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Abstract. Cells use a signal transduction mechanism to regulate certain
metabolic pathways. In this paper, the regulatory mechanism is analyzed
mathematically. For this analysis, a mathematical model for the pathways is
first established using a system of differential equations. Then the linear stabil-
ity, controllability, and observability of the system are investigated. We show
that the linearized system is controllable and observable, and that the real
parts of all eigenvalues of the linearized system are nonpositive using Routh’s
stability criterion. Controllability and observability are structural properties
of a dynamical system. Thus our results may explain why the metabolic path-
ways can be controlled and regulated. Finally observer-based and proportional
output feedback controllers are designed to regulate the end product to its de-
sired level. Applications to the regulation of blood glucose levels are discussed.

1. Introduction. Biochemical reactions occurring in cells can be grouped into
metabolic pathways containing sequences of chemical reactions in which each re-
action is catalyzed by specific enzymes, and the product of one reaction is the
substrate for the next one. The compounds formed at each step are the metabolic
intermediates (or metabolites) that lead ultimately to the formation of an end
product. Figure 1 shows a generic metabolic pathway.
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Figure 1. A generic metabolic pathway.

Cells are always in a homeostatic condition, and therefore the amount of product
present or produced is always within certain range of concentrations. Homeostasis is
maintained by metabolic regulation primarily by feedback inhibition. In feedback
inhibition, the enzyme catalyzing the first committed step in a metabolic path-
way is temporarily inactivated when the end product binds to allosteric sites of
that enzyme. However there are other ways of regulating the metabolic pathways.
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One such pathway is activation or inactivation of enzymes by phosphorylation by
kinases and dephosphorylation by phosphatases through cell signaling and signal
transduction mechanisms.

An example of such a system of cell signaling can be seen in the regulation of
blood glucose levels (Figure 2). Our bodies spend considerable effort maintaining
blood glucose levels within a narrow range. The levels of glucose in circulation are
monitored by the pancreas. In response to low blood glucose levels, the α cells of
the pancreas produce the hormone glucagon. The glucagon binds to its specific
receptors, which are on the outer surface of the plasma membrane of target cells.
Binding of the hormone initiates a series of reactions that leads to the activation of
the enzyme glycogen phosphorylase, which catalyze the breakdown of glycogen into
glucose 1-phosphate, and then glucose 6-phosphate, and finally glucose. In addition,
the binding of the hormone leads to the inhibition of the enzyme glycogen synthase,
which catalyses the opposing reaction in which glucose is converted to glycogen.

In response to high blood glucose levels, the β cells of the pancreas secrets insulin.
The insulin functions as an extracellular messenger molecule triggering a cascade
of reactions to transport glucose into the cells and subsequently convert it into
glycogen. In the presence of insulin, a signal is generated through the IRS-PI3K-
PKB pathway that generates the transfer of glucose transporter 4 (GLUT4) onto
the membrane. This IRS-PI3K-PKB pathway also leads to the decrease in glycogen
synthase kinase-3 (GSK-3) activity, resulting in an increase in glycogen synthase
activity [3, 13].

Motivated by this example, we consider a generic metabolic pathway, as shown
in Figure 3. In this figure, P1 stands for a substrate such as glycogen, Pn stands
for an end product such as glucose, and Pi (i = 2, · · · , n− 1) are other metabolites
such as glucose 1-phosphate. Ei (i = 1, · · · , n) are enzymes such as the glyco-
gen phosphorylase and glycogen synthase, and u1 and u2 are extracellular control
signals such as glucagon and insulin. These control signals are usually expressed
mathematically as input rates. We assume that the activity of the enzymes E1 and
En is controlled, like the glycogen degradation pathway, by the extracellular signals
u1 and u2 so that the end product Pn reaches its desired level.

The aim of this paper is to use mathematical control theory [14, 21, 24] to design
an output feedback controller u1 = u1(p1, pn) and u2 = u2(p1, pn) as a function of
p1 and pn to regulate Pn to a desired level P d

n , where, as usual, the lower case p1

and pn denote the concentrations of P1 and Pn, respectively. We note that these
controllers do not fit in the problem of regulation of blood glucose levels, because
the state variable p1 (glycogen) may not be available for feedback, but there may
be biological systems in which they do fit.

Theoretical control approaches have successfully aided the research on cell sig-
naling and signal transduction [1, 7, 10, 11, 17, 20, 28, 32, 33, 34]. Tyson, Chen,
and Novak [31] pointed out that recent advances by theoretical biologists have
demonstrated that molecular regulatory networks can be accurately modeled in
mathematical terms. These models shed light on the design principles of biological
control systems and make predictions that have been verified experimentally. Such
success has been seen in the control of gene expression. The transcriptional factor
NF-κB (nuclear factor κB) regulates many genes that play important roles in intra-
and extracellular signaling [17]. Hoffmann, Levchenko, Scott, and Baltimore [11]
presented a computational model that describes the temporal negative feedback
control of NF-κB activation by the coordinated degradation and synthesis of IκB
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Figure 2. Regulation of blood glucose levels.

proteins. Using ordinary differential equations, Lipniacki, Paszek, Brasier, Luxon,
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Figure 3. A generic signal-controlled metabolic pathway.

and Kimmel [19] modeled the two-feedback-loop regulatory module of NF-κB sig-
naling pathway. Their model allows detailed analysis of the kinetics of the involved
proteins and their complexes and gives the predictions of the possible responses
of whole kinetics to the change in the level of a given activator or inhibitor. Zak,
Pearson, Vadigepalli, Gonye, Schwaber, and Doyle [35] developed a continuous-time
approach to identify gene expression models based on ordinary differential equa-
tions to overcome limit applicability of discrete-time expression models to common
biological data sets.

