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Using the Browder—Minty surjective theorem from the theory of monotone
operators, we consider the exact internal controllability for the semilinear heat
equation. We show that the system is exactly controllable in L2(Q)) if the nonlin-
earities are globally Lipschitz continuous. Furthermore, we prove that the controls
depend Lipschitz continuously on the terminal states, and discuss the behaviour of
the controls as the nonlinear terms tend to zero in some sense. A variant of the
Hilbert Uniqueness Method is presented to cope with the nonlinear nature of the
problem. © 1997 Academic Press

1. INTRODUCTION

Of recent years, there has been some study on the problem of approxi-
mate controllability for the semilinear heat equation. Combining a varia-
tional approach and Kakutani’s fixed point theorem, Fabre, Puel, and
Zuazua [5] studied the approximate controllability for the semilinear heat
equation

P
y ' —Ay+f(y) =hx, inQ, (y’ = —y)

gt (1.1)
y(0) =y° in Q,

y=0 on 3.
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In (1.1), Q is a bounded domain (nonempty, open, and connected) in R"
with suitably smooth boundary I' = dQ (say C?). Q = Q X (0,T) and
2 =T Xx(0,T) for T > 0. y(0) = y(x,0). h = h(x,t) represents the con-
trol function, w is an open and nonempty subset of (), and x, is the
characteristic function of w. They proved that this system is approximately
controllabel if f is globally Lipschitz.

Naturally, we would ask: Is the semilinear heat equation exactly control-
lable? That is to say, for suitable T > 0, is it possible, for every initial and
final data y° and z° (given in suitable Hilbert spaces), to find a corresponding
control h driving the system

y' —Ay+f(t,y) =hyx, inQ,
y(0) =y° in Q, (1.2)
y=0 on 3,

to the state z° at time T, i.e., such that the solution y = y(x,t; h) of (1.2)
satisfies

y(x,T) =2z inQ? (1.3)

In (1.2), we have allowed f to depend on ¢ as well as y.

It is the purpose of this paper to positively answer this question. To
achieve this goal, we will introduce a Monotone Operator Method (ab-
breviated to MOM). The idea of this method is to first construct a
nonlinear, monotone, and continuous operator by coupling a linear heat
equation with a semilinear heat equation, and they apply the famous
Browder—Minty surjective theorem (see [12, p. 557]) from the theory of
monotone operators.

Throughout this paper let () be a bounded domain (nonempty, open,
and connected) in R” with suitably smooth boundary I' = 9 (say C?).
Let T>0andset Q =Q X (0,T)and 2 =T X (0,7).

In the sequel, H*({)) always denotes the usual Sobolev space and |||,
denotes its norm for any s € R. Let X be a Banach space. We denote by
C*([0,T1, X) the space of all k times continuously differentiable functions
defined on [0, T] with values in X, and write C([0, T'], X) for C°([0, T'], X).

We make the following hypothesis on f:

(H) Assume the function f(z, y) is continuous in ¢ on [0,7] and
globally Lipschitz continuous in y on R, that is, there exists a positive
constant / such that

[f(t ) = f(. )l <y = pal, forall y,,y, € R. (1.4)
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The main result of this paper is as follows.

THEOREM 1.1.  Assume (H) holds. Then there exists a T, > 0 such that
for 0 < T < T, system (1.2) is exactly controllable in L*(Q) at time T, that
is, for any initial state y° and any terminal state z° € L*(Q)), there exists an
internal control function h(x,t) = h(x,t;y°, z°) € L*(0,T; H '(Q)) such
that the solution of (1.2) with w = Q satisfies (1.3). Furthermore, for any
fixed y° € L*(Q), the control function

h(x,t;°,2°): L(Q) » L*(0,T; h~'(Q))

is Lipschitz continuous.

As remarked in [6], if w is a proper subset of (), the exact internal
controllability for the (linear) heat equation is going to be impossible. Thus
we cannot expect the exact internal controllability for the semilinear heat
equation if w is a proper subset of ().

