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We consider the problem of boundary feedback stabilization of homogeneous equilibria in

unstable fluid mixtures that are governed by unstable linear reaction-convection-diffusion

equations. We extend boundary feedback control laws designed for the one-dimensional

reaction-diffusion equation using the backstepping method to this higher-dimensional case.

We show that, under certain mathematical conditions on the velocity field, boundary feedback

controls similar to the ones for one-dimensional equations also works for the higher

dimensional case and exponentially stabilize the homogeneous equilibrium zero at any given

decay rate.

1. Introduction

A diffusive fluid mixture consists of diffusive physical

quantities and a fluid flow in which the physical

quantities are immersed. Typical examples of such

physical quantities include fuel in a combustor and

chemical pollutants dispersing in the environment.

These physical quantities can be described as diffusive

scalars. If a scalar like the fuel does not significantly

influence the fluid motion, it is called a passive scalar.

The scalar usually undergoes three processes: chemical

reaction; molecular diffusion (mixing); and convection.

These three processes can be mathematically modelled

by the reaction-convection-diffusion equation (Bees

et al. 2001)

@c

@t
þ r � ðcvÞ ¼ �r2cþ ac in �,

�
@c

@n
¼ 0 on @�,

cðx, t0Þ ¼ c0ðxÞ in �:

In the above equation, c¼ c(x, t) denotes the concentra-

tion of the scalar, c0(x) denotes the initial concentration,

a¼ a(x, t) is the reaction rate, v¼ v(x, t)¼ (v1(x, t), v2(x,
t), v2(x, t)) denotes a velocity field, �>0 is the molecular
diffusivity of the scalar, � is a bounded domain in R

3,
@=@n denotes the normal derivative along the boundary
@� of �, r ¼ ðð@=@xÞ, ð@=@yÞ, ð@=@xÞÞ and r2 ¼ ðð@2=@x2Þ,
ð@2=@y2Þ, ð@2=@x2ÞÞ. In this paper, we fix the above
no-flux boundary condition for concreteness, but our
results here are equally valid for other boundary
conditions.

Evidently, if the reaction rate a is large and the
diffusivity � is small, then the homogeneous equilibrium
state c¼ 0 is unstable. However, in reality, a certain level
of homogeneity of a fluid mixture is often desired. For
instance, before fuel is burned in a combustor, it is
required to be well mixed so that the combustor has its
best efficiency. Hence, it is important to find efficient
and practical control strategies to enhance mixing and
stabilize the equilibrium c¼ 0.

In fluid mixing, the flow field is a natural mechanism
for enhancing mixing (Antonsen et al. 1996, Giona et al.
2004a,b, Liu and Haller 2004, Haynes and Vanneste
2005, Liu 2005). Therefore, a practical strategy for the
enhancement of mixing is to destabilize a flow. Modern
approaches of flow destabilization include passive
control devices like a backward-facing step (Yang
et al. 2002), excitation of large-scale coherent structures*Corresponding author. Email: weijiul@uca.edu
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in the flow through flaps, wall-jets, or other devices

(Greenblatt and Wygnanski 2000), active feedback
destabilization (Aamo et al. 2003) and generation of

flow separation (Wang et al. 2003).
However, if the reaction rate a is quite large, then this

approach of flow destabilization does not work in

stabilizing the homogeneous equilibrium state and other
control mechanisms for the concentration field have

to be introduced. One of them is to control the flux of a

physical quantity from the boundary of a domain. For
instance, the fuel is constantly injected from the top of a

cylinder. The amount of the physical quantity flowing in
or out of the domain should be controlled in a way such

that the equilibrium 0 is stabilized. This control strategy

can be mathematically stated as follows. For simplicity,
we assume that �¼ [0,1]�S and apply a flux

control only on the face x¼ 1, where S is a bounded
domain in R

2. Then the boundary control problem is as

follows

@c

@t
þr � ðcvÞ ¼ �r2cþ ac in �, ð1Þ

�
@cð1, y, z, tÞ

@x
¼ u, ðy, zÞ 2S, ð2Þ

�
@cð0, y, z, tÞ

@x
¼ 0, ðy, zÞ 2S, ð3Þ

�
@c

@n
¼ 0, 0 < x < 1, ðy, zÞ 2 @S, ð4Þ

cðx, t0Þ ¼ c0ðxÞ in �, ð5Þ

where u is a control to be designed such that the

controlled system is exponentially stable with arbitrarily
given decay rate �>0. That is, the concentration c