In this paper, employing the law of mass action, we first model the signal-
controlled metabolic pathways by a system of differential equations in Section 2.
Since the system is not mathematically stable for negative initial data, we consider
only its local linear stability, controllability, and observability in Section 3. Finally
in Section 4, we first design a pancreas-like proportional output feedback controller
and then dynamical observer-based controller.

2. Mathematical Models. The series of enzymatic reactions in the signal-controlled
metabolic pathway in Figure 3 can be described by the following reaction diagram:

u1 −→ P1 + E1 ­
k1,1

k1,2

C1 −→
k1,3

P2 + E1

P2 + E2 ­
k2,1

k2,2

C2 −→
k2,3

P3 + E2

... (1)

Pn−1 + En−1 ­
kn−1,1

kn−1,2

Cn−1 −→
kn−1,3

Pn + En−1,

u2 −→ Pn + En ­
kn,1

kn,2

Cn −→
kn,3

P1 + En,

where kij ’s denote the reaction constants, u1, u2 the coming control signals to ac-
tivate or inactivate the enzymes E1 and En, and Ci the complexes.

In real biological situations, concentrations of molecules in a cell may vary in
different locations and so may not be homogeneous. However, for simplicity, we
focus here on a particular tissue, and hence we can assume that the concentrations
are uniform. Therefore, by the law of mass action [22, 32], the dynamics of the
signal-controlled metabolic pathway (1) can be modeled by the following system of



SIGNAL-CONTROLLED METABOLIC PATHWAYS 475

nonlinear ordinary differential equations:

dp1

dt
= −k1,1e1p1 + k1,2c1 + kn,3cn, (2)

de1

dt
= −k1,1e1p1 + (k1,2 + k1,3)c1 + u1, (3)

dei
1

dt
= −u1, (4)

dej

dt
= −kj,1ejpj + (kj,2 + kj,3)cj , j = 2, · · · , n− 1, (5)

dcj

dt
= kj,1ejpj − (kj,2 + kj,3)cj , j = 1, · · · , n, (6)

dpj

dt
= −kj,1pjej + kj−1,3cj−1 + kj,2cj , j = 2, · · · , n− 1, (7)

dpn

dt
= −kn,1pnen + kn−1,3cn−1 + kn,2cn, (8)

den

dt
= −kn,1pnen + (kn,2 + kn,3)cn + u2, (9)

dei
n

dt
= −u2, (10)

p1(0) = P 0
1 , pn(0) = P 0

n , e1(0) = E0
1 , ei

1(0) = Ei,0
1 , en(0) = E0

n, ei
n(0) = Ei,0

n ,

pj(0) = cj(0) = 0, ej(0) = E0
j , c1(0) = cn(0) = 0 j = 2, · · · , n− 1 (11)

where, as usual, the lower case letters denote the concentrations of corresponding
biological species and P 0

1 , P 0
n , E0

j the initial concentrations of p1, pn, ej , respectively.
Here we have introduced the inactive form ei

j (j = 1, n) of the enzymes E1 and
En (the superscript i stands for inactive). Since the intermediate metabolites are
difficult to measure, the observable outputs are

y =
(

p1

pn

)
.

From the above system, we can readily derive that

d

dt
(ej + ei

j + cj) = 0, j = 1, n,

d

dt
(ej + cj) = 0, j = 2, · · · , n− 1,

d

dt




n∑

j=1

pj +
n∑

j=1

cj


 = 0,

and then

ej + ei
j + cj = E0

j + Ei,0
j , j = 1, n, (12)

cj + ej = E0
j , j = 2, · · · , n− 1, (13)

n∑

j=1

pj +
n∑

j=1

cj = P 0
1 . (14)
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These equations reflect the conservation of enzymes and substrates. Hence the
system (2)-(10) can be reduced to

dp1

dt
= −k1,1e1p1 + k1,2c1 + kn,3cn, (15)

de1

dt
= −k1,1e1p1 + (k1,2 + k1,3)c1 + u1, (16)

dei
1

dt
= −u1, (17)

dej

dt
= −kj,1ejpj + (kj,2 + kj,3)cj , j = 2, · · · , n− 1, (18)

dpj

dt
= −kj,1pjej + kj−1,3cj−1 + kj,2cj , j = 2, · · · , n− 1, (19)

dpn

dt
= −kn,1pnen + kn−1,3cn−1 + kn,2cn, (20)

den

dt
= −kn,1pnen + (kn,2 + kn,3)cn + u2, (21)

p1(0) = P 0
1 , pn(0) = P 0

n , e1(0) = E0
1 , ei

1(0) = Ei,0
1 , en(0) = E0

n,

pj(0) = 0, ej(0) = E0
j , j = 2, · · · , n− 1 (22)

with the output

y =
(

p1

pn

)
. (23)

3. Linear Stability and Controllability. It is clear that the system (15)-(23)
is not stable for mathematical negative initial data. Hence we study only its linear
stability and controllability before we design a control law.