Compared with existing results, the result obtained here is essentially
different from Fabre, Puel, and Zuazua’s results [5] since we here consider
the exact controllability. In addition, they generalize the relevant theorems
of [1, 6, 8, 10] from the linear to the nonlinear case.

The rest of this paper is organised as follows. For completeness, in
Section 2 we present some notions and a main theorem about monotone
operators. Then we construct a nonlinear operator F in Section 3 and
prove the monotonicity of the operator F in Section 4. Theorem 1.1 is
proved in Section 5. Finally, we discuss the behaviour of controls as the
nonlinear terms tend to zero in some sense in Section 6.

2. PRELIMINARIES

For convenience, we recall some basic notions and a main result about
monotone operators. For details, we refer to [4, Chap. 3; 12, Chaps 25-26].

DEFINITION 2.1. (see [12, pp. 472 and 500]). Let X be a real Banach
space, X* its dual space, and { -, ) the duality pairing between X and
X*, and let F: X — X* be an operator. Then

(i) F is called monotone iff

{(Fu — Fv,u —v) =0, forallu,v € X.

(ii) F is called strictly monotone iff

(Fu — Fo,u —v) >0, forallu,v € Xwithu # v.
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(iii) F is called strongly monotone iff there is a a > 0 such that
(Fu — Fvo,u —v) > allu — vl*, forallu,v € X.

(iv) F is called hemicontinuous iff { F(u + tv),w) is continuous in ¢
on [0, 1] for all u,v,w € X.

(v) F is called coercive iff

{(Fu,u) 3

lim = 4o

lali—e ull
Obviously, strong monotonicity implies coercivity.

THEOREM 2.2 (Browder-Minty, see [12, p. 557]). Let X be a real reflexive
Banach space, and F : X — X* be a monotone, coercive, and hemicontinu-
ous operator. Then F is onto X*. Furthermore, if F is strongly monotone, then
the inverse operator F~' : X* — X exists and is Lipschitz continuous.

3. CONSTRUCTION OF A NONLINEAR OPERATOR

We construct a nonlinear operator F. To do this, we first consider the
following problem with a given terminal state u’(x):

u' +Au=0 in Q,
u(x,T) =u’(x) in Q, (3.1)
u=20 on 3.

Concerning problem (3.1), the following results are classical.

LEMMA 3.1 [11, p. 210]. A is the infinitesimal generator of both a C,
semigroup of contractions and an analytic semigroup of operators on L*()).

LEMMA 3.2 [3, pp. 512-513; p. 210]. () Let Q be a bounded domain in
R" with a Lipschitz boundary T. Then for all u’ € L*(Q) there exists a
unique solution u = u(x, t) of (3.1) with

ue C([O,T];LZ(Q)) N L2(O,T;H01(Q)). (3.2)
Moreover,
lu(t)llo < llu’llo,  Vte[0,T]. (33)

(ii) Let Q be a bounded domain in R" with a boundary T of class C*.
Then for all u” € D(A) with

D(A) =H*(Q) N Hy(Q) (34)
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there exists a unique solution u = u(x, t) of (3.1) with
ueC([O,T];HZ(Q) OHJ(Q)) (3.5)
Moreover, there exists a constant c independent of T such that
lu(Hll, < cllu’ll,, Vee]0,T]. (3.6)

Using the solution u of (3.1) we then consider the problem with any
fixed initial state y°(x) € L*(Q):

y — Ay +f(t,y) =u—Au in Q,

y(x,0) =y° in Q, (3.7)

y=0 on X.
It follows from the assumption (H) and the classical semigroup theory [11,
Theorem 1.2, p. 184] that problem (3.7) admits a unique weak solution
y € C([0,T]; L*(Q)) since u — Au € C([0, T]; L*(Q)) for u” € D(A).

