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Abstract

We prove the emergence of asymptotic spatial patterns in magnetic dynamos generated by unsteady fluid flows. The patterns
emerge because solutions of the dynamo equation converge exponentially to a time-dependent inertial manifold. This inertial
manifold exists for general time-aperiodic velocity fields under a spectral gap condition on the associated Stokes operator. For
time-periodic velocity fields, we show that the inertial manifold is spanned by Floquet eigenmodes that are analogous to the
strange eigenmodesobserved in the mixing of diffusive tracers. This result gives an affirmative answer to the long-standing
question of completeness of Floquet solutions in time-periodic dynamo problems.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The dynamo equation

The magnetic fields of cosmic bodies, such as the Sun and the Earth, are generated and maintained against
dissipation by dynamo action in the electrically conducting fluid inside these bodies. The governing equation for
such magnetic fields is the dynamo equation

Bt + (v · ∇)B = η∇2B + (B · ∇)v, ∇ · B = 0, B(x, 0) = B0(x), (1)

whereB(x, t) is the magnetic field,η the magnetic diffusivity, andv(x, t) the velocity field of the fluid that satisfies
the incompressibility condition

∇ · v = 0 (2)

on a three-dimensional spatial domainΩ (see, e.g.[2, Chapter 1]).
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The growth or decay of the fieldB is usually quantified by the exponent

γ(η) = sup
B0

lim sup
t→∞

1

2t
ln E(t),

with the magnetic energyE(t) defined as

E(t) = 1
2

∫
Ω

|B|2 dV.

The velocity fieldv is akinematic dynamo(or, simply, adynamo) if γ(η) > 0 for someη > 0. In other words,v is
a dynamo if it generates exponentially growing magnetic energy for a nonzero value of the magnetic diffusivity. If
γ(η) remains positive and bounded away from zero asη → 0, then the dynamo is calledfast, otherwise it is called
slow(see[25] or [2]).

1.2. Eigenmodes in the dynamo equation

Special solutions to(1) are often sought in the form

B(x, t) = eλt e(x, t), (3)

with the expectation that a general solution can be represented as

B(x, t) =
∞∑

k=1

ck eλkt ek(x, t). (4)

If such an infinite expansion exists, then estimating the growth rate of the magnetic field simplifies to studying the
exponentsλk.

The above approach has been widely employed in experimental and numerical dynamo studies. For instance,
Gailitis et al.[6] assume a solution

B(t) = a1 eλ1t sin(2πf1t + φ1) + a2 eλ2t sin(2πf2t + φ2)

for the case of a helical flow generated by a propeller in a closed volume of molten sodium. Peffley et al.[18] postulate
the infinite expansion(4), and estimate the leading eigenvalueλ1 from their experiments. Dudley and James[5]
show that a number of stationary velocity models lead to positiveλk exponents. For a time-periodic version of
the classic Ponomarenko dynamo (see[20]), Normand[16] assume a solution of the form(3) and determineλ
numerically.

In earlier work, Otani[17] observed awild eigenmode(a solution(3) with a spatially complicatede(x, t)) for a
dynamo with the stretch-fold-shear (SFS) mechanism. Later, Kaiser[9] used the form(4) to prove that a kinematic
dynamo cannot exist for a purely poloidal magnetic field. These and additional uses of the eigenmode ansatz are
surveyed by Childress and Gilbert[2].

For a steady velocity fieldv(x) and forη > 0, the ansatz(4) is justifiable: the spectrum of the magnetic field
consists of a countable number of eigenvaluesλk, each of finite multiplicity. The corresponding eigenfunctions
ek(x) are known to be complete inL2.

Most of the studies cited above, however, are concerned with dynamo action generated by time-periodic velocity
fields. For such fields, the existence ofsomeeigenmodes of the form(3) follows from the results in Yudovich[24],
but the completeness of those eigenmodes has been an open question.

Without a completeness result on the eigenmodes, all prior work that assumes the ultimate prevalence of a
single growing eigenmode is on loose mathematical ground. This is because in the absence of completeness, one
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cannot view a general solution as a finite linear combination of eigenmodes plus a small error term; that error
term may very well be large, invalidating any conclusion obtained from the eigenmodes. This lack of completeness
for time-periodic flows, Childress and Gilbert[2] observe, has also hindered the study of fast dynamo action with
arbitrary time dependence.

1.3. Results

This paper fills the above theoretical gap by proving the completeness of eigenmodes of the form(3) for
time-periodic velocity fields. We obtain this completeness result under conditions on the spectrum of a Stokes
operator associated with the dynamo equation. These conditions hold for two- and three-dimensional geometries,
such as rectangles and cubes, but typically place bounds on the magnitude of the velocity fieldv once the magnetic
diffusivity η is fixed.

More specifically, we first prove the existence of an inertial manifold for(1) in the case whenv(x, t) is a bounded
velocity field witharbitrary time dependence. This implies that solutions of the dynamo equation converge to those
of a time-dependent linear system of ordinary differential equations (ODEs). A set of fundamental solutions to this
ODE then serves as an asymptotically emerging set of aperiodic eigenmodes for the dynamo equation. Out of these
aperiodic eigenmodes, the fastest growing one will dominate for fast dynamos.

If v(x, t) is continuous and periodic in time, then so is the ODE on the inertial manifold. As a result, for arbitrary
smallε > 0, classic finite-dimensional Floquet theory guarantees an asymptotic expansion

B(x, t) =
N∑

k=1

ck eλkt [b0
k(x, t) + tb1

k(x, t) + · · · + tl(k)bl(k)
k (x, t)] + R(x, t), ‖R(t)‖H1 ≤ ε exp[−νt],

wherebj

k(x, t) are functions that areT -periodic in time and only depend on the velocity fieldv(x, t) and the domain
Ω. The constantsck depend on the initial conditionB0(x); the indexl(k) ≥ 0 is an integer-valued function ofk;
the integerN ≥ 1 and the constantν > 0 both depend onε. It follows that any fast dynamo action is necessarily
confined to the inertial manifold.