Throughout this paper, we consider only nonnegative solutions in accord with
the biological situations.

The linearized system of the nonlinear system (15)-(21) at any equilibrium point

ei
1 = Ēi

1, pj = P̄j , ej = Ēj , j = 1, · · · , n

is given by

dx
dt

= Ax + Bu, y = Cx, (24)

where

x = (p1 − P̄1, e1 − Ē1, e
i
1 − Ēi

1, p2 − P̄2, e2 − Ē2, · · · ,

pn−1 − P̄n−1, en−1 − Ēn−1, pn − P̄n, en − Ēn)T ,

B =
(

0 1 −1 0 · · · 0 0
0 0 0 0 · · · 0 1

)T

,

C =
(

1 0 0 0 · · · 0 0 0
0 0 0 0 · · · 0 1 0

)
,
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and A is the linearized Jacobian matrix given by

A =




A1 F F · · · F F Q
D1 A2 0 · · · 0 0 0
0 D2 A3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · An−2 0 0
0 0 0 · · · Dn−2 An−1 0
R U U · · · U Dn−1 An




, (25)

A1 =



−k1,1Ē1 − kn,3 −k1,1P̄1 − k1,2 + kn,3 −k1,2 + kn,3

−k1,1Ē1 −k1,1P̄1 − k1,2 − k1,3 −k1,2 − k1,3

0 0 0


 , (26)

Ai =
( −ki,1Ēi −ki,1P̄i − ki,2

−ki,1Ēi −ki,1P̄i − ki,2 − ki,3

)
, i = 2, · · · , n− 1, (27)

An =
( −kn,1Ēn − kn,1 −kn,1P̄n

−kn,1Ēn − kn,2 − kn,3 −kn,1P̄n

)
, (28)

D1 =
(

0 −k1,3 −k1,3

0 0 0

)
, (29)

Di =
(

0 −ki,3

0 0

)
, i = 2, · · · , n− 2, (30)

Dn−1 =
( −kn,2 −kn−1,3 + kn,2

−kn,2 − kn,3 kn,2 + kn,3

)
, (31)

F =



−kn,3 kn,3

0 0
0 0


 , (32)

Q =



−kn,3 0

0 0
0 0


 , (33)

R =
( −kn,2 kn,2 kn,2

−kn,2 − kn,3 kn,2 + kn,3 kn,2 + kn,3

)
, (34)

U =
( −kn,2 kn,2

−kn,2 − kn,3 kn,2 + kn,3

)
. (35)

For a large n, the above system is difficult to analyze. So, in what follows, we
consider only the case where n = 2. This simple case is of biological interest. For
instance, in the regulatory network of blood glucose, only two regulatory enzymes,
glycogen synthase and glycogen phosphorylase, are important.

In the case of n = 2, the Jacobian matrix is equal to

A =




−k1,1Ē1 − k2,3 −k1,1P̄1 − k1,2 + k2,3 −k1,2 + k2,3

−k1,1Ē1 −k1,1P̄1 − k1,2 − k1,3 −k1,2 − k1,3

0 0 0

−k2,2 −k1,3 + k2,2 −k1,3 + k2,2

−k2,2 − k2,3 k2,2 + k2,3 k2,2 + k2,3
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−k2,3 0
0 0
0 0

−k2,1Ē2 − k2,2 −k2,1P̄2

−k2,1E2 − k2,2 − k2,3 −k2,1P̄2




.

Theorem 3.1. Assume that n = 2.
(i) If Ē1 = Ē2 = 0, then the characteristic polynomial of the Jacobian matrix A

is equal to

det(λI−A) =
(
λ + k1,1P̄1 + k1,2 + k1,3

) (
λ + k2,1P̄2 + k2,2 + k2,3

)
λ3. (36)

(ii) If either Ē1 or Ē2 is not equal to zero, then the characteristic polynomial of
the Jacobian matrix A is equal to

det(λI−A) = λ2
(
a1λ

3 + a2λ
2 + a3λ + a4

)
, (37)

and the real parts of all roots of the polynomial are non-positive, where

a1 = 1,

a2 = k2,1Ē2 + k2,1P̄2 + k2,2 + k1,1P̄1 + k1,3 + k1,2 + k1,1Ē1 + k2,3,

a3 = k1,2k2,1Ē2 + k2,2k1,2 + k1,2k2,3 + k1,3k2,1P̄2 + k1,2k2,1P̄2 + k1,1Ē1k2,1P̄2

+k1,3k2,2 + k1,1Ē1k2,3 + k1,1P̄1k2,1Ē2 + k1,3k2,3 + k2,3k2,1Ē2 + k1,1Ē1k1,3

+k1,1P̄1k2,3 + k1,1P̄1k2,1P2 + k1,1Ē1k2,1Ē2 + k1,3k2,1Ē2 + k2,2k1,1P̄1

+k1,1Ē1k2,2,

a4 = k1,1Ē1k1,3k2,2 + k2,1Ē2k1,1Ē1k2,3 + k1,1Ē1k1,3k2,1P̄2 + k2,3k1,2k2,1Ē2

+k1,3k2,3k2,1Ē2 + k1,1Ē1k1,3k2,1Ē2 + k2,3k1,1Ē1k1,3 + k2,3k1,1P̄1k2,1Ē2.

