of near-wall vorticity fluctuations. These
boundary conditions imply

(9)

(10)

Fig. 1. 2-D channel flow.

Under the boundary conditions (8)–(10), the Stokes equations

(11)

(12)

has a solution

(13)

(14)

(15)

with an arbitrary constant . This shows that under the
boundary control (8)–(10) our objective of regulation to the
equilibrium solution (2)–(3) can not be achieved. In more
precise words, this solution is not asymptotically stable, and it
can at best be marginally stable (with an eigenvalue at zero). To
achieveasymptoticstabilization, in the next section we propose
a feedback law which modifies the boundary condition (7).

III. B OUNDARY FEEDBACK LAWS

In order to prepare for regulating the flow to the parabolic
equilibrium profile (2)–(3), we set

(16)

(17)

(18)

Then (1) becomes

(19)
To avoid dealing with an infinitely long channel, we assume that

and areperiodic in the -direction, i.e.,

(20)

(21)
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Fig. 2. Tangential velocity actuation.

Our boundary control is applied via boundary conditions

(22)

where is a positive constant. The physical implementation of
this boundary condition is

(23)

(24)

(25)

(26)

This means that we are actuating the flow velocity at the
wall tangentially. Only the sensing of the wall shear stress

and (at the respective points of ac-
tuation) is needed. The action of this feedback is pictorially
represented in Fig. 2. The condition (23) and (24) can be also
written as

(27)

(28)

In the next sections we shall see that this control law achieves
global asymptotic stabilization, whereas, as we saw in Sec-
tion II, the control law (7) is not asymptotically stabilizing.

IV. M ATHEMATICAL PRELIMINARIES

Let . In what follows, denotes the
usual Sobolev space (see [1] and [49]) for any . For ,

denotes the completion of in , where
denotes the space of all infinitely differentiable func-

tions on with compact support in . We denote by the
space of the restrictions toof functions which are in ,
i.e., for every open bounded set, and which are
periodic in the -direction

(29)

The tilde sign will refer to this periodicity in the case of other
classical function spaces as well.

We shall often be concerned with 2-D vector function spaces
and use the following notation to denote them:

(30)

(31)

(32)

(33)

in

(34)

the closure of in (35)

The various norms of these spaces are respectively defined by

(36)

(37)

(38)

(39)

where denotes the inner product of and denotes
the inner product of defined by

(40)

for all , .
Let be a Banach space. We denote by

the space of times continuously differentiable functions
defined on with values in , and write for

.
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Definition 1: A function ; is a
weak solutionof system (19)–(22) if

(41)

is satisfied for all and
for all .

V. THE RESULTS

Theorem 1: Suppose that1

and (42)

and denote

(43)

Then there exists a positive constant independent of
such that the following statements are true for all for the
system (19) with periodic conditions (20)–(21) and boundary
control (22).

1) For arbitrary initial data , there exists a unique
weak solution ; ; that
satisfies the following global-exponential stability esti-
mate:

(44)

2) For arbitrary initial data , there exists
a unique weak solution

that satisfies the following
global-asymptotic and semiglobal-exponential stability
estimate:

(45)

3) For arbitrary initial data compatible
with the control (22), there exists a unique weak solution

; ; that satis-
fies the following global-asymptotic and semiglobal-ex-
ponential stability estimate:

(46)

The bound of the form (46) also applies to ,
and .

In all of the above cases solutions depend continuously on the
initial data in the -norm and the existence, uniqueness and
regularity statements hold for any and over finite
time intervals.

Remark 1: Weak solutions satisfying the regularity stated in
parts 2 and 3 of Theorem 1 are called strong solutions in the
literature. Part 3 of Theorem 1 means, in particular, that

1) the control inputs and are bounded
and go to zero as ;

1Note that this condition is equivalent to the requirement that the Reynolds
number be smaller than 1/8.

2) the regularity statement implies that is con-
tinuous in all three arguments. This observation has an
important practical consequence: the tangential velocity
actuation at nearby points on the wall will be in the same
direction.

Remark 2: If the viscosity , the problem of
boundary control remains open. The methods presented in this
paper can not be applied to this case and a radically different
method needs to be developed.