If the Floquet exponents of the ODE on the inertial manifold are all simple, thenl(k) = 0 for all k. In that case,
the eigenmode with the largestλk prevails asymptotically. We show that such an eigenmodes generates the Floquet
solution

B∞(x, t) = e(α+iβ)t e0(x, t), (5)

where the complex functione0(x, t) is T -periodic in time, and the real constantsα andβ satisfy

α = −η‖∇e0‖2 + Re〈e0, (e∗
0 · ∇)v〉

‖e0‖2
, β = α‖Ree0‖2 + η‖Re∇e0‖2 − 〈Ree0, (Ree0 · ∇)v〉

〈Ree0, Im e0〉
,

with the star referring to complex conjugation, the overbar denoting averaging over one time-period, and〈·, ·〉
denotingL2 inner product (for the precise definition, see(9)). As formula(5) shows,B∞(x, t) is time-periodic if
2π/ρ andT are rationally dependent, and is quasiperiodic otherwise.

These results establish a close relationship between thestrange eigenmodesobserved by Pierrehumbert[19] for
the time-periodic advection–diffusion equation, and the wild eigenmodes described by Otani[17] and Childress and
Gilbert [2] for the dynamo equation. In particular, both types of complex recurrent patterns arise from convergence
to Floquet eigenmodes on an inertial manifold (cf.[14]).
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2. Notation and definitions

In this section we collect the main ingredients we need to state our main result.

2.1. Boundary conditions and function spaces

We assume the spatially periodic boundary conditions

v(x + L, t) = v(x, t), B(x + L, t) = B(x, t) (6)

for Eq. (1). HereL = (lL1, mL2, nL3) is an arbitrary vector with integers(l, m, n) and real numbersLi. We shall
use the notationΩ = [0, L1] × [0, L2] × [0, L3] ⊂ R

3 for the basic three-dimensional cell over whichv andB are
defined. The measure (area or volume) ofΩ is given by

κ = mes(Ω) =
∫

Ω

dV.

Appended with the boundary conditions, the dynamoequation (1)assumes the form

Bt + (v · ∇)B = η∇2B + (B · ∇)v, ∇ · B = 0, B(x + L, t) = B(x, t), B(x, 0) = B0(x), (7)

wherev is a spatiallyL-periodic incompressible velocity field.
Direct integration of(7) shows that(d/dt)

∫
Ω

B dV ≡ 0, i.e., the spatial mean of the initial conditionB0(x) is
preserved in time. As is customary in the case of periodic boundary conditions (cf.[2]), we shall assume

〈B0〉 = 1

κ

∫
Ω

B dV = 0 (8)

throughout most of this paper. The case of nonzero〈B0〉 is discussed inSection 3.5.
In order to define an appropriate phase space for the evolutionequation (7), we first recall the notationHn(Ω)

for the Sobolev space of scalar-valued square-integrable functions that admitn square-integrable distributional
derivatives onΩ (see, e.g.[1]). To accommodate the spatially periodic boundary conditions(6), we also recall the
notion of the spaceHn

per(Ω), which is composed of functions that are triplyL-periodic in the spatial variablex, and

are elements ofHn(U) for any open bounded setU ⊂ Ω. By definition, we haveL2
per(Ω) = H0

per(Ω).
We consider the evolutionequation (7)defined for vector-valued functionsB whose coordinate components are

all in H1
per(Ω), and whose divergence and mean vanish onΩ. Specifically, in dealing with(7), we shall use the

function spaces

V(Ω) =
{

B ∈ H1
per(Ω) × H1

per(Ω) × H1
per(Ω)|∇ · B = 0,

∫
Ω

B dV = 0
}

,

H(Ω) = the closure ofV(Ω) in L2
per(Ω) × L2

per(Ω) × L2
per(Ω),

and the inner product

〈B1, B2〉 =
∫

Ω

B1 · B2 dV (9)

on H(Ω). For notational simplicity, we also introduce

L(Ω) = L2
per(Ω) × L2

per(Ω) × L2
per(Ω).
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As discussed by Temam[22], the orthogonal complement ofH(Ω) in L(Ω) can be written as

H⊥(Ω) = {∇φ|φ ∈ C1(Ω̄, R)}, (10)

where{·} refers to the closure of{·} in L(Ω).

2.2. The Stokes operator

In our analysis, it will be convenient to eliminate the second equation in(1) by projecting the first equation in
(1) onto the space of divergence-freeB fields. Below we survey the properties of the corresponding projected∇2

operator.
Let P : L(Ω) → H(Ω) denote the orthogonal projection fromL(Ω) to H(Ω). Then the Stokes operatorA is

defined as

A = −P∇2 (11)

on the domain

D(A) = H(Ω) ∩ (H2
per(Ω) × H2

per(Ω) × H2
per(Ω))

of the phase spaceH(Ω).
Temam[22] shows thatA is a self-adjoint positive operator with an inverse that is compact onH(Ω) (see also

[21]). As a result,A has an unbounded set of discrete eigenvalues 0< µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · with the
corresponding real eigenfunctionse1(x), . . . , en(x), . . . forming an orthonormal basis inH(Ω).

For later use, we point out that the eigenvalues ofA and−∇2 coincide on the spaceH(Ω). To see this, we select an
eigenvalueλ of theA with the corresponding eigenvectore. Then, by the definition ofA, there exists∇φ ∈ H⊥(Ω)

such that−∇2e = Ae + ∇φ. Therefore, for anyb ∈ H(Ω), we have

〈−∇2e, b〉 = 〈−P∇2e + ∇φ, b〉 = 〈Ae, b〉 = 〈λe, b〉,
implying thatλ is an eigenvalue of−∇2. Conversely, if−∇2e = λe ∈ H(Ω), then−P∇2e = λPe = λe, therefore
λ is an eigenvalue ofA.