Now we define for any fixed initial state y°(x) € L*()) the nonlinear
operator F(y°,-): D(A) c L*(Q) - L*(Q) by

F(y"u") =y(x.T). (3.8)

4. MONOTONICITY OF THE NONLINEAR OPERATOR F

We will prove that the operator F defined by (3.8) is Lipschitz continu-
ous and strongly monotone.

LEMMA 4.1.  Assume (H) holds. Then the operator F defined by (3.8) is
Lipschitz continuous, that is, there exists a positive constant ¢ = c(T) such
that

IF(y3.ul) = F(y).ui)llo < c(llys = yPllo + llud — uflly).
for any u®, ul € D(A) and any y2, y? € L*(Q).

Proof. Let u, and u, be solutions of (3.1) with terminal states u! and
ul € D(A), and y, and y, be the solutions of (3.7) corresponding to u,, y!
and u,, yJ. Then we have

(y2=y1) = A(ys —y1) +f(t.y2) —f(t,y1)
=u, —u, — Au, —uy) in Q,

¥2(x,0) = yy(x,0) =y3 =y} in Q,
Y=y, =0 on 3.

(4.2)
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Multiplying (4.2) by y, —y, and integrating over Q, = Q X (0,1), we
obtain

1 1

— — 20 _ _ 0 _ .02 _ 2

2 J, (0 =i (OFde = 3 | 1y =y + [ 1V(y, =y e
= /Q (y2 =y (uy —ul)dxdt-f-fQ V(uy = uy) - V(y, = y,)dxdt

_'[Q (f(ta)’2) _f(t7)’1))()’2 — y,) dxdt

1
< — (|u2—ul|2+|V(u2—ul)|2)dxdt
279

1
+§fQ (Iys = yil> +1V(y, = y,)I* ) dxdt + lfQ ly, — y,*dxdt.
(4.3)

Thus,

1
5 [ 1va(6) =yi()lds
1

™ |

1
2 2
= 3 J, () =y s + 2 [ 190y, =) P

IA

1 1
Eéﬂw—%V+WWrWJmﬁW+E&W?WWﬂ

1 . )
+(21 + 1)5/0 [Q|y2(z) — yi(1)Pdxd. (4.4)
Gronwall’s inequality (see [7, p. 36]) gives

[ lva(6) = ()P

< e(21+1)z( iy — u,)® + |V(u, — u)*)dxdt + [ ]y? — 0|2dx).
fQ( L —u, (uy — uy)l) fﬂ Y2 =W
(4.5)
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But there exists a positive constant ¢ such that
2 2 2
/Q(m2 = u,l” + V(uy — u))*)dxdt < clluf — ulll5. (4.6)

Therefore, (4.1) follows from (4.5) and (4.6). |

Remark 4.2. By Lemma 4.1, for any fixed y° € L*(Q)), the operator
F(y°,-) can be extended to L*(Q). To do so, let u” € L*(Q) and {u’} be a
sequence in D(A) such that u! — u” in L*(Q). Then it follows from
Lemma 4.1 that {F(y°, u?)} is a Cauchy sequence in L*({2). We set

F(y°u") = lim F(y° ul).
n— o
It is clear that F(y°,u”) is independent of the choice of the sequence {u’}.

Furthermore, it is easy to show that the extension of F(yo,~) is still
Lipschitz. From now on, F is thought of as an operator defined on

L*(Q) X L*(Q).

To prove the strong monotonicity of F(y?,-) for any fixed y° € L*(Q),
we need the exponential decay rate for solutions of the heat equation.