decays to zero exponentially at the rate �.
If the reaction rate a is much greater than the

diffusivity �, the change of the concentration inside the

domain is quick and this quick change cannot immedi-
ately influence the concentration on the face x¼ 1 due

to the small diffusivity, which is a measure of diffusion
speed. Therefore, to determine the amount of the flux u,

one should need the measurement of the concentration c

not only on the face x¼ 1 but also inside the domain.
Mathematically, this means that u¼ u(c(1, y, z, t),

c(x, y, z, t)) is a functional of c(1, y, z, t) and c(x, y, z, t).
In fact, we will show that

u ¼ ��Kð1, 1Þcð1, y, z, tÞ � �

Z 1

0

@Kð1, �Þ

@x
cð�, y, z, tÞ d�,

where the kernel K needs to be designed.
The problem of boundary feedback control for the

reaction-convection-diffusion equation is not new.
Important results on feedback stabilization of

general parabolic equations include the work
of Triggiani (1980), Day (1982), Lasiecka and

Triggiani (1983a,b, 1987a,b), Amamm (1989), Burns

et al. (1996) and Burns and Rubio (1998). These results

were obtained mainly by using the abstract semigroup

theory or optimal control theory.
Recently, borrowing an idea of backstepping from

finite dimensional control systems and an idea of

integral transformation from the theory of parabolic

partial differential equations (Colton 1977, 1980),

a backstepping method was developed to construct

explicit feedback control laws for unstable one-dimen-

sional reaction-diffusions (Balogh and Krstic 2001,

2002), but some problems like the well-posedness of a

kernel equation were left open. These open problems

were solved by Liu (2003). After the resolution of these

open problems, the backstepping method has been

successfully applied to many other more complicated

one-dimensional equations (Aamo et al. 2005,

Smyshlyaev and Krstic 2004, 2005a), including the

linearized Ginzburg-Landau equation.
When applying the backstepping method to higher-

dimensional reaction-convection-diffusion equations,

great difficulties rise. The first attempt in this aspect

was made by Krstic (2005a,b) and Smyshlyaev and

Krstic (2005b,c) for constant velocities and reaction

rates. Since the constant velocities are not desired in the

problems of fluid mixtures, we investigate the varying

velocity case in this paper. We will show that, under

certain physically reasonable conditions on the velocity

field, similar boundary feedback controls designed for

the one-dimensional equation also works for the higher

dimensional case.

2. Kernel equations

To design a boundary feedback control law, we consider

the following integral transformation (Krstic 2005a,

Smyshlyaev and Krstic 2005b,c)

�ðx, y, z, tÞ ¼ cðx, y, z, tÞ þ

Z x

0

Kðx, �, tÞcð�, y, z, tÞ d�, ð6Þ

where the kernel K needs to be determined. We then

want to find a kernel K that transforms the controlled

problem (1)–(5) into the following exponentially stable

equation

@�

@t
þ r � ð�vÞ ¼ �r2� � �� in �, ð7Þ

�
@�

@n
¼ 0 on @�, ð8Þ

where � is any positive constant, standing for the decay

rate. The reason why the assumptions on the velocity in

the following lemma are needed will be explained in the

proof of the lemma.

2 W. Liu and M. Krstic
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Lemma 1: Assume that the reaction rate a¼ a(x, t) and

assume that the first component v1¼ v1(x, t) with

v1(0, t)¼ 0 of the velocity field does not depend on y, z,

and the second and third components vi¼ vi (y, z, t)