VI. TECHNICAL LEMMAS

In this section, we establish technical lemmas which are the
key to proving our main results.

Since is a closed subspace of , we have the orthogonal
decomposition

(47)

where denotes the orthogonal complement of. Let de-
note the projection from onto . We define the linear oper-
ator on as

(48)

with the domain

(49)

We first give some basic properties of the subspaces,
and the operator . These properties are similar to the classical
results in the cases with homogeneous Dirichlet boundary con-
dition (see, e.g., [61, Ch. I, Sec. 1], [9, Ch. 4]) and periodic
boundary condition (see, e.g., [62, Ch. 2]). Thus, their proofs are
also similar, however, for completeness, we give brief proofs.
The following lemma shows that (47) is in fact the so-called
Helmholtz decomposition of .

Lemma 1: The subspaces and can be characterized as
follows:

(50)

(51)

Proof: The proof of (51) is the same as the proof [61, Th.
1.4, p. 15]. We include the proof of (50) which is based on the
proof of [47, Th. 1, p. 27].

Let belong to the space on the right-hand side of
(50). Then for all we have, using integration
by parts

(52)

Since is dense in , we deduce that .
Conversely, if , then

(53)



1700 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 46, NO. 11, NOVEMBER 2001

Let denote a mollifier. For , we denote by its
average

(54)

If is small enough, then is well-defined on
, it is periodic in the -direction and vanishes with its

derivatives on the horizontal lines and . Hence

(55)

Thus, we have

(56)

where the functions and are defined on and are the
averages of and respectively. Since is arbitrary and

is dense in , we have

on (57)

Take any and define

(58)

Then we have

on (59)

It is well known that for any fixed interior subdomain of
, converges to in and then converges to a

function in and

on (60)

Since is arbitrary, we have

on (61)

Finally, we show that is periodic in the -direction. Let
, where . Clearly ,

and

(62)

Since is from a dense subset of , we obtain

for (63)

With this and with definition (58) we obtain that , and hence
is periodic in the -direction.
Lemma 2: The norm on is equivalent to the norm

induced by .
Proof: Using the identity

(64)

we have

(65)
Similarly, we have

(66)

It therefore follows that:

(67)

which shows that

(68)

On the other hand, using (64) again, we deduce that

(69)

Similarly, we have

(70)

It therefore follows that:

(71)

Lemma 3: The norm on is equivalent to the
norm induced by .

Proof: By the definition of the operator , we have

(72)

As in the proof of regularity of solutions of the Stokes equations
with homogeneous Dirichlet boundary conditions (see, e.g., [9,
Ch. 3]), we can readily prove that

(73)

Hence, by Proposition 9 of [15, p. 370], is a Banach space
when provided with the graph norm

In addition, with the norm is also a Banach space,
and the norm is stronger than . By the Banach
open mapping theorem (see, e.g., [57, p. 49]), these two norms

and on are equivalent. On the other
hand, by (67), we have

(74)

Hence, the norm is equivalent to the norm , and
then equivalent to the norm induced by .
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The following inequality is a special 2-D extension of a clas-
sical inequality (see, e.g., [48])

(75)

which holds for any , , , where
,

and

Here denotes the subspace of functions whose gra-
dient is also in and in which the set is dense.

Lemma 4: For any rectangular region
, where , and for any and

the following inequality holds:

(76)

where and , are positive constants depending
only on the size of and on .

Proof: Consider an arbitrary and its extension

if

if

if

if

if

if

if

if

if
(77)

Inequality (75) applies to with and
, since and for , where

. We have

(78)

We have the following relationships between the norms ofand
:

(79)

(80)

and

(81)

Inequality (79) and (80) are trivial consequences of definition
(77). In order to see the validity of (81) one has to estimate the
different pieces of . One of these estimates, for example is
the following:

(82)

Combining inequalities (78)–(81), we obtain

(83)

VII. PROOF OFTHEOREM

We first establish oura priori stability estimates and then deal
with questions of existence, uniqueness and regularity.