Proof. All the above polynomials are computed by the Maple software. It suffices
to prove that the real parts of all roots of the cubic polynomial are nonpositive. We
use the Routh’s stability criterion to prove it. The Routh’s array for the polynomial
is as follows:

λ3 : a1 a3

λ2 : a2 a4

λ1 : b1 0
λ0 : a4

where

b1 = a2a3 − a4.

We can easily check that every term in a4 is contained in a2a3. So the first column
of Routh’s array is all positive, and then all the real parts of the roots of the cubic
polynomial are negative.

The system (24) is controllable if for any initial state x0 and any desired state
xf , there exists a control u such that x(T ) = xf for some T > 0. The system (24)
is observable if any initial state can be uniquely determined by the output y(t) over
(0, T ) for some T > 0.

Theorem 3.2. Assume that n = 2.
(i) If P̄2 6= k2,3+k2,2+k2,1Ē2

k2,1
, then the linear system (24) is controllable.

(ii) If P̄1 6= k2,3−k1,2
k1,1

, then the linear system (24) is observable.
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Proof. It is well known [21] that it suffices to show that the Kalman controllability
matrices

C1 = [B| AB| A2B| A3B| A4B],

C2 = [CT | AT CT | (AT )2CT | (AT )3CT | (AT )4CT ]

have rank 5. For this, we used the Maple software to compute the determinant of
the matrix M consisting of the first five columns of C1 and obtained

det(M) = 2 k1,1
2P̄ 2

1 k1,3(k2,3 + k2,2 − k2,1(P̄2 − Ē2)) 6= 0.

In the same way, the determinant of the matrix M consisting of the first five columns
of C2 is equal to

det(M) = k1,1k2,1P̄
2
1 P̄2(k1,3 + k2,3)(k2,3 − k1,2 − k1,1P̄1) 6= 0.

So they have rank 5, respectively.

We recall that P̄1, P̄2, and Ē2 in the above theorem denote the equilibrium
of the system (15)-(21), which has infinite equilibria. The equilibrium P̄2 of the
end product is the target of regulation. Hence the controllability condition P̄2 6=
k2,3+k2,2+k2,1Ē2

k2,1
implies that if the desired level of the end product is equal to

k2,3+k2,2+k2,1Ē2
k2,1

, then a controller may not exist to regulate the end product to P̄2.

The observability condition P̄1 6= k2,3−k1,2
k1,1

implies that if the substrate is equal to
k2,3−k1,2

k1,1
at equilibrium, then the system may not be observable. We could not find

an example of biological systems that exhibit such controllability and observability
phenomena; but it may be an interesting problem to study and we will continue to
pursue in the future.

If we use only the end product pn as the output y = pn, then C = (0, 0, 0, 1, 0).
Using the Maple software, we compute that the rank of

C = [CT | AT CT | (AT )2CT | (AT )3CT | (AT )4CT ]

is equal to 4. So the linear system (24) is not observable.
Controllability and observability are structural properties of a dynamical system.

Thus Theorem 3.2 may explain why the metabolic pathways can be controlled and
regulated under certain circumstances.

4. Output Feedback Controllers. For a desired level P d
n of the end product,

we now design a number of controllers to regulate it to the desired level. We start
with the well-known proportional controllers.

4.1. Proportional Controllers. At an equilibrium, we wish that the end product
reaches the desired level P d

n , that is, p̄n = P d
n , where the bar ¯ denotes the steady

state. It is clear that the system (15)-(21) has infinite equilibria, but the equilibrium
that makes sense biologically is

p̄1 = P 0
1 + P d

n − P d
n , p̄j = 0 (j = 2, · · · , n− 1), p̄n = P d

n , (38)

ē1 = 0, ēj = E0
j (j = 2, · · · , n− 1), ēn = 0, (39)

ēi
1 = E1

0 , ēi
2 = E0

n. (40)