(i¼ 2, 3) do not depend on x. If the kernel K satisfies

@K

@t
þ v1ðx, tÞ

@K

@x
þ v1ð�, tÞ

@K

@�

¼ �
@2K

@x2
� �

@2K

@�2
� � þ að�, tÞ þ

@v1ðx, tÞ

@x

� �
K,

0 � � � x � 1, ð9Þ

@K

@�
ðx,x, tÞ þ

@K

@x
ðx, x, tÞ þ

@

@x
ðKðx, x, tÞÞ

¼
� þ að�, tÞ

�
, 0 � x � 1,

ð10Þ

@K

@�
ðx, 0, tÞ ¼ 0, 0 � x � 1, ð11Þ

Kð0, 0, tÞ ¼ 0: ð12Þ

Then the integral transformation (6) transforms the

system (1)–(5) with the controller

@c

@x
ð1, y, z, tÞ ¼ �Kð1, 1, tÞcð1, y, z, tÞ

�

Z 1

0

@K

@x
ð1, �, tÞcð�, y, z, tÞ d�

ð13Þ

into the system (7)–(8).

Proof: We calculate various derivatives of � as follows:

@�

@t
¼

@c

@t
þ

Z x

0

@K

@t
ðx, �, tÞcð�, y, z, tÞ d�

þ �

Z x

0

Kðx, �, tÞ

 
@2c

@�2
ð�, y, z, tÞ

þ
@2c

@y2
ð�, y, z, tÞ þ

@2c

@z2
ð�, y, z, tÞ

!
d�

þ

Z x

0

Kðx, �, tÞað�, tÞcð�, y, z, tÞ d�

�

Z x

0

Kðx, �, tÞ

"
@

@�
½cð�, y, z, tÞv1ð�, tÞ�

þ
@

@y
½cð�, y, z, tÞv2ðy, z, tÞ�

#
d�

�

Z x

0

Kðx, �, tÞ
@

@z
½cð�, y, z, tÞv3ðy, z, tÞ� d�

¼
@c

@t
þ

Z x

0

@K

@t
ðx, �, tÞcð�, y, z, tÞd�

þ �Kðx, x, tÞ
@c

@x
ðx, y, z, tÞ � �Kðx, 0, tÞ

@c

@x
ð0, y, z, tÞ

� �
@K

@�
ðx, x, tÞcðx, y, z, tÞ þ �

@K

@�
ðx, 0, tÞcð0, y, z, tÞ

þ

Z x

0

�

 
@2K

@�2
ðx, �, tÞcð�, y, z, tÞ þ Kðx, �, tÞ

�
@2c

@y2
ð�, y, z, tÞ þ

@2c

@z2
ð�, y, z, tÞ

� �!
d�

þ

Z x

0

Kðx, �, tÞað�, tÞcð�, y, z, tÞ d�

� Kðx, x, tÞv1ðx, tÞcðx, y, z, tÞ

þ Kðx, 0, tÞv1ð0, tÞcð0, y, z, tÞ

þ

Z x

0

cð�, y, z, tÞv1ð�, tÞ
@

@�
ðKðx, �, tÞÞd�

�

Z x

0

Kðx, �, tÞ

"
@

@y
½cð�, y, z, tÞv2ðy, z, tÞ�

þ
@

@z
½cð�, y, z, tÞv3ðy, z, tÞ�

#
d�, ð14Þ

@�

@x
¼

@c

@x
þ Kðx, x, tÞcðx, y, z, tÞ

þ

Z x

0

@K

@x
ðx, �, tÞcð�, y, z, tÞd�,

ð15Þ

@ðv1�Þ

@x
¼

@ðv1cÞ

@x
þ
@v1
@x

Z x

0

Kðx, �, tÞcð�, y, z, tÞ d�

þ v1ðx, tÞ

"
Kðx,x, tÞcðx, y, z, tÞ

þ

Z x

0

@K

@x
ðx, �, tÞcð�, y, z, tÞ d�

#
,

ð16Þ

@2�

@x2
¼

@2c

@x2
þ

@

@x
ðKðx,x, tÞÞcðx,y, z, tÞ

þKðx,x, tÞ
@cðx,y, z, tÞ

@x

þ
@K

@x
ðx,x, tÞcðx,y, z, tÞ þ

Z x

0

@2K

@x2
ðx, �, tÞcð�,y, z, tÞd�,

ð17Þ

@ð�v2Þ

@y
¼

@ðcv2Þ

@y
þ

Z x

0

Kðx, �, tÞ
@

@y
½cð�, y, z, tÞv2ðy, z, tÞ� d�,

ð18Þ

Boundary feedback stabilization of homogeneous equilibria 3
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@2�

@y2
¼

@2c

@y2
þ

Z x

0

Kðx, �, tÞ
@2c

@y2
ð�, y, z, tÞ d�, ð19Þ

@ð�v3Þ

@z
¼

@ðcv3Þ

@z
þ

Z x

0

Kðx, �, tÞ
@

@z
½cð�, y, z, tÞv3ðy, z, tÞ�d�,

ð20Þ

and

@2�

@z2
¼

@2c

@z2
þ

Z x

0

Kðx, �, tÞ
@2c

@z2
ð�, y, z, tÞ d�: ð21Þ

Note that the independence of v2, v3 on x is needed

so that the second terms in (18) and (20) can be cancelled

by the term

�

Z x

0

Kðx, �, tÞ

"
@

@y
½cð�, y, z, tÞv2ðy, z, tÞ�

þ
@

@z
½cð�, y, z, tÞv3ðy, z, tÞ�

#
d�

in (14). It then follows from the above equations that

@�

@t
þr � ð�vÞ��r2�þ��

¼
@c

@t
þ

Z x

0

@K

@t
ðx,�, tÞcð�,y,z,tÞd�

þ�Kðx,x,tÞ
@c

@x
ðx,y,z,tÞ��Kðx,0, tÞ

@c

@x
ð0,y,z, tÞ

��
@K

@�
ðx,x,tÞcðx,y,z,tÞþ�

@K

@�
ðx,0, tÞcð0,y,z,tÞ

þ

Z x

0

�

 
@2K

@�2
ðx,�,tÞcð�,y,z,tÞþKðx,�,tÞ

�
@2c

@y2
ð�,y,z,tÞþ

@2c

@z2
ð�,y,z,tÞ

� �!
d�

þ

Z x

0

Kðx,�,tÞað�, tÞcð�,y,z,tÞd�

�Kðx,x,tÞv1ðx,tÞcðx,y,z,tÞþKðx,0, tÞv1ð0, tÞcð0,y,z, tÞ

þ

Z x

0

cð�,y,z, tÞv1ð�,tÞ
@

@�
ðKðx,�,tÞÞd�

�

Z x

0

Kðx,�,tÞ

"
@

@y
½cð�,y,z,tÞv2ðy,z,tÞ�

þ
@

@z
½cð�,y,z,tÞv3ðy,z,tÞ�

#
d�

þ
@ðv1cÞ

@x
þ
@v1
@x

Z x

0

Kðx,�,tÞcð�,y,z,tÞd�

þ v1ðx,tÞ

"
Kðx,x,tÞcðx,y,z,tÞ

þ

Z x

0

@K

@x
ðx,�, tÞcð�,y,z, tÞd�

#

þ
@ðcv2Þ

@y
þ

Z x

0

Kðx,�, tÞ
@

@y
½cð�,y,z, tÞv2ðy,z, tÞ�d�

þ
@ðcv3Þ

@z
þ

Z x

0

Kðx,�, tÞ
@

@z
½cð�,y,z, tÞv3ðy,z, tÞ�d�

��
@2c

@x2
��

@

@x
ðKðx,x, tÞÞcðx,y,z, tÞ

��Kðx,x, tÞ
@cðx,y,z, tÞ

@x

��
@K

@x
ðx,x, tÞcðx,y,z, tÞ��

Z x

0

@2K

@x2
ðx,�, tÞcð�,y,z, tÞd�

��
@2c

@y2
��

Z x

0

Kðx,�, tÞ
@2c

@y2
ð�,y,z, tÞd�

��
@2c

@z2
��

Z x

0

Kðx,�, tÞ
@2c

@z2
ð�,y,z, tÞd�

þ�cðx,y,z, tÞþ�

Z x

0

Kðx,�, tÞcð�,y,z, tÞd�

¼��Kðx,0, tÞ
@c

@x
ð0,y,z, tÞþ�

@K

@�
ðx,0, tÞcð0,y,z, tÞ

þKðx,0, tÞv1ð0, tÞcð0,y,z, tÞ

þ c aðx, tÞþ���
@K

@�
ðx,x, tÞ��

@K

@x
ðx,x, tÞ��

@

@x
ðKðx,x,tÞÞ

� �

þ

Z x

0

cð�,y,z, tÞ
@K

@t
ðx,�, tÞþ�

@2K

@�2
ðx,�, tÞ��

@2K

@x2
ðx,�, tÞ

� �
d�

þ

Z x

0

cð�,y,z, tÞ að�, tÞþ�þ
@v1
@x

� �
Kðx,�, tÞd�

þ

Z x

0

cð�,y,z, tÞ að�, tÞþ�þ
@v1
@x

� �
Kðx,�, tÞd�

þ

Z x

0

cð�,y,z, tÞ v1ð�, tÞ
@Kðx,�, tÞ

@�
þ v1ðx, tÞ

@Kðx,�, tÞ

@x

� �
d�

¼ 0: ð22Þ