Let . We define the energy of (19)–(22) as

(84)

and the high order energy of (19)–(22) as

(85)

Part 1: Multiplying the first equation of (19) by and the
second equation of (19) by and integrating over by parts,
we obtain
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(86)

Here, we have used the relations

and

(87)

which follow from the periodic conditions (20)–(21) and the
divergence free condition. It therefore follows from (67) that

(88)

This implies (44).
Part 2: By (67) and (86), we have

(89)

where, by (42)

(90)

Multiplying (89) by , we obtain

(91)
Integrating from 0 to gives

(92)

which implies

(93)

In order to obtain further estimates on, we multiply the first
equation of (19) by and the second equation of (19) by
and integrate over by parts. This gives

(94)

Since there exists such that

(95)

we have (noting that

(96)

and (noting that )

(97)

Moreover, since and , we have

(98)

It therefore follows that:

(99)

By Lemma 4, Young’s inequality and Lemma 3, we deduce that
(the following ’s denoting various positive constants that may
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vary from line to line and being a positive constant that will
be chosen small enough later)

(100)

where

(101)

In the same way, we can estimate other integrals and obtain

(102)

Further, we have

(103)

Taking small enough, we deduce that

(104)

Hence, using (93) and applying [51, Lemma 4.1] with

(105)

and

(106)

we deduce that

(107)

where

(108)

Since , for and , 1, 2, 3 and
, we have

(109)

Hence, by Lemma 2 and (107), we deduce (45).
Part 3: We differentiate the first equation of (19) with respect

to and multiply it by and integrate over . This gives

(110)

Since

(111)

(112)

(113)

(114)

(115)

(116)

we deduce that

(117)
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Differentiating the second equation of (19) with respect to,
multiplying it by and integrating over , we obtain

(118)

Since

(119)

(120)

(121)

(122)

(123)

(124)

we deduce that

(125)

It therefore follows from (67), (117), and (125) that

(126)

By Lemma 4 and Young’s inequality, we deduce that (the fol-
lowing ’s denoting various positive constants that may vary
from line to line and being a positive constant that will be
determined later)

(127)

where

(128)

Similarly, we have

(129)

(130)

(131)
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It therefore follows from (126) that

(132)

which implies

(133)

where is given by (43). Therefore, by (93) and Gronwall’s
inequality (see, e.g., [44, p. 63]), we deduce that

(134)

On the other hand, by (94), (97) and (98), we have

(135)

Using (102) and (103) we obtain

(136)

where

(137)

Hence, by (44), (107) and (134), we deduce that

(138)

where

(139)

In addition, multiplying (19) by , as in the proof of (136), we
can prove that

(140)

which implies that

(141)
Thus, as in (109), we deduce that

(142)

Hence, by (138) and Lemma 3, we deduce (46) and inequalities
(134) and (141) show the stated bound of .

Multiplying the first equation of (19) by and the second
equation of (19) by , integrating over and using (102) and
(103) with replaced by , we obtain

(143)

From this last inequality the stated bound on follows by
(44)–(46).

Existence and Regularity:We use the Galerkin method to
prove existence of solutions. We look for an approximate solu-
tion in the form

(144)

where the set forms a Riesz basis in . We require
that satisfies (41), i.e.,

(145)

for all , . Expanding the defini-
tion of , (145) provides us with a system of first order or-
dinary differential equations for the time dependent coefficients

, where we choose the set of initial conditions

(146)
This system depends on analytically, hence, in order
to show the existence of a unique solution for all ,
it is sufficient to verify the boundedness of . This
is equivalent to the boundedness of the norms
as a consequence of the system being a Riesz basis.
Replacing by in (145) we deduce estimates (44) and (93)
for . Namely

(147)

and

(148)

for some constants and and for a.a. . In these
calculations the steps are justified using the regularity of.