LEMMA 4.3.  Let u be the solution of (3.1). Then there is a constant § > 0
such that

/Iu(t)ldeSe’a(T”)f lu(T)I’dx, fort€[0,T]. (4.7)
Q Q
Proof.  Since
d
| ,8T-1 2 _ 8(T—1) ’ _ 8(T—1) 2
dt[e fﬂlu(t)l dx] 2e jﬂu(t)u (t)dx — Se ]Q|u(t)| dx
= 2270 [ [Vu(t)Pdx = 8e®70 [ Ju(r)dx
Q Q
> 265(T*”j \Vu(t)*dx — SBeB(T*t)] |Vu(t))dx
Q Q

= (2 88)e” T [ |Vu(t)ldx
Q

>0,
if 6§ <2/, we obtain

[ lu(t)Pdx < =270 [ |u(T)Pde,  for t € [0,T].
Q Q
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Here we have used Poincaré’s inequality (see [2, p. 127]) and B is
Poincaré’s constant. This is valid for the solution u of (3.1) by the
definition of D(A). |

LEMMA 4.4.  Assume (H) holds. Suppose [ or T is so small that
12

M(I,T) =1+ (1 —e@*h7y > 0. (4.8)

21 + 1

Then for any fixed y° € L*(Q) the operator F(y°,-): L*(Q) — L*(Q) is
strongly monotone.

Proof. We first assume u!, u? € D(A). Multiplying (4.2) by u, — u,,
integrating over Q, and noting yJ = y? = y°, we obtain

[ (F(0ul) = F(y*ul))(d - u )de

= /Q (Y2(T) _Y1(T))(ug - ulT)dx

fQ(qu — ull2 +V(u, — ul)lz)dxdt

_/Q(f(t’h) — (. 31))(uy — uy)dxdt

v

1
fQ(qu —u,l” +|V(u, - u,)lz)dxdt — Efgluz — u,|dxdt

12
=5 [ e~ n e

v

%,[Q(MZ - ”l|2 +1V(u, — M1)|2)dth (use (4.5))

[? T
- _ 2 _ 2 Q@I+ 1
> (lu2 u,I + IV(u2 M1)| )dxdtfo e dt

v

1
EM(z,T)fQ(m2 —u,* + IV(uy — u))*)dud.
Moreover,

1 1
5 [ 1ua(T) = (T) P = = [ 1u2(0) = uy(0) e

— [ 1¥(uy = ) Pddt = 0.
Q
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Thus, it follows from Lemma 4.3 that

[ (F(0ud) = F(%ul))(ud = ul v

> %M(l,T)%(/QIuZ(T) — u (T))dx — fﬂ|u2(0) - ul(0)|2dx)

1\

%M(I,T)(fﬂluz(T) — uy(T)Pdx — e-”/ﬂmz(r) - ul(T)Izdx)

1
ML T)(1 - e’”)/ﬂI%(T) — uy(T)Pdx. (4.9)

By taking a limit, we can show (4.9) holds for any u!, ul € L*(Q). Thus we
have proved A(y°,-) is strongly monotone. [

Remark 4.5. There are many function f(¢, y) that satisfy the conditions
of Lemmas 4.1 and 4.4. For example,

f(t,y) = Atsiny,

provided A is so small that 1 + (A2T?/QAT + D)Y1 — e®* D7) > 0,

5. PROOF OF THEOREM 1.1

Lemma 4.4 shows that the constant / is required to be small enough so
that F is strongly monotone. To overcome this drawback, we introduce a
Domain Expansion Method to prove Theorem 1.1 This method is general
and can be applied to other situations.

Proof of Theorem 1.1. For 7> 0, we introduce a function f, by

ey = 5o S5, (5.1)

and a domain
Q(r) ={rx:x € Q}.
Set

Q,(7) = Q(7) x (0.1),
3,(1) = 0Q(7) X (0,1) = {(x,1) : (x.1) € T x (0,1)}.
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Instead of (3.1) and (3.7), we consider

u' +Au=0 in Q,(7),

u(x,1) =u'(x) in Q(7), 52
u=0 on 2,(7),
and
wi—Aw+ f(tw) =u—Auin Q\(7),
w(x,0) =w’(x) in (), &
w=0 on %,(7),
where
w0(x) =y(f) x € Q(r). (5:4)

Then the operator F defined by (3.8) becomes
F(w° u') =w(x,1). (5.5)