From this equation we can see the reason why v1 is
required to be independent of y, z is because we need
to assume that the kernel K is independent of y, z.
Our other calculations showed that if K depends on
all three variables x, y, z, then no result can be obtained.
In the above last equation, we have used equations
(9)–(12) and the boundary conditions (3) and (4).
The homogeneous boundary condition (8) follows
from the boundary conditions (3)–(4) and the
controller (13). œ

If a¼ a(x) is independent of t, it is clear that the kernel
K can be chosen to be independent of t. In this case, the
kernel equation is as follows:

�
@2K

@x2
� �

@2K

@�2
� v1ðxÞ

@K

@x
� v1ð�Þ

@K

@�

¼ ½� þ að�Þ þ v01ðxÞ�K, 0 � � � x � 1, ð23Þ

4 W. Liu and M. Krstic
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@K

@�
ðx, xÞ þ

@K

@x
ðx, xÞ þ

@

@x
ðKðx, xÞÞ

¼
� þ aðxÞ

�
, 0 � x � 1,

ð24Þ

@K

@�
ðx, 0Þ ¼ 0, 0 � x � 1, ð25Þ

Kð0, 0Þ ¼ 0: ð26Þ

Note that this boundary value problem is the same as

the one derived for one-dimensional reaction-diffusion

equations (see (Balogh and Krstic (2001, 2002, 2004)

and Liu (2003)) if v1¼ 0. œ

If a2C1½0, 1� and v1¼ 0, it was proved by Liu (2003)

that the boundary value problem (23)–(26) has a

solution which is twice continuously differentiable in

0� �� x� 1. We now show that the same is also true

for v1 6¼ 0.

Lemma 2: Suppose that a ¼ aðxÞ 2C1½0, 1� and

v1 ¼ v1ðxÞ 2C1½0, 1�. Then the boundary value problem

(23)–(26) has an unique solution which is twice continu-

ously differentiable in 0 � y � x � 1.

Proof: Using the variable changes

� ¼ xþ �, � ¼ x� �

and denoting

Gð�, �Þ ¼ kðx, �Þ ¼ k
�þ �

2
,
�� �

2

� �
,

we transform the problem (23)–(26) into

@2G

@�@�
� ’1

@G

@�
� ’2

@G

@�
¼ ’3G, 0 � � � � � 2, ð27Þ

@Gð�, �Þ

@�
¼

@Gð�, �Þ

@�
, 0 � � � 2, ð28Þ

@

@�
ðGð�, 0ÞÞ ¼ ’4ð�Þ, 0 � � � 2, ð29Þ

Gð0, 0Þ ¼ 0: ð30Þ

where

’1 ¼ ’1ð�, �Þ ¼
1

4�
v1

�þ �

2

� �
þ v1

�� �

2

� �� �
,

’2 ¼ ’2ð�, �Þ ¼
1

4�
v1

�þ �

2

� �
þ v1

�� �

2

� �� �
,

’3 ¼ ’3ð�, �Þ ¼
1

4�
� þ a

�þ �

2

� �
þ v01

�þ �

2

� �� �
,

’4 ¼ ’4ð�Þ ¼
1

4�
� þ a

�

2

� �� �
:

To transform the differential equation (27) into an

integral equation, we first find G(�, �). The equation (27)

can be written as

@

@�

@G

@�
e
�
R �

0
’1ð�, �Þd�

� �
� e

�
R �

0
’1ð�, �Þ d�’2

@G

@�

¼ e
�
R �

0
’1ð�, �Þ d�’3G:

ð31Þ

Integrating this equation with respect to � from 0 to �
gives

@Gð�,�Þ

@�
¼
@Gð�,0Þ

@�
e

R �

0
’1ð�,�Þd�þ’2ð�,�ÞGð�,�Þ

þe

R �

0
’1ð�,�Þd�

Z �

0

’3ð�,�Þe
�
R �

0
’1ð�,�Þd�Gð�,�Þd�

�e

R �

0
’1ð�,�Þd�

Z �

0

@

@�
e
�
R �

0
’1ð�,�Þd�’2ð�,�Þ

� �
Gð�,�Þd�

¼ ’4ð�Þe
R �

0
’1ð�,�Þd�þ’2ð�,�ÞGð�,�Þ

þe

R �

0
’1ð�,�Þd�

Z �

0

’3ð�,�Þe
�
R �

0
’1ð�,�Þd�Gð�,�Þd�

�e

R �

0
’1ð�,�Þd�

Z �

0

@

@�
e
�
R �

0
’1ð�,�Þd�’2ð�,�Þ

� �
Gð�,�Þd�:

It then follows from (28) that

d

d�
½Gð�,�Þ� ¼

@

@�
½Gð�,�Þ�þ

@

@�
½Gð�,�Þ�

¼ 2
@

@�
½Gð�,�Þ�

¼ 2’4ð�Þe
R �

0
’1ð�,�Þd� þ2’2ð�,�ÞGð�,�Þ

þ2e

R �

0
’1ð�,�Þd�

Z �

0

’3ð�,�Þe
�
R �

0
’1ð�,�Þd�Gð�,�Þd�

�2e

R �

0
’1ð�,�Þd�

Z �

0

@

@�
e
�
R �

0
’1ð�,�Þd�’2ð�,�Þ

� �

�Gð�,�Þd�: ð33Þ

Solving this equation for G(�, �) gives

Gð�,�Þ ¼ 2e
2
R �

0
’2ð�,�Þd�

Z �

0

’4ðsÞe
R s

0
’1ðs,�Þ�2’2ð�,�Þd�ds

þ2e
2
R �

0
’2ð�,�Þd�

Z �

0

e

R s

0
ð’1ðs,�Þ�2’2ð�,�Þd�

�

Z s

0

’3ðs,�Þe
�
R �

0
’1ðs,�Þd�Gðs,�Þd�ds

�2e
2
R n

0
’2ð�,�Þd�

Z �

0

e

R s

0
ð’1ðs,�Þ�2’2ð�,�Þd�

�

Z s

0

@

@�
e
�
R �

0
’1ðs,�Þd�’2ðs,�Þ

� �
Gðs,�Þd�ds: ð34Þ
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We are now ready to transform the differential

equation (27) into an integral equation. Integrating the

equation (31) with respect to � from 0 to � gives

@Gð�,�Þ

@�
¼ ’4ð�Þe

R �

0
’1ð�,�Þd� þ’2ð�,�ÞGð�,�Þ

þe

R �

0
’1ð�,�Þd�

Z �

0

’3ð�,sÞe
�
R s

0
’1ð�,�Þd�Gð�,sÞds

�e

R �

0
’1ð�,�Þd�

Z �

0

@

@s
e
�
R s

0
’1ð�,�Þd�’2ð�,sÞ

� �
Gð�,sÞds:

Integrating this equation with respect to � from � to �
and using (34), we obtain the following integral equation