The next step in Galerkin’s method is to show that a sub-
sequence of approximating solutions converges to
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a limiting function as . The convergence is ob-
tained using compactness arguments. In our case, by the uni-
form boundedness of the sequence in ;

; a subsequence converges to some el-
ement ; ; . The convergence
is weak in ; , weak-star in ; and, due
to compactness ([61, pp. 285–287]) strong in ; .
These convergence properties enable us to prove, as a final step
of Galerkin’s method, that the limiting function is in fact a
weak solution of (41). We have to show that each term of equa-
tion

(149)

converges to the corresponding term of

(150)

for all . This is a standard step in the theory
of Navier–Stokes equations for all the terms except the ones on
the right-hand side of (149) and (150). These terms are present
due to our special boundary conditions (22). We prove here the
convergence of the first term on the right. The convergence of
the second term can be proved in the same way. We have to show
that

(151)
for all . We take the difference of the two sides
in (151) and take the -inner product of the result by a
function . We obtain

(152)

where we used the 1-D equivalent of inequality (76). We further
estimate expressions from (152)

(153)

Here converges to zero as according
to the strong convergence in ; . The last expression
in (152) can be estimated the following way:

(154)

Here the last factor converges to zero while the other factors are
bounded as . Since was arbitrary, we
obtain the desired convergence result.

It follows from the Helmholtz decomposition (50)–(51) that,
once the existence of weak solutionsis established, we obtain
the existence of pressure, so that (19)–(22) are satisfied in a
distributional sense.

The rest of the regularity statements in Theorem 1 follows
from estimates (107), (45), (134), (138), (46), and from embed-
ding theorems.

Continuous Dependence on Initial Data and Unique-
ness: Let , and , be two
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solutions of (19)–(22) corresponding to initial data and
, respectively. Their difference ,

satisfies

(155)

(156)

(157)

with boundary condition (20)–(22). Taking the scalar product of
(155) with we obtain

(158)

Here

(159)

where we used Young’s inequality twice in the fourth step with
arbitrary and

(160)
Terms 4, 5, and 6 in (158) can be estimated the same way. The
rest of the terms are estimated as in obtaining (44). Taking the
scalar product of (156) with we obtain

(161)

Fig. 3. Energy comparison.

The estimation of the terms is similar to (158). We obtain from
(158) and (161), after choosing appropriate,

(162)

Gronwall’s inequality applied to (162) implies that

(163)

for all . Since is integrable over every
finite interval , (163) proves the continuous dependence of
solutions on the initial data in the norm.

VIII. N UMERICAL SIMULATION

The simulation example in this section is performed in
a channel of length and height 2 for Reynolds number

, , which is five
orders of magnitude greater than required in Theorem 1, and
is three times the critical value (5772, corresponding to loss
of linear stability) for 2-D channel flow. The validity of the
stabilization result beyond the assumptions of Theorem 1 is not
completely surprising since our Lyapunov analysis is based on
conservative energy estimates.2 The control gain used is .

A hybrid Fourier pseudospectral-finite difference discretiza-
tion and the fractional step technique based on a hybrid
Runge–Kutta/Crank–Nicolson time discretization was used to
generate the results. The code originally has been adapted from
a Fourier–Chebyshev pseudospectral code of T. Bewley [6],
changing the wall-normal discretization to second-order finite
differences (P. Blossey, private communication). The nonlinear

2The effect of boundary control law (22) can be seen mathematically in in-
equality (88) in the context of theL perturbation energy. The boundary integral

2�
2

l
�

1

k
u (x; 0; t)� 2�

1

k
u (x; l; t) dx (164)

is negative even for large Reynolds numbers (small kinematic viscosity) ifk

is sufficiently small. Hence, it improves the stability properties in general. The
trace theorem however does not allow us to compare this term and the total en-
ergy and to prove the stability results of Theorem 1 for large Reynolds numbers.
This shows the need for numerical simulation.
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Fig. 4. Vorticity maps att = 700.

Fig. 5. Recirculation in the flow att = 120, in a rectangle of dimension 1.37� 0.31 zoomed out of a channel of dimension4� � 2. The shaded region (upper
right corner) is magnified in Fig. 6.