We first propose the following proportional feedback controller

u1 = −K1(pn − P d
n), u2 = K2(pn − P d

n), (41)

where the feedback gains K1,K2 are nonnegative constants.
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Theorem 4.1. Assume that n = 2. Then the characteristic polynomial of the
Jacobian matrix of the nonlinear system (15)-(20) with the proportional controller
(41) at the equilibrium point

p̄j = P̄j , ēj = 0, j = 1, 2

is given by

det(λI−A) = λ
(
a1λ

4 + a2λ
3 + a3λ

2 + a4λ + a5

)
, (42)

where

a1 = 1,

a2 = k2,2 + k1,2 + k1,3 + k2,1P̄2 + k1,1P̄1 + k2,3,

a3 = k1,1P̄1k2,1P̄2 + k2,1P̄2K2 + k1,3k2,2 + k2,2k1,2 + k1,2k2,1P̄2

+k1,2k2,3 + k2,2k1,1P̄1 + k1,3k2,1P̄2 + k1,3k2,3 + k1,1P̄1k2,3,

a4 = k1,1P̄1k1,3K1 + k1,3k2,1P̄2K2 + k1,1P̄1k2,1P̄2K2

+k2,3k2,1P̄2K2 + k1,2k2,1P̄2K2 ,

a5 = K2 k1,3k2,3k2,1P̄2 + k1,3K1 k2,1P̄2k1,1P̄1 + K2 k1,2k2,3k2,1P̄2

+k2,3k1,1P̄1k1,3K1 + k2,2k1,1P̄1k1,3K1 + k1,1P̄1k2,3k2,1P̄2K2 .

Moreover, if K1,K2 ≥ 0 and K1 is sufficiently smaller than K2, then the real parts
of all roots of the quartic polynomial in the above expression are negative.

Proof. The polynomial (42) is obtained by using the Maple software. We now use
the Routh’s stability criterion to prove that the real parts of all roots of the quartic
polynomial are negative.

Routh’s array for the quratic polynomial is given by

λ4 : a1, a3, a5

λ3 : a2, a4 0
λ2 : b1, a5 0
λ1 : c1, 0
λ0 : a5,

where

a2b1 = a2a3 − a1a4

= k2,1
2P̄ 2

2 K2 − k1,1P̄1k1,3K1 + 2 k1,1P̄1k1,3k2,2 + k1,1
2P̄ 2

1 k2,1P̄2

+2 k1,1P̄1k2,2k1,2 + 2 k1,1P1k1,3k2,3 + 2 k1,1P̄1k1,2k2,3 + 2 k2,1P̄2k1,3k2,2

+2 k2,1P̄2k2,2k1,2 + k2,1
2P̄ 2

2 k1,1P̄1 + 2 k2,3k1,2k2,1P̄2 + 2 k2,3k1,3k2,1P̄2

+2 k2,3k2,2k1,1P̄1 + 2 k1,3k1,2k2,1P̄2 + k1,3k2,3
2 + k1,2k2,3

2 + k1,3
2k2,2

+k1,3
2k2,3 + k1,3k2,2

2 + k2,2
2k1,2 + k2,2k1,2

2 + k1,2
2k2,3

+2 k1,3k1,2k2,3 + 2 k1,3k2,2k1,2 + 2 k2,3k2,2k1,2

+2 k2,3k1,3k2,2 + k1,2
2k2,1P̄2 + k2,2

2k1,1P̄1 + k1,3
2k2,1P̄2 + k2,1

2P̄ 2
2 k1,3

+k2,1
2P̄ 2

2 k1,2 + k1,1P̄1k2,3
2 + k1,1

2P̄ 2
1 k2,2 + k1,1

2P̄ 2
1 k2,3 + 2 k1,1P̄1k1,3k2,1P2

+2 k1,1P̄1k1,2k2,1P̄2 + 2 k2,1P̄2k2,2k1,1P̄1 + 2 k2,3k1,1P̄1k2,1P̄2 + k2,2k2,1P̄2K2 ,
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c1b1a2 = a2a3a4 − a1a
2
4 − a2