Gð�,�Þ ¼ 2e
2
R �

0
’2ð�,�Þd�

Z �

0

’4ðsÞe
R s

0
ð’1ðs,�Þ�2’2ð�,�ÞÞd�ds

þ2e
2
R �

0
’2ð�,�Þd�

Z �

0

e

R s

0
ð’1ðs,�Þ�2’2ð�,�Þd�

�

Z s

0

’3ðs,rÞe
�
R r

0
’1ðs,�Þd�Gðs,rÞdrds

�2e
2
R �

0
’2ð�,�Þd�

Z �

0

e

R s

0
ð’1ðs,�Þ�2’2ð�,�Þd�

�

Z s

0

@

@r
e
�
R r

0
’1ðs,�Þd�’2ðs,rÞ

� �
Gðs,rÞdrds

þ

Z �

�

’4ðrÞe
R �

0
’1ðr,�Þd�drþ

Z �

�

’2ðr,�ÞGðr,�Þdr

þ

Z �

�

e

R �

0
’1ðr,�Þd�

Z �

0

’3ðr,sÞe
�
R s

0
’1ðr,�Þd�Gðr,sÞdsdr

�

Z �

�

e

R �

0
’1ðr,�Þd�

Z �

0

@

@s

� e
�
R s

0
’1ðr,�Þd�’2ðr,sÞ

� �
Gðr,sÞdsdr: ð35Þ

As in the proof of Lemma 2.2 of Liu (2003), by

the method of successive approximations we can

show that this equation has a unique continuous

solution. Moreover, it follows from (35) that G is

twice continuously differentiable because a and

v1 2C1½0, 1�. œ

For the time-dependent kernel problem (9)–(12), it was

shown (Colton 1977, 1980, Smyshlyaev and Krstic 2004)

that if a is analytic in t and v1¼ 0, then the boundary

value problem has an unique solution for small time.

Whether or not the time-dependent problem has a

solution for all time t>0 is open even in the case of

v1¼ 0. We do not want to go further to study the

existence of a solution of (9)–(12) for small time because

this smallness on time does not meet the requirement

for stabilization problem, in which the main concern

is about the large time behavior of the concentration c.

3. Exponential stabilization

In what follows, Hs(�) denotes the usual Sobolev space

(Evans 1998) for any s2R. For s� 0, Hs
0ð�Þ denotes the

completion of C1
0 ð�Þ in Hs(�), where C1

0 ð�Þ denotes

the space of all infinitely differentiable functions on �

with compact support in �. The L2 norm of a function

fðxÞ 2L2ð�Þ is denoted by

k f k ¼

Z
�

jfðxÞj2dV

� �1=2

:

Let K be the solution of the boundary value problem

(23)–(26). Then the following feedback control law

@c

@x
ð1, y, z, tÞ ¼ �Kð1, 1Þcð1, y, z, tÞ

�

Z 1

0

@Kð1, �Þ

@x
cð�, y, z, tÞd�

ð36Þ

exponentially stabilizes the equilibrium 0 of the problem

(1)–(5).

Theorem 1: Assume that �>0 is any positive constant

and a ¼ aðxÞ 2C1½0, 1� is any function. Assume that the

velocity v¼ (v1, v2, v3) satisfies the following conditions:

(i) the velocity satisfies the no-penetration condition

on the boundary of �: v � n ¼ 0 on @�;
(ii) v1¼ v1(x) is independent of y, z, t;
(iii) v2¼ v2(y, z, t) and v3¼ v3(y, z, t) are independent of x;
(iv) v0¼ max

t�t0,x2�
fjdivðvðx,tÞj,jrvðx,tÞj,jrdivðvðx,tÞÞjg<1.

Then, for arbitrary initial data c0ðxÞ 2H1ð0, 1Þ, the

problem (1)–(5) with the controller (36) has a unique

solution that satisfies

kcðtÞkH1 � Mkc0kH1e�ð��2v0Þðt�t0Þ, ð37Þ

where M is a positive constant independent of c0.

Proof: Since the proof of this theorem is similar to the

one of Theorem 3.1 of Liu (2003), we give here just a

sketch. By Lemma 3.3 of Liu (2003), if K is the solution

of the problem (23)–(26), then the linear bounded

operator K : Hið�Þ ! Hið�Þ ði ¼ 0, 1, 2Þ defined by

wðx, y, zÞ ¼ ðKuÞðx, y, zÞ ¼ uðx, y, zÞ

þ

Z x

0

Kðx, �Þuð�, y, zÞ d� for u2Hið�Þ

ð38Þ

has a linear bounded inverse K�1 : Hið�Þ !