3. Main results

3.1. Invariant and inertial manifolds

We now eliminate the second equation from(7) by applying the projectionP to both sides of the first equation
in (7). We obtain the equivalent set of equations

Bt = −ηAB − P [(v · ∇)B] + P [(B · ∇)v], B(x, 0) = B0(x) (12)

on the state spaceH(Ω).
We aim to decompose(12) into a finite-dimensional and an infinite-dimensional invariant subsystem, with the

former system describing the evolution of time-dependent eigenmode-type solutions, and with the latter system
admitting exponentially decaying solutions.

Forv = 0, any finite-dimensional eigenspace ofA and its orthogonal complement render the above decomposition
of H(Ω). Indeed,

H(Ω)+n = span{ei}ni=1, H(Ω)−n = span{ei}∞i=n

are invariant subspaces forEq. (12)for vanishingv.
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For v �= 0, the above eigenspaces are no longer invariant. To decompose the dynamo equation in this case, we
seek time-dependent invariant subspaces as perturbations of the slightly smaller eigenspaces

V(Ω)+n = H(Ω)+n ∩ V(Ω), V(Ω)−n = H(Ω)−n ∩ V(Ω),

with the norm inherited fromV(Ω). A perturbative approach is appropriate, because the second and third terms
on the right-hand side of(12) involve operators whose norm onV(Ω)−n is much smaller than the norm of−ηA,
provided thatn is selected large enough.

To state our results on the invariant decomposition of(12), we define the quantities

u0 = sup
(x,t)∈Ω×R

|∇v(x, t)|, v0 = sup
(x,t)∈Ω×R

|v(x, t)|, w0 = v0 + u0µ
−1/2
1 .

We assume thatw0 is bounded.
By a time-dependentinvariant manifoldM(t) for the dynamo equation we mean a one-parameter family of

manifolds{M(t) ⊂ V(Ω)}t∈R such thatB(t) ∈M(t) for somet impliesB(t + s) ∈M(t + s) for all s ∈ R.

Theorem 3.1.

(i) Suppose that for some integer N, the eigenvaluesµN and µN+1 of the Stokes operator A satisfy the gap
condition

2√
µN+1 − √

µN

+ 1√
µN+1

<
η

w0
. (13)

Then the dynamo equation admits an N-dimensional linear invariant manifoldM(t) and a codimension-N
linear invariant manifoldN(t) such that

M(t) ⊕N(t) = V(Ω) (14)

for any t. The manifoldsM(t) andN(t) depend continuously on t. Furthermore, if v(x, t) is periodic or
quasiperiodic in time, then so areM(t) andN(t).

(ii) Assume further that the stronger gap condition

2√
µN+1 − √

µN

+ 1√
µN+1

<
η

3w0
(15)

holds. ThenM(t) is an inertial manifold: it is an N-dimensional invariant manifold that attracts all solutions
of (12).

We prove this theorem inAppendices A and B.
Theorem 3.1enables us to decompose the dynamo equations into a finite-dimensional system with components

inM(t), and an infinite-dimensional system with exponentially decaying components inN(t). BecauseM(t) is a
linear subspace and(12) is a linear equation, solutions onM(t) satisfy a finite-dimensional linear ODE.

Koksch and Siegmund[10–12] show the existence of inertial manifolds for a general class nonautonomous
nonlinear evolution equations by assuming the existence of certain invariant projections for the linear semiflow.
Our proof ofTheorem 3.1shows that such invariant projections do exist for the dynamo equation (see the operators
LN(t) andL∞(t) defined inAppendices A and B). As a result, the inertial manifolds we have constructed will
survive under uniformly bounded nonlinear perturbations toEq. (12)by the results of Koksch and Siegmund[11].
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3.2. Completeness of Floquet eigenmodes

If the linear ODE governing the dynamics onM(t) is continuous andT -periodic int, then its solutions are linear
combinations ofFloquet solutionsof the form

B(t) = eλt [f0(t) + tf1(t) + · · · + tlfl(t)], (16)

wherel is a nonnegative integer,λ a complex parameter, andfk(t) are continuousT -periodicH(Ω)-valued functions.
The exponentλ is usually called theFloquet exponentcorresponding to theeigenmodef0(t)+ tf1(t)+· · ·+ tlfl(t).

The integerl is the dimension of the Jordan block corresponding toλ in the canonical form of the matrixA in the
Floquet decomposition

B(t) = eAt �(t)B(0),

where�(t) is a continuous,T -periodic matrix-valued function.
The above imply that an arbitrary solution of(12) attains an asymptotically valid Floquet decomposition while

it converges toM(t). The theorem below states this result in precise terms.

Theorem 3.2. Assume that the velocity fieldv(x, t) is T-periodic and continuous in time. Assume further that for
any positive integerN∗, there exists an integerN ≥ N∗ such that the gap condition(15) is satisfied. Then, for any
ε > 0, there exist an integerN(ε) and eigenmodes

ek(x, t) = f0
k (x, t) + tf1

k (x, t) + · · · + tl(k)f l(k)
k (x, t), k = 1, . . . , N(ε)

with Floquet exponentsλk, such that any solutionB(x, t) of Eq. (12)can be written as

B(x, t) =
N(ε)∑
k=1

ck eλktek(x, t) + R(x, t), (17)

‖R(t)‖V(Ω) ≤ ε exp[−(0.5ηµN(ε)+1 − 4πη−1 e−1/2w2
0)t], (18)

where the coefficientsck depend on the initial conditionB0(x).