2a5

= 2 k2,1
3P̄ 3

2 k1,3k1,2K2 − k2,1
2P̄ 2

2 k1,2k1,1P̄1k1,3K1

−k1,1
2P̄ 2

1 k2,3
2k1,3K1 + k1,1

3P̄ 3
1 k2,2k2,1P̄2K2

−2 k2,1P̄2k2,2k1,1
2P̄ 2

1 k1,3K1 + 2 k2,1
2P̄ 2

2 k2,2k1,1
2P̄ 2

1 K2

−2 k2,3k1,1
2P̄ 2

1 k2,1P̄2k1,3K1 + k2,2k2,1P̄2K2 k1,1P̄1k1,3K1

+k2,2k2,1
2P̄ 2

2 K2
2k1,3 + k2,2k2,1

2P̄ 2
2 K2

2k1,1P̄1

+k2,2k2,1
2P̄ 2

2 K2
2k2,3 + k2,2k2,1

2P̄ 2
2 K2

2k1,2

−k1,3
2k2,1P̄2K2 k1,1P̄1K1 − k1,1

2P̄ 2
1 k2,1P̄2K2 k1,3K1

−k1,2k2,1P̄2K2 k1,1P̄1k1,3K1 + k2,1
2P̄ 2

2 K2 k1,1P̄1k1,3K1

+k2,1
3P̄ 3

2 K2
2k1,1P̄1 − k2,3k2,1P̄2K2 k1,1P̄1k1,3K1

+3 k1,1P̄1k1,3
2k2,2k2,1P̄2K2 + 3 k1,1

2P̄ 2
1 k1,3k2,2k2,1P̄2K2

+2 k1,1P̄1k1,3k2,2k2,3k2,1P̄2K2 + 6 k1,1P̄1k1,3k2,2k1,2k2,1P̄2K2

+3 k1,1
2P̄ 2

1 k2,1
2P̄ 2

2 k1,3K2 + k1,1
3P̄ 3

1 k2,1
2P̄ 2

2 K2

+k1,1
2P̄ 2

1 k2,1
2P̄ 2

2 k2,3K2 + 3 k1,1
2P̄ 2

1 k2,1
2P2

2k1,2K2

+k2,1
3P̄ 3

2 K2
2k1,3 + k2,1

3P̄ 3
2 K2

2k2,3

+k2,1
3P̄ 3

2 K2
2k1,2 + k1,2

3k2,1
2P̄ 2

2 K2

+k1,3
3k2,1

2P2
2K2 + k2,1

3P̄ 3
2 k1,3

2K2

+k2,1
3P̄ 3

2 k1,2
2K2 − k1,1

2P̄ 2
1 k1,3

2K1
2

+3 k1,1
2P1

2k2,2k1,2k2,1P̄2K2 + 2 k1,1P1k2,2k1,2k2,3k2,1P̄2K2

+3 k1,1P̄1k2,2k1,2
2k2,1P̄2K2 − 2 k2,1P̄2k1,3

2k2,2k1,1P̄1K1

+2 k2,1
2P̄ 2

2 k1,3
2k2,2K2 + 4 k2,1

2P̄ 2
2 k1,3k2,2k1,1P̄1K2

+4 k2,1
2P̄ 2

2 k1,3k2,2k1,2K2 − 2 k2,1P̄2k2,2k1,2k1,1P̄1k1,3K1

+4 k2,1
2P̄ 2

2 k2,2k1,2k1,1P̄1K2 + 2 k2,1
2P̄ 2

2 k2,2k1,2
2K2

−k2,1
2P̄ 2

2 k1,1
2P̄ 2

1 k1,3K1 + 2 k2,1
3P̄ 3

2 k1,1P̄1k1,3K2

+k2,1
3P̄ 3

2 k1,1
2P̄ 2

1 K2 + 2 k2,1
3P̄ 3

2 k1,1P̄1k1,2K2

−2 k2,3k1,2k2,1P̄2k1,1P̄1k1,3K1 + 2 k2,3k1,2k2,1
2P̄ 2

2 k1,3K2

+2 k2,3k1,2k2,1
2P̄ 2

2 k1,1P̄1K2 + k2,3k1,2
2k2,1

2P̄ 2
2 K2

−2 k2,3k1,3
2k2,1P̄2k1,1P̄1K1 + k2,3k1,3

2k2,1
2P̄ 2

2 K2

+2 k2,3k1,3k2,1
2P̄ 2

2 k1,1P̄1K2 − 2 k2,3k2,2k1,1
2P̄ 2

1 k1,3K1

+k2,3k2,2k1,1
2P̄ 2

1 k2,1P̄2K2 + 3 k1,3
2k1,2k2,1

2P̄ 2
2 K2

+6 k1,3k1,2k2,1
2P̄ 2

2 k1,1P̄1K2 + 3 k1,3k1,2
2k2,1

2P̄ 2
2 K2

−k1,3
2k2,3

2k1,1P̄1K1 − k1,2k2,3
2k1,1P̄1k1,3K1

+k1,3
3k2,2k2,1P̄2K2 + k1,3

2k2,2k2,3k2,1P̄2K2

+3 k1,3
2k2,2k1,2k2,1P̄2K2 − k1,3

2k2,2
2k1,1P̄1K1

+k1,3
2k2,2

2k2,1P̄2K2 + 2 k1,3k2,2
2k1,1P̄1k2,1P̄2K2

+2 k1,3k2,2
2k1,2k2,1P̄2K2 − k2,2

2k1,2k1,1P̄1k1,3K1

+2 k2,2
2k1,2k1,1P1k2,1P̄2K2 + k2,2

2k1,2
2k2,1P̄2K2
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+3 k2,2k1,2
2k1,3k2,1P2K2 + k2,2k1,2

2k2,3k2,1P̄2K2

+k2,2k1,2
3k2,1P̄2K2 + 2 k1,3k2,2k1,2k2,3k2,1P̄2K2

−2 k2,3k2,2k1,2k1,1P̄1k1,3K1 − 2 k2,3k1,3
2k2,2k1,1P̄1K1

+3 k1,2
2k2,1

2P̄ 2
2 k1,1P̄1K2 − k2,2

2k1,1
2P̄ 2

1 k1,3K1

+k2,2
2k1,1

2P1
2k2,1P̄2K2 + 3 k1,3

2k2,1
2P̄ 2

2 k1,1P̄1K2

−k2,1
2P̄ 2

2 k1,3
2k1,1P̄1K1 − 3 k2,3k2,1

2P2
2k1,3K1 k1,1P̄1

−3 k2,3
2k2,1P̄2k1,1P̄1k1,3K1 − 6 k2,3k2,1P̄2k2,2k1,1P̄1k1,3K1

−3 k2,2k2,1
2P̄ 2

2 k1,3K1 k1,1P̄1 − 3 k2,2
2k2,1P̄2k1,1P̄1k1,3K1

−k2,1
3P̄ 3

2 k1,3K1 k1,1P̄1 − 3 k2,3
2k2,2k1,1P̄1k1,3K1

−3 k2,3k2,2
2k1,1P̄1k1,3K1 − k2,2

3k1,1P1k1,3K1 − k2,3
3k1,1P̄1k1,3K1 .