terms in the Navier–Stokes equations are integrated explicitly
using a fourth-order, low storage Runge–Kutta method first
devised by Carpenter and Kennedy [8]. The viscous terms
are treated implicitly using the Crank–Nicolson method. The
numerical method uses “constant volume flux per unit span” in-
stead of the “constant average pressure gradient” assumption to
speed up computations. The differences between the two cases
are discussed in, for example, [56]. The number of grid points
used in our computations was 128 120 and the (adaptive)
time step was in the range of 0.05–0.07. The grid points had
hyperbolic tangent

distribution with stretching factor
in the vertical direction in order to achieve high resolution
in the critical boundary layer. In order to obtain the flow at
the walls in the controlled case the quadratic Three-Point
Endpoint Formula was used to approximate the derivatives at
the boundary , . This formula is applied
in a semi-implicit way in order to avoid numerical instabilities.
Namely, the Three-Point Endpoint Formula at the bottom wall
has the form

(165)

with notation , , 1, 2 and with appropriate
constants , and . We can write control law (23) now as

(166)

where superscriptsand refer to values at time stepand
respectively. Equation (166) results in the update law

(167)

at the boundary. The boundary condition at the top wall is up-
dated in a similar way. The numerical results show very good
agreement with results obtained from a finite volume code used
at early stages of simulations. As initial data we consider a sta-
tistically steady state flow field obtained from a random pertur-
bation of the parabolic profile over a large time period using the
uncontrolled system.

Fig. 3 shows that our controller achieves stabilization. This
is expressed in terms of the -norm of the error between the
steady state and the actual velocity field, the so called perturba-
tion energy, which corresponds to system (19)–(22) with
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Fig. 6. Velocity field in a rectangle of dimension 0.393� 0.012 zoomed out of a channel of dimension4� � 2, at timet = 120. The control (thick arrows) acts
bothdownstreamandupstream. The control maintains the value of shear near the desired (laminar) steady-state value.

(zero Dirichlet boundary conditions on the walls) in the uncon-
trolled case. The initially fast perturbation energy decay some-
what slows down for larger time. What we see here is an in-
teresting example of interaction between linear and nonlinear
behavior in a dynamical system. Initially, when the velocity per-
turbations are large, and the flow is highly nonlinear (exhibiting
Tollmien–Schlichting waves with recirculation, see the uncon-
trolled flow in Figs. 4 and 5). The strong convective (quadratic)
nonlinearity dominates over the linear dynamics and the energy
decay is fast. Later, at about , the recirculation disap-
pears, the controlled flow becomes close to laminar, and linear
behavior dominates, along with its exponential energy decay
(with small decay rate).

In the vorticity map, depicted in Fig. 4 it is striking how uni-
form the vorticity field becomes for the controlled case, while
we observe quasiperiodic bursting (cf. [37]) in the uncontrolled
case. We obtained similar vorticity maps of the uncontrolled
flow for other (lower) Reynolds numbers, that show agreement
qualitatively with the vorticity maps obtained by Jiménez [37].
His paper explains the generation of vortex blobs at the wall
along with their ejection into the channel and their final dissi-
pation by viscosity in the uncontrolled case.

The uniformity of the wall shear stress in the con-
trolled flow can be also observed in Fig. 6. Our boundary feed-
back control (tangential actuation) adjusts the flow field near
the upper boundary such that the controlled wall shear stress al-
most matches that of the steady state profile. The region is at the
edge of a small recirculation bubble (Fig. 5) of the uncontrolled
flow, hence there are some flow vectors pointing in the upstream
direction while others are oriented downstream. The time is rel-
atively short after the introduction of the control and
the region is small. As a result it is still possible to see actuation
both downstream and upstream. Nevertheless the controlled ve-
locity varies continuously. Fig. 5 shows that the effect of control
is to smear the vortical structures out in the streamwise direc-
tion. It is well known that in wall bounded turbulence instabil-
ities are generated at the wall. In two dimensional flows these
instabilities are also confined to the walls. As a result, our con-
trol effectively stabilizes the flow.

We obtain approximately 71% drag reduction (see Fig. 7) as a
byproduct of our special control law. The drag in the controlled
case “undershoots” bellow the level corresponding to the lam-

Fig. 7. Instantaneous drag.

inar flow and eventually agrees with it up to two decimal places.
It is striking that even though drag reduction was not an explicit
control objective (as in most of the works in this field), the sta-
bilization objective results in a controller that reacts to the wall
shear stress error, and leads to an almost instantaneous reduc-
tion of drag to the laminar level.
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