The constant / in (H) for f. now is /72, and the constant M defined by
(4.8) now is

M : 1 1 a 1

—, 1| =1+ ————[1 —ex

72 22l + 7%) P

Let 7, be such that M(I//73,1) > 0. Then we have M(I//7% 1) > 0 for
T > 7,. It therefore follows from Lemmas 4.1 and 4.4 that F is continuous
and strongly monotone on L2(Q(7)). It then follows from Theorem 2.2
that for any z° € L?>(Q) there exists u' € L?(Q(7)) such that

21 + 72

7_2

F(w%u') =0°,
where

T

20(x) =z°(x), xe (). (5.6)

Moreover, F~'(w?, - ]is Lipschitz continuous. Then we solve problem (5.2)
with the terminal state u'. Thus we have found an internal control
function

u—Auel?0,1; H'(Q(7)))
such that the solution of (5.3) satisfies

w(x,1) =0  xeQ(r).
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Setting
y(x.t) =w(rx,7*), x€Q,1>0,
h(x,t;y°,2°) = o2 [u(rx, 72t) — Au(rx,72t)], (5.7)

then y satisfies (1.2) and

Set
1
2

Then we have proved that for 0 < T = 1/7% < T, system (1.2) is exactly
controllable in L*({2) at time 7.

Furthermore, it follows from (5.7) and the Lipschitz continuity of F~'
that (the following c’s denoting various constants)

la(x.2:y°, 20) = h(x.1:y°, Zg)HZLZ(O,T;H’I(Q))

<cllu, —u, + A(u, — ul)”zLZ(O,l;H’](Q(T)))

< clluy = usl1 220,15 iy

< clluf = w5 00

= clF~'(w,0)) — F ' (w°, o))l5. 000

< cllvf = v3llug o)

<cllz? =205, 0. 1
We call the method of the above proof the Domain Expansion Method.

Remark 5.1. It should be understood that the solution of (5.3) for
v’ = Fw' u") & {FW° u"): u' € D(A)} is the limit of {w,} in
C([0, T1; L*(Q(7))), where the w, are the weak solutions of (5.3) with u
replaced by the solutions u, of (5.2) with terminal states u) € D(A) such
that u? — u” in L*(Q(7)).

6. BEHAVIOUR OF CONTROLS AS f— 0
Let ¢, ¢, with ¢, <c, be two fixed constants. It is known from

Theorem 1.1 that if ¢ € [c|, ¢,], then we can find T > 0 independent of &
such that for any terminal state z° € L*({)) there exists an internal control
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h(x,t) such that the solution y,, which depends on &, of

y. — Ay, + ef(t,y,) =h, inQ,

y.(x,0) =y° in Q, (6.1)
y,=0 on X,
satisfies
y.(x,T) =z° iin Q. (6.2)

We now study the behaviour of s (x,t) as € = 0if 0 € [c,c,] This is a
kind of nonlinear perturbation, which is motivated by Lions’ work [9],
where the problems of linear perturbation have been studied in detail.

Let f be replaced by &f in the proof of Theorem 1.1. Obviously, the
operator F defined by (5.5) now depends on &. So we write F, for F. For a
fixed z° € L*(Q), let u! be the solution of the operator equation

FE.(w’ u") =0°, (6.3)

and u,(x,t) be the solution of (5.2) with u' = u!, where w°, v° are given
by (5.4) and (5.6), respectively. Taking u? = u! and u’ = 0 and Q = Q(r)
in (4.9), we obtain

]()(ﬂ( — F,(w°,0))uydx = f (wO,uy) = F,(w°,0))utdx

v

— 2 _ ,—8 112
4M(zg/T (1 —e )fm”mgmx

v

1
S - efﬁ)fm )|u;|2dx, (6.4)

for & € [c,,c,] if 7 is sufficiently large so that M(le/7%,1) > 1/2 for
g€ lc, 0l