We prove this theorem inAppendix C.
The proofs ofTheorems 3.1 and 3.2are motivated by the work of Chow et al.[3] on Floquet solutions of

one-dimensional parabolic PDEs. An alternative approach to infinite-dimensional Floquet theory is offered by
Kuchment[13]. While evolution equations of the type(1)are formally covered by the results in[13], the completeness
of Floquet solutions in the dynamo equation only follows from those results forv(x, t) ≡ 0 (see[14] for details).

3.3. Generic form of Floquet solutions

We now consider the generic case in which the magnetic fieldB(x, t) converges to a simple Floquet solution, i.e.,
to one withl = 0 in (16). From now on, an overbar will refer to time-averaging over the interval [0, T ], i.e., we write

ā = 1

T

∫ T

0
a(t) dt.

We have the following result on the relation between Floquet exponents and the corresponding Floquet eigenmodes.

Theorem 3.3. For a generic, two-dimensional, time-periodic, incompressible velocity field defined on the spatial
domainΩ, the magnetic fieldB(x, t) converges to a Floquet solution of the form

B∞(x, t) = e(α+iβ)t e0(x, t), (19)
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wheree0(x, t) and∇e0(x, t) are square-integrable complex functions for allt > 0, and

α = −η‖∇e0‖2 + Re〈e0, (e∗
0 · ∇)v〉

‖e0‖2
, β = α‖Ree0‖2 + η‖Re∇e0‖2 − 〈Ree0, (Ree0 · ∇)v〉

〈Ree0, Im e0〉
. (20)

We prove this theorem inAppendix D.
Eq. (19)shows thatB∞ is either time-periodic orquasiperiodic. The latter case occurs if Im(λ0), the imaginary

part of the exponent in(19), is nonzero and rationally independent of 2π/T , whereT is the time-period ofv. If
Im(λ0) and 2π/T are rationally dependent, thenB∞ is again time-periodic, but with a period equal to the maximum
of 2π/Im(λ0) andT . Therefore, 2π/Im(λ0) > T results in asubharmonicFloquet solution.

3.4. Evaluating the gap conditions

Theorems 3.1 and 3.2rely on spectral gap conditions for the Stokes operatorA. Here we evaluate these conditions
for two specific types of spatial domains.

3.4.1. Example: two-dimensional rectangular domains
Consider the two-dimensional square domainΩ = [0, 2π] × [0, 2π]. The eigenvectors of the operator−∇2 on

L2(Ω) have the form

e = (e1, e2) = (φ11(lx)φ12(my), φ21(lx)φ22(my)),

whereφij (p) is either sin(p) or cos(p), andl, m are nonnegative integers. The eigenvalue corresponding toe on
L2(Ω) can be written as

µ(l, m) = l2 + m2.

When we restrict the operator−∇2 to the function spaceH(Ω), we have to enforce the divergence-free condition
∇ · e = 0 on the eigenvectors(22). This implies the relation

lφ′
11(lx)φ12(my) + mφ21(lx)φ′

22(my) = 0,

which then gives

al + bm= 0,

wherea, b = 1, 0, or−1. If a = b = 0, thenl = m andµ(l, m) = l2. Otherwise,µ(l, m) = l2+m2 = (bm)2 = 2l2.
Since all numbers of the forml2 are eigenvalues, the largest spectral gap is this example is at most one. The

largest spectral gap would be strictly smaller than one if there were eigenvalue of the form 2m2 within every adjacent
eigenvalue pair(l2, (l + 1)2). We want to show that one can find arbitrary large such eigenvalue pairs with no other
eigenvalue falling between them. In other words, we want to show that for any integerN, there exists anl ≥ N such
that

√
2m /∈ [l, l + 1] for all integersm.

Assuming the contrary, we see that there must exist an integerN such that for any integeri ≥ 0, there exists
another integerm(i) such that

√
2m(i) ∈ [N + i, N + i + 1]. Sincem(i) �= m(i − 1) andm(i) ≥ m(i − 1), we

obtainm(i) ≥ m(i − 1) + 1 for i = 1, 2, . . . . We then have

m(i) ≥ m(0) + i for i = 1, 2, . . . .

Since
√

2m(0) ∈ [N, N + 1] and
√

2m(i) ∈ [N + i, N + i + 1], we obtain [
√

2m(0),
√

2m(i)] ⊂ [N, N + i + 1].
Consequently,

√
2m(i) − √

2m(0) ≤ N + i + 1 − N = i + 1, implying
√

2 ≤ (i + 1)/(m(i) − m(0)) ≤ (i + 1)/i

for anyi. This last inequality, however, fails for large enoughi, which establishes a contradiction.
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We conclude that for any integerN, there existsn ≥ N such that
√

µn+1 − √
µn =

√
(l + 1)2 −

√
l2 = 1. Thus

the gap condition(15)holds for an appropriate choice ofn > N if
1√

µn+1
<

η

3w0
− 2.

Sinceµn → ∞ asn → ∞, this last inequality will hold for large enoughn if

w0 < 1
6η. (21)

Consequently, for any integerN > 0 we can find another integern > N, such that the gap condition(21)is satisfied
for n.