Hið�Þ ði ¼ 0, 1, 2Þ. Therefore, it suffices to show that

the solution of the problem (7)–(8) satisfies

k�ðtÞkH1 � k�ðt0ÞkH1e�ð��2v0Þðt�t0Þ: ð39Þ

6 W. Liu and M. Krstic
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Multiplying (7) by �, integrating over � by parts,

and using the boundary conditions on � and the

no-penetration boundary condition on v, we deduce that

1

2

d

dt

Z
�

j�ðtÞj2dV ¼ ��

Z
�

jr�ðtÞj2dV� �

Z
�

j�ðtÞj2 dV

�
1

2

Z
�

j�ðtÞj2divðvÞ dV

� �ð� � v0Þ

Z
�

j�ðtÞj2 dV:

ð40Þ

Multiplying (7) by r2�, integrating over �, and using the

boundary conditions on � and v, we deduce that

1

2

d

dt

Z
�

jr�ðtÞj2dV

¼��

Z
�

jr2�ðtÞj2dV� �

Z
�

jr�ðtÞj2dV

þ

Z
�

r�rvr�þ �r� � rdivðvÞþ
1

2
jr�ðtÞj2divðvÞ

� �
dV

� v0

Z
�

j�ðtÞj2dV� ð� � 2v0Þ

Z
�

jr�ðtÞj2 dV:

Therefore (39) follows from (40) and (41). œ

The flux controller (36) can be replaced by the following

concentration controller

cð1, y, z, tÞ ¼ �

Z 1

0

Kð1, �Þcð�, y, z, tÞ d�: ð42Þ

Theorem 2: Assume that �>0 is any positive constant

and a ¼ aðxÞ 2C1½0, 1� is any function. Assume that the

velocity v¼ (v1, v2, v3) satisfies the following conditions:

(i) the velocity satisfies the no-penetration condition on

the boundary of �: v � n¼ 0 on @�;
(ii) v1¼ v1(x) is independent of y, z, t;
(iii) v2¼ v2(y, z, t) and v3¼ v3( y, z, t) are independent

of x;
(iv) v0¼ max

t�t0,x2�
fjdivðvðx,tÞj,jrvðx,tÞj, jrdivðvðx,tÞÞjg<1.

Then, for arbitrary initial data c0ðxÞ 2H1ð0, 1Þ, the

problem (1)–(5) with the controller (42) has a unique

solution that satisfies

kcðtÞkH1 � Mkc0kH1e�ð��2v0Þðt�t0Þ, ð43Þ

where M is a positive constant independent of c0.

It is clear that if a¼ a(y), v2¼ v2(y), v1¼ v1(x, z, t), and

v3¼ v3(x, z, t) (or a¼ a(z), v3¼ v3(z), v1¼ v1(x, y, t),

and v2¼ v2(x, y, t)), then similar controllers on the face

y¼ 1 (or z¼ 1) can be designed.
The assumptions (ii) and (iii) in Theorems 1 and 2

are restrictive. However, we can relax them somewhat.

We can allow the general dependence v1(x, y, z, t), v2(x,
y, z, t), v3(x, y, z, t) on all four arguments, as long as
ð@v1=@yÞ, ð@v1=@zÞ, ð@v2=@yÞ, ð@v3=@yÞ are allowed to be
small, uniformly in all four arguments. Then, we would
perform the control design based on v1(x, 0, 0, t), v2(0, y,
z, t), v3(0, y, z, t) and exploit the robustness of our design
to a small parametric perturbation in the plant
coefficients, which holds due to the fact that our
nominal system is exponentially stable. The target
system would have to be derived from scratch and is
much more complicated than (7), (8). It would include
the contribution of the small perturbations arising from
the dependence of v1 on y and z, and v2 and v3 on x.
This derivation would involve both the direct back-
stepping transformation and its inverse, as well as
estimates of bounds on both of the transformations’
kernels. Finally, a Lyapunov analysis of the perturbed
system would demonstrate robustness to sufficiently
small perturbations that arise in the target system.
The whole analysis would take at least 5–8 pages,
therefore it is not included here but only outlined.
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