On the other hand, as in the proof of Lemma 4.1, we can prove for the
solution w,(x, ) = F,(w°,0) of (5.3) with u — Au =0

f Iwg(x,t)lzdx
Q(r)

[8(21 + 72)tl
<exp|————
T

(())

X

fQ(T)Iwo(x)lzdx—l— f f(1/72,0)%dt |,

for t € [0,1]. (6.5)
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In fact, multiplying (5.3) by w,, integrating over Q,(7) = Q(7) X (0, 1), we
obtain

1 1
— lw,(x,1)Pdx — = [wO(x)|*dx + |Vw, |*dxdt
2/9(7) (x.7) 2 70(r) (x) /Q,(T)

= —gf Fi(t.w,)w,dxdt
0,(1)

—ef [f(t.w,) = £(1,0)|wdedt — & £ (£,0)w,dxdt
0,7 Q1)

AT

< D syt s SB[ s,

where m(Q(7)) denotes the Lebesgue measure of Q(7). Thus,
[ Iw(x 0P
Q(r)

(())

< fﬂ(f)lwo(x)lzdx+ f |£(t/72,0)dr

+M/ f |w (x, t)Idedt

which, by Gronwall’s inequality, gives (6.5).

Relations (6.4) and (6.5) show that {u!} is bounded in L?*(Q(7)) for
¢, < & < ¢,. Furthermore, since [|lu,ll-; < |lu,llp and A is an isomorphism
from H,(Q(7)) onto H '(Q(7)), it follows from (5.7) that there exists a
constant ¢ > 0 such that

2 2
”thLZ(O,T;H’](Q)) <cllu, — AL‘g”Lz(&l;H’l(Q(T)))
1 2
<cf lu, i et (6.6)
0
Moreover, by Theorem 3 of [3, p. 520], there is a constant ¢ > 0 such that

f ( )(|u€|2 + Vu, | )dxdt < cllulllf o). (6.7)
o7

It therefore follows from (6.6), (6.7), and the boundedness of {ul:c, <
& < c,} that the set {h,:c, < & < c,} is bounded in L*(0,T; H '(Q)).

Let O € [¢,, ¢c,]. Let the subsequence {h, } of {h,:¢c, < & < c,} be such
that h, — h weakly in L*(0,T; H™'(Q)) as & — 0.
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Let y be the solution of

y'—Ay=h inQ,

y(0) =y° in Q, (6.8)
y=0 on Y,

then
y(T)=z" inQ. (6.9)

Indeed, subtracting (6.8) from (6.1), we obtain
(y.—y) —A(y,—y) +&ef(t,y,) =h,—h inQ,

7.(0) = y(0) = 0 o, (6.10)
Ye—y=0 on 2.

For any #7 € L*(Q), let 6 be the solution of

0" +A6=0 inO,
0(T) =67 in Q, (6.11)
0=0 on 3.

Multiplying (6.10) by 6 and integrating by parts, we obtain
J (2" =y(1))0"dx + [ ef(t,y,)0dxdt = [ (h, —h)0dx. (6.12)
Q Q 0

In addition, it follows from the assumption (H) that

lef(t,y)llo < elllyllo + elf(£,0)[[m(Q)]">. (6.13)

Therefore, letting & — 0 in (6.12), we obtain

fQ(zo —y(T))6"dx = 0. (6.14)

This implies (6.9) because 07 is arbitrary in L*(Q).
In summary, we have proved

THEOREM 6.1. Let h, be internal control functions obtained as in Theo-
rem 1.1, driving system (6.1) from an initinal state y° € L*(Q) to a terminal
state z° € L*(Q). Then for any fixed constants c,, c, with ¢, < c,, the set
{h,:c, < & < c,} is relatively weakly compact in L*(0,T; H™'(Q)). Further-
more, if 0 € [c,,c,], then any weak limit h of a subsequence [hs,} of
{h,:c, <e<cy) in L*(0,T]; H'(Q)) as & — 0 is an internal control
function driving system (6.8) from the initinal state y° to the terminal state z°.
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