3.4.2. Example: three-dimensional cubic domain
As another example, consider the three-dimensional cubic domainΩ = [0, 2π] × [0, 2π] × [0, 2π]. The eigen-

vectors of the operator−∇2 on L2(Ω) have the form

e = (e1, e2, e3) = (φ11(lx)φ12(my)φ13(nz), φ21(lx)φ22(my)φ23(nz), φ31(lx)φ32(my)φ33(nz)), (22)

whereφij (p) is either sin(p) or cos(p), andl, m, n are nonnegative integers. The eigenvalue corresponding toe
on L2(Ω) can be written as

σ(l, m, n) = l2 + m2 + n2. (23)

Enforcing the divergence-free condition∇ · e = 0 on the eigenvectors(22)gives

lφ′
11(lx)φ12(my)φ13(nz) + mφ21(lx)φ′

22(my)φ23(nz) + nφ31(lx)φ32(my)φ′
33(nz) = 0,

which then yields

al + bm+ cn = 0, (24)

wherea, b, c = 1, 0 or−1. For instance, if

e1 = sin(lx) cos(my) sin(nz), e2 = cos(lx) sin(my) sin(nz), e1 = cos(lx) cos(my) cos(nz),

then(24)givesl + m − n = 0.
From(23) and (24)we find that the eigenvalues of−∇2 on the spaceH(Ω) are equal to eitherµ(l, m, n) = l2+m2

if c = 0, or to

µ(l, m, n) = l2 + m2 + n2 = l2 + m2 + (cn)2 = l2 + m2 + (al + bm)2 = 2l2 + 2m2 + 2ablm, if c �= 0.

Using the above result, we plot the functiong(n) = 2/(
√

µn+1 − √
µn) + 1/

√
µn+1 in Fig. 1for integers up to

n = 50. The figure shows thatg(2) < 4, therefore, if the velocity fieldv and diffusivityη satisfy

w0 < 1
12η,

then the gap condition(15) holds forN = 2. As a result, a two-dimensional inertial manifold exists for velocity
fields small enough in norm.

3.5. Magnetic fields of nonzero mean

For the proofs of our main results, the zero mean condition(8) is essential. (A main tool used in our estimates,
the Poincaré inequality, would not be valid otherwise.) In addition, the zero mean condition is preferred for physical
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Fig. 1. The functiong(n) for n = 1, . . . , 50.

reasons in the case of the periodic boundary conditions (cf.[2]). For completeness, however, we now discuss the
implications ofTheorems 3.1 and 3.2for initial conditions of nonzero mean.

If 〈B0〉 �= 0, then we let

B̃ = B − 〈B0〉 (25)

and observe that̃B satisfies

B̃t + (v · ∇)B̃ = η∇2B̃ + (B̃ · ∇)v + (〈B0〉 · ∇)v, ∇ · B̃ = 0, B̃(x, t0) = B0(x) − 〈B0〉 (26)

and that〈B̃〉 ≡ 0 holds for all times. Thus the evolution ofB̃ can be understood by adding a source-type term to the
right-hand side of the mean-zero dynamoequation (7).

Let B̂ be the solution of the dynamo equation with initial dataB0(x) − 〈B0〉:
B̂t + (v · ∇)B̂ = η∇2B̂ + (B̂ · ∇)v, ∇ · B̂ = 0, B̂(x, t0) = B0(x) − 〈B0〉.

Also, let B̄ be the solution of the special initial value problem

B̄t + (v · ∇)B̄ = η∇2B̄ + (B̄ · ∇)v + (〈B0〉 · ∇)v, ∇ · B̄ = 0, B̄(x, t0) = 0. (27)

We then have

B̃ = B̂ + B̄, (28)

whereB̃(x, t) is the solution of(26).
To describe the structure ofB̄, we consider the three-parameter family of PDEs

B̄j
t + (v · ∇)B̄j = η∇2B̄j + (B̄j · ∇)v + (ej · ∇)v, ∇ · B̄j = 0, B̄j(x, t0) = 0, (29)

wheree1 = (1, 0, 0), e2 = (0, 1, 0), ande3 = (0, 0, 1).
Multiplying the jth PDE in the family(29) by 〈Bj

0〉 (the jth coordinate component of the mean〈B0〉), then
summing overj, we find that

B̄ = 〈B1
0〉B̄1 + 〈B2

0〉B̄2 + 〈B3
0〉B̄3 (30)
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is the solution of the special initial value problem(27). ThusB̄ always lies in a time-dependent finite-dimensional
invariant subspaceE(t) of dimension

M = dim[span{B̄1, B̄2, B̄3}].
HereM is zero for mean-zero initial data, but varies between 1 and 3 otherwise.

From(25), (28) and (30)we conclude that the full magnetic fieldB(x, t) is the sum of the mean〈B0〉 of the initial
dataB0, the solutionB̄ = 53

j=1〈Bj

0〉B̄j obtained from(29) with zero initial data, and the solution̂B(x, t) of the
dynamo equation with initial dataB0(x) − 〈B0〉.

Now the solution component̂B(x, t) admits a complete Floquet expansion under the gap condition ofTheorem
3.2, thus for anyε > 0, we have

B(x, t) =
3∑

j=1

〈Bj

0〉[ej + B̄j(x, t)] +
N(ε)∑
k=1

eλkt ek(x, t) + R(x, t),

‖R(t)‖V(Ω) ≤ ε exp[−(ηµN(ε)+1 − 4π2w2
0)t],

where the functions̄Bj(x, t), as solutions of(29), only depend on the velocity fieldv(x, t) and the domainΩ. Thus
magnetic fields of nonzero mean converge to anN(ε) + M-dimensional time-dependent inertial manifold.

4. Conclusions

In this paper, we have examined whether solutions of the time-periodic dynamo equation indeed admit an asymp-
totic Floquet decomposition, as often assumed. We have proved that they do, provided that the Stokes operator
associated with the dynamo equation has large enough spectral gaps. The Floquet modes span a time-periodic
inertial manifoldM(t) to which all solutions of the dynamo equations converge. Instabilities associated with fast
dynamo action are therefore always confined toM(t).

The divergence-free property of the magnetic fieldB(x, t) forces the Stokes operator to have fewer eigenvalues
on the spaceH(Ω) than the Laplacian operator has onL2(Ω). For this reason, our spectral gap conditions are less
restrictive than analogous conditions for the time-periodic scalar advection–diffusion equation (see[14]).