In the expression of a2b1, the only negative term is−k1,1P̄1k1,3K1 . In the expression
of c1b1a2, we checked it carefully and found that all negative terms contain K1.
Hence if K1 is sufficiently smaller than K2, then the first column of Routh’s array
is all positive and all the real parts of the roots of the quartic polynomial are
negative.

To estimate how much smaller K1 is than K2, we need to estimate the expression
of c1b1a2.

The mathematical assumption that K1 is sufficiently smaller than K2 is of bi-
ological meaning. In the regulatory network of blood glucose, u1 is the glucagon
input rate and u2 is the insulin input rate. This assumption suggests that more
insulin than glucagon is found.

Although A has a zero eigenvalue, its multiplicity is equal to 1 and smaller than
the multiplicity 3 of zero eigenvalue of A without control, as shown in Theorem
3.1. So the proportional controller does promote stability.

We now numerically test whether the proportional controller works in regulating
the end product level using the example of the glycogen degradation and synthesis
pathway. The Michaelis-Menton constant for glycogen synthase is around 0.5 mM
(9 mg/dl) with regard to UDP-glucose [23]. So we select the following reaction rate
constants

k =
(

.005 .000454 .045

.005 .000454 .045

)

such that Michaelis-Menton constant Km = 9 mg/dl. We assume that the initial
concentrations of the active or inactive glycogen phosphorylase are 1.33/4, 1.33
(µg/100 mg), respectively (the proportionality between active and inactive is 20:80),
and the initial concentrations of active or inactive glycogen synthase are 1.33, 1.33/4
(µg/100 mg), respectively (the proportionality between active and inactive is 80:20).
We also suppose the initial concentrations of the glycogen and glucose are 500 and
150 (mg/100 ml), respectively. The desired glucose level is 100 (mg/100 ml), an
average normal level in our bodies. We then use the MATLAB to numerically
solve the system (15)-(21) with the controller (41). Figure 4 shows that with
K1 = 0.00001 and K2 = 0.00005 the controller works well in regulating the glucose
levels. Notice that K1 = 0.00001 is smaller than K2 = 0.00005, as claimed in
Theorem 4.1.

The proportional controller can be further modified in accord with the function
of the pancreas. In response to low blood glucose levels (pn < P d

n), the α cells
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Figure 4. The proportional controller (41) with K1 = 0.00001
and K2 = 0.00005 is working in regulating the glucose levels.

of the pancreas produce the hormone glucagon, which increases the activity of the
enzyme glycogen phosphorylase and decreases the activity of the enzyme glycogen
synthase. In response to high blood glucose levels (pn > P d

n), the β cells of the
pancreas secrete insulin which results in an increase in glycogen synthase activity,
but does not impact glycogen phosphorylase. This function of the pancreas can be
mathematically translated into

u1 = −K1 min(0, pn−P d
n), u2 = K2 min(0, pn−P d

n)+K3 max(0, pn−P d
n), (43)

where −K1 min(0, pn−P d
n) denotes the increase of the activity of the enzyme glyco-

gen phosphorylase by the glucagon and no impact from the insulin, K2 min(0, pn−
P d

n) denotes the decrease of the activity of the enzyme glycogen synthase by the
glucagon, and K3 max(0, pn−P d

n) denotes the increase of the activity of the enzyme
glycogen synthase by the insulin. Figure 5 shows that this modified controller is
also working.

4.2. Observer-based Dynamic Controllers. The proportional-integral controller
does not exponentially stabilize the systems because the observation on only the
error pn − P d

n is not enough. Therefore, we assume that the error p1 − P d
1 is

also available for feedback. This assumption is not suitable for the regulation of
blood glucose levels, but may be reasonable for other metabolic pathways since the
metabolic pathways are substrate-conservative. To ensure that these errors are well
processed and synthesized, we propose an observer-based dynamic controller.

By Theorem 3.2, the pair (A,B) is controllable and the pair (A,C) is observable.
Thus there exist a feedback gain

G =
(

g1,1 g1,2 · · · g1,2n+1

g2,1 g2,2 · · · g2,2n+1

)



484 RAMESH GARIMELLA, UMA GARIMELLA, AND WEIJIU LIU

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

t (min)

G
lu

co
se

 (
m

g/
10

0 
m

l)

x 104 

Figure 5. The proportional controller (43) with K1 =
0.00001,K2 = 0.00005, and K3 = 0.00003 is working in regulating
the glucose levels.

and an observer gain

H =
(

h1,1 h1,2 · · · h1,2n+1

h2,1 h2,2 · · · h2,2n+1

)T

such that both A−BG and A−HC are Hurwitz, that is, the real parts of their
eigenvalues are negative. Then we can design an observer-based dynamic feedback
controller for the linear system (24) as follows:

dx
dt

= Ax−BGz, (44)

dz
dt

= (A−BG−HC)z + HCx. (45)

Since

det
(

λI−
[

A −BG
HC A−BG−HC

])
= det(λI− (A−BG)) det(λI− (A−HC)),

we have the following theorem:

Theorem 4.2. The feedback control system (44) and (45) is exponentially stable.