We have shown how our gap conditions can be verified for two types of spatial domains: two-dimensional
rectangles and three-dimensional cubes. For these types of domains, the spectral gap conditions translate to a
smallness requirement on the velocity field. These requirements can be weakened by sharpening the general estimates
in our proofs for specific geometries and velocity fields.

By the smoothing property of the parabolic dynamo equations (see[8]), any square-integrable initial dataB0(x) =
B(x, t0) becomes a function inH(Ω) immediatelyafter the initial timet0. Theorems 3.1 and 3.2are therefore strong
enough to apply for any realistic choice of the initial magnetic field.

Strictly speaking, we have proved the existence of the inertial manifoldM(t) for general velocity fields that
are aperiodic in time. In such cases, the solutions of the dynamo equation tend to a finite number of aperiodic
eigenmodes that form a fundamental set of solutions for a linear system of ODEs onM(t).

We have also derived a general expression for Floquet eigenmodes onM(t) for the case of time-periodic velocity
fields. Our results further underline the need to study eigenmodes of discrete dynamo maps that serve as models of
a Poincaré map of a time-periodic flow (see[7]).

Due to mathematical and physical considerations, the magnetic fieldB is usually assumed to have zero spatial mean
in the case of periodic boundary conditions. We have briefly discussed the case of nonzero spatial mean, concluding
that solutions then converge to a larger inertial manifold that contains up to three eigenmodes that are not Floquet type.



308 W. Liu, G. Haller / Physica D 194 (2004) 297–319

Little is known analytically about the importantη → 0 limit of the weakest Floquet exponentλ0 = α+ iβ. Moffatt
and Proctor[15] show that a topological constraint, the conservation of magnetic helicity, precludes a positiveα for
η = 0.

In theη → 0 limit, our gap conditions require unbounded spectral gaps and hence break down. We still believe
that the framework presented here should be helpful in proving the existence of fast dynamos: one hopes that a
refinement of the estimates isAppendices A and Bleads to a uniform bound on the dimension of the inertial manifold
in theη → 0 limit. In that case, any fast dynamo behavior is captured by a finite-dimensional ODE.
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Appendix A

Here we prove statement (i) ofTheorem 3.1. We shall only construct the manifoldM(t) explicitly, because the
construction ofN(t) is analogous.

A.1. Some definitions

We start by introducing the constants

ρ = 1
2(µN+1 + µN),

that measure the mean of adjacent eigenvalues of the Stokes operatorA. These constants will simplify our notation
in the upcoming estimates.

We letP+
n andP−

n denote the orthogonal projections fromH(Ω) to H(Ω)+n and toH(Ω)−n , respectively, and let

A+
n = A|H(Ω)+n , A−

n = A|H(Ω)−n ,

denote the appropriate restrictions ofA to H(Ω)+n andH(Ω)−n .
We also recall that for anyB = ∑∞

i=1 aiei(x), the fractional powerA1/2 of A is defined as

A1/2B =
∞∑
i=1

aiµ
1/2
i ei(x),

with the domain

D(A1/2) =
{

B =
∞∑
i=1

aiei(x)

∣∣∣∣∣
∞∑
i=1

|ai|2i µi < ∞
}

,

as discussed, for example, by Henry[8] and Sell and You[22, Section 3.7].
By (10), for anyB ∈ D(A), we have

∇2B = P∇2B + ∇φ
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for some∇φ ∈ H⊥(Ω). We then obtain

‖∇B‖2
L2 = −

∫
Ω

B · ∇2B dA =
∫

Ω

B · (AB − ∇φ) dA =
∞∑
i=1

a2
i µi = ‖A1/2B‖2

L2. (A.1)

By a density argument, one can show that(A.1) also holds for anyB = ∑∞
i=1 aiei ∈ D(A1/2). As a result, we

obtain thatA1/2B remains bounded in theL2 norm precisely whenB remains bounded in theH1 norm. Therefore,
D(A1/2) = V(Ω).

Finally, we define the function space

X−
ρ =

{
f : (−∞, 0] → V(Ω)|f ∈ C0, sup

t≤0
eηρt‖f‖V(Ω) < ∞

}
(A.2)

with the norm

‖f‖X−
ρ

= sup
t≤0

eηρt‖f‖V(Ω).

This complete metric space contains functions that grow slower in backward time than e−ηρt does. If nonempty,X−
ρ

is an invariant set for(12)by definition.
We want to construct anN-dimensional time-dependent invariant manifoldM(t) for Eq. (12)with solutions that

do not grow faster than e−ηρt in backward time. In other words, we want to solve(12) on the spaceX−
ρ to obtain a

finite-dimensional manifold of solutions that either grow, or decay slower to the zero solution than other solutions do.

A.2. Integral equation formulation

We introduce a phase parameterθ ∈ R to account for solutions launched at an arbitrary initial timet0 = θ and
rewrite(12)as follows

Ut = −ηAU − P [(v(θ + t) · ∇)U] + P [(U · ∇)v(θ + t)]. (A.3)

(Recall that in the definition ofX−
ρ , the time variablet is restricted to nonpositive values.) The manifoldM(t)

will be constructed as the set of points through which the solutions of(A.3) do not grow faster than e−ηρt does as
t → −∞.

For some fixed but yet unspecified integerN, we splitU into two components: one inH(Ω)+N and one inH(Ω)−N .
In terms of these two solution components,(A.3) splits into a coupled set of two equations. Using the variation of
constants formula, and taking the limitt0 → −∞ for the initial timet0 of the solution component inH(Ω)−N , one
obtains the integral equation

U(t) = e−ηA+
Ntp +

∫ t

0
e−ηA+

N(t−s)P+
N {−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

+
∫ t

−∞
e−ηA−

N+1(t−s)P−
N+1{−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds, (A.4)

with p = P+
N U(0). This integral equation is equivalent to the restriction of the dynamo equation to the setX−

ρ .

A.3. Solving the integral equation

Defining the mapF by the formula

F(U, p, θ) = e−ηA+
Ntp +

∫ t

0
e−ηA+

N(t−s)P+
N {−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

+
∫ t

−∞
e−ηA−

N+1(t−s)P−
N+1{−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds, (A.5)
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we observe that solutions of(A.4) are(p, θ)-dependent fixed points ofF(·, p, θ). To prove thatF(·, p, θ) has a unique
fixed point, we shall show thatF(·, p, θ) is a contraction mapping from the spaceX−

ρ into itself.
To estimate the first term on the right-hand side of(A.5), note that

‖e−ηA+
Ntp‖V(Ω) ≤ e−ηµNt‖p‖V(Ω). (A.6)

To estimate the remaining two integral terms inF(U, p, θ), we shall use three ingredients. First, we recall that (see,
e.g.[4, Chapter 2, Lemma 1.1])

‖A1/2 e−ηA+
Nt‖L2 ≤ µ

1/2
N e−ηµNt, t ≤ 0. (A.7)

Second, we recall from Sell and You[22, p. 94]the inequality

‖(ηA)1/2 e−ηA−
N+1t‖L2 ≤ ϕN+1(t) =




1√
2et

0 < t ≤ 1

2ηµN+1
,

√
ηµN+1 e−ηµN+1t 1

2ηµN+1
< t < ∞

(A.8)

and, forλ < ηµN+1, the relations∫ ∞

0
ϕN+1(t) dt = 2√

eηµN+1
,

∫ ∞

0
ϕN+1(t) eγt dt ≤ 1√

ηµN+1
+

√
ηµN+1

ηµN+1 − γ
. (A.9)

Third, by(A.1), we have∥∥∥∥
∫ t

0
e−ηA+

N(t−s)P+
N {−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

∥∥∥∥
V(Ω)

=
∥∥∥∥A1/2

∫ t

0
e−ηA+

N(t−s)P+
N {−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

∥∥∥∥
L2

. (A.10)

Using(A.7) and (A.10), we estimate the second term in the definition ofF(U, p, θ) as follows:∥∥∥∥
∫ t

0
e−ηA+

N(t−s)P+
N {−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

∥∥∥∥
V(Ω)

≤
∫ 0

t

µ
1/2
N eηµN(s−t)‖ − P((v(θ + s) · ∇)U(s)) + P((U(s) · ∇)v(θ + s))‖L2 d

≤
∫ 0

t

µ
1/2
N eηµN(s−t)(v0‖A1/2U(s)‖L2 + u0‖U(s)‖L2) ds (note thatµ1/2

1 ‖U‖L2 ≤ ‖A1/2U‖L2)

≤ w0

∫ 0

t

µ
1/2
N eηµN(s−t)‖U(s)‖V(Ω) ds ≤ w0µ

1/2
N ‖U‖X−

ρ

∫ 0

t

eηµN(s−t)−ηρs ds

= w0µ
1/2
N

η(ρ − µN)
‖U‖X−

ρ
e−ηµNt(eη(µN−ρ)t − 1) ≤ w0µ

1/2
N

η(ρ − µN)
‖U‖X−

ρ
e−ηρt. (A.11)

Using(A.8)–(A.10), it then follows that∥∥∥∥
∫ t

−∞
e−ηA−

N+1(t−s)P−
N+1{−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

∥∥∥∥
V(Ω)

≤
∫ t

−∞
η−1/2ϕN+1(t − s)‖ − P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]‖L2 ds

≤ w0

∫ t

−∞
η−1/2ϕN+1(t − s)‖U(s)‖V(Ω) ds ≤ w0‖U‖X−

ρ

∫ t

−∞
η−1/2ϕN+1(t − s) e−ηρs ds

= w0η
−1/2‖U‖X−

ρ
e−ηρt

∫ ∞

0
ϕN+1(s) eηρs ds ≤ w0η

−1‖U‖X−
ρ

(
1√

µN+1
+

√
µN+1

µN+1 − ρ

)
e−ηρt. (A.12)
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The estimates(A.6), (A.11) and (A.12)together imply thatF(U, p, θ) is bounded, and henceF(U, p, θ) indeed
maps intoX−

ρ .
Next, we want to show thatF defines a contraction mapping onX−

ρ . From(A.11) and (A.12)we see that for any
U1, U2 ∈ X−

ρ ,

‖F(U1, p, θ) − F(U2, p, θ)‖X−
ρ

≤
(

2w0(
√

µN + √
µN+1)

η(µN+1 − µN)
+ w0

η
√

µN+1

)
‖U1 − U2‖X−

ρ
. (A.13)

But (A.13) and condition(13) together establish thatF is a contraction mapping onX−
ρ .

As a contraction mapping on a complete metric space,F has a unique fixed pointU(t; p, θ) for any θ andp,
implying a unique solution for(A.4) in X−

ρ . Denote

K(w0, η, µN+1, µN) = 2w0(
√

µN + √
µN+1)

η(µN+1 − µN)
+ w0

η
√

µN+1
.

Then for such a fixed pointU(t; p, θ), the estimates(A.6) and (A.13)give

‖U‖X−
ρ

= ‖F(U, p, θ)‖X−
ρ

≤ ‖F(U, p, θ) − F(0, p, θ)‖X−
ρ

+ ‖F(0, p, θ)‖X−
ρ

≤ K(w0, η, µN+1, µN)‖U‖X−
ρ

+ ‖p‖V(Ω),

which in turn gives

‖U‖X−
ρ

≤ 1

1 − K(w0, η, µN+1, µN)
‖p‖V(Ω). (A.14)

Then, based on(A.12) and (A.14), the linear operator

LN(t + θ)p =
∫ t

−∞
e−ηA−

N+1(t−s)P−
N+1{−P [(v(θ + s) · ∇)U(s)] + P [(U(s) · ∇)v(θ + s)]} ds

=
∫ 0

−∞
eηA−

N+1τP−
N+1{−P [(v(θ + t + τ) · ∇)U(t + τ)] + P [(U(t + τ) · ∇)v(θ + t + τ)]} dτ

(A.15)

satisfies the estimate

‖LN(t + θ)p‖V(Ω) ≤ K(w0, η, µN+1, µN)‖U‖X−
ρ

≤ K(w0, η, µN+1, µN)

1 − K(w0, η, µN+1, µN)
‖p‖V(Ω),

which implies

‖LN(t + θ)‖B(V(Ω),V(Ω)) ≤ K(w0, η, µN+1, µN)

1 − K(w0, η, µN+1, µN)
. (A.16)

In addition, ifv(x, t) is T -periodic int, then so isU(s; p, θ) in θ by (A.4). Hence, by(A.15), L(t + θ) is T -periodic
in θ, and so is the set

M(t + θ) = {p + LN(t + θ)p|p ∈ V(Ω)+N}. (A.17)

A.4. Invariance ofM(t)

To show thatM(t) is an invariant manifold forEq. (12), it suffices to show that

U(t; p, θ) = P+
N U(t; p, θ) + LN(t + θ)P+

N U(t; p, θ). (A.18)

For simplicity, we now fixθ = 0 in our argument. The same argument carries through for arbitrary fixedθ.
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Using the variable changeτ = s − t, we obtain from(A.4) that

U(t; p, 0) = e−ηA+
Ntp +

∫ t

0
e−ηA+

N(t−s)P+
N {−P [(v(s) · ∇)U(s; p, 0)] + P [(U(s; p, 0) · ∇)v(s)]} ds

+
∫ 0

−∞
eηA−

N+1τP−
N+1{−P [(v(t + τ) · ∇)U(t + τ; p, 0)] + P [(U(t + τ; p, 0) · ∇)v(t + τ)]} dτ.

(A.19)

Replacingt by t + τ in Eq. (A.4)gives

U(t + τ; p, 0) = e−ηA+
N(t+τ)p +

∫ t+τ

0
e−ηA+

N(t+τ−s)P+
N {−P [(v(s) · ∇)U(s; p, 0)]

+ P [(U(s; p, 0) · ∇)v(s)]} ds +
∫ t+τ

−∞
e−ηA−

N+1(t+τ−s)P−
N+1{−P [(v(s) · ∇)U(s; p, 0)]

+ P [(U(s; p, 0) · ∇)v(s)]} ds.

We pass to the new variabler = s − t of integration to find that

U(t + τ; p, 0) = e−ηA+
NτP+

N U(t; p, 0) +
∫ τ

0
e−ηA+

N(τ−r)P+
N {−P [(v(t + r) · ∇)U(t + r; p, 0)]

+ P [(U(t + r; p, 0) · ∇)v(t + r)]} dr

+
∫ τ

−∞
e−ηA−

N+1(τ−r)P−
N+1{−P [(v(t + r) · ∇)U(t + r; p, 0)]

+ P [(U(t + r; p, 0) · ∇)v(t + r)]} dr,

which implies that

U(t + τ; p, 0) = U(τ; P+
N U(t; p, 0), t).

It follows, therefore, from(A.19) that

U(t; p, 0) = P+
N U(t; p, 0) +

∫ 0

−∞
eηA−

N+1τP−
N+1{−P [(v(t + τ) · ∇)U(τ; P+

N U(t; p, 0), t)]

+ P [(U(τ; P+
N U(t; p, 0), t) · ∇)v(t + τ)]} dτ = P+

N U(t; p, 0) + LN(t)P+
N U(t; p, 0),

thus(A.18) indeed holds. Note that the uniqueness of the fixed point of the map(A.5) has been crucial in showing
the invariance ofM(t).

To complete the proof of statement (i) ofTheorem 3.1, it remains to show that the direct sum decomposition(14)
holds. This is relegated toAppendix B.

Appendix B

Here we complete the proof of statement (i) ofTheorem 3.1, and also prove statement (ii). We shall introduce
new coordinates that align with the manifoldsM(t) andN(t), then show that the coordinate in the direction ofN(t)

decays to zero exponentially along solutions of the dynamo equation.
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B.1. Preliminary estimates and lemmas

We begin by noting that the manifoldN(t) admits a representation analogous to that ofM(t) given in(A.17):

N(t + θ) = {q + L∞(t + θ)q|q ∈ V(Ω)−N+1}, (B.1)

whereL∞(t + θ) : V(Ω)−N+1 → V(Ω)+N is a bounded linear operator that depends continuously ont, and satisfies
the estimate (cf.(A.16))

‖L∞(t + θ)‖B(V(Ω),V(Ω)) ≤ K(w0, η, µN+1, µN)

1 − K(w0, η, µN+1, µN)
. (B.2)

We now fixθ = 0 for simplicity; the arguments below are similar forθ �= 0.
With the help ofL∞(t), we define the linear operatorΛN(t) : V(Ω) → V(Ω) by letting

ΛN(t)B = LN(t)p + L∞(t)q,

with p = P+
N B ∈ V(Ω)+N andq = P−

N+1B ∈ V(Ω)−N+1. If the stronger gap condition(15)is satisfied, then estimates
(A.16) and (B.2)guarantee the boundedness ofΛN(t). More specifically, we have the bound

‖ΛN(