SIGNAL-CONTROLLED METABOLIC PATHWAYS 485

Applying this linear controller to the original nonlinear system, we obtain the
regulatory feedback system

dp1

dt
= −k1,1e1p1 + k1,2c1 + kn,3cn + pn, (46)

de1

dt
= −k1,1e1p1 + (k1,2 + k1,3)c1 −

2n+1∑

j=1

g1,jzj , (47)

dei
1

dt
=

2n+1∑

j=1

g1,jzj , (48)

dej

dt
= −kj,1ejpj + (kj,2 + kj,3)cj , j = 2, · · · , n− 1, (49)

dpj

dt
= −kj,1pjej + kj−1,3cj−1 + kj,2cj , j = 2, · · · , n− 1, (50)

dpn

dt
= −kn,1pnen + kn−1,3cn−1 + kn,2cn − pn, (51)

den

dt
= −kn,1pnen + (kn,2 + kn,3)cn −

2n+1∑

j=1

g2,jzj , (52)

dz
dt

= (A−BG−HC)z + H
(

p1 − P d
1

pn − P d
n

)
, (53)

p1(0) = P 0
1 , pn(0) = P 0

n , e1(0) = E0
1 , z(0) = 0, ei

1(0) = Ei,0
1 , en(0) = E0

n,

pj(0) = 0, ej(0) = E0
j , j = 2, · · · , n− 1, (54)

where cj satisfies (12) –(14).
Since the linearized system of (46)–(54) is the linear system (44)-(45), as a result

of Theorem 4.2, we have

Corollary 4.1. The feedback control system (46)–(54) is locally exponentially
stable near its equilibrium with p̄1 = P d

1 and p̄n = P d
n .

To numerically test the effectiveness of the observer-based controller, we use the
same data from subsection 4.1. By trying different feedback gains and observer
gains, we find the following gains:

G =
(

0.0 0.5 0.0 0.0 0.05
1.9 1.5 1.6 0.0 0.08

)
,

H =
(

0.004 0.002 0.006 0.0 0.007
0.005 0.0025 0.0 0.003 0.0002

)
,

which make A − BG and A −HC Hurwitz. In fact, the eigenvalues of A − BG
are

−0.85546552487663,
−0.00686816245514 + 0.24183491547608i,
−0.00686816245514− 0.24183491547608i,

−0.00005762913352,
−0.00010422107958,
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Figure 6. The end product is regulated to the desired level by
the observer-based control law (53).

and the eigenvalues of A−HC are

−0.28856712327522,
−0.00630648446476,

−0.00067034886358 + 0.00311076161066i,
−0.00067034886358− 0.00311076161066i,

−0.00014939453286.

Figure 6 shows that the end product is regulated to the desired level 100 (mg/100
ml) by the observer-based control law (53).

Notice that the end product in Figures 4, 5, and 6 is oscillating before it reaches
its equilibrium. These oscillations may reflect biological phenomena. In fact, nu-
merous studies have established that at least two types of oscillations of glucose
and insulin were observed in experiments and simulations: rapid oscillations with
periods of 8-15 minutes [8, 9, 12, 15, 16] and ultradian oscillations with periods of
50-200 minutes [4, 5, 18, 25, 27, 26, 29, 30]. In our simulations no external end
product like glucose is input. This could suggest that the rapid oscillations are an
internal property of a biological system.

Although the observer-based control law (53) does not fit in the regulatory net-
work of blood glucose (because we assumed that the substrate is available for feed-
back and this is not the case for the regulatory network of blood glucose), the
oscillations in Figure 6 may indicate that similar biological systems, in which the
observer-based control law (53) fits, also have such oscillation phenomenon.

In our case, after the oscillations, the end product approaches a steady state.
This is because the substrate or end product is not input in a pulsatile manner.
Such a pulsating input-output problem will be studied in another article.

5. Conclusions. We developed a mathematical model for a signal-controlled metabolic
pathway using a system of differential equations. We analyzed its linear stability,
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controllability, and observability. We showed that the linearized system is control-
lable and observable, and that the real parts of all eigenvalues of the linearized
system are nonpositive using Routh’s stability criterion. Controllability and ob-
servability are structural properties of a dynamical system. Thus our results may
explain why the metabolic pathways can be controlled and regulated. We designed
observer-based and proportional output feedback controllers, analyzed their stabil-
ity, and numerically tested their effectiveness in regulating the end product to a
desired level. Our results showed that the designed feedback controls may mimic
the control mechanisms of signal-controlled metabolic pathways

For simplicity, we did not consider the molecular diffusion of the end-product. In
real biological situations, the end product like glucose diffuses out of a cell through
its membrane. Therefore, a more accurate model should take such diffusion into
account and then the mathematical models will become a hybrid system of ordinary
and partial differential equations. We will consider this more complicated problem
in a future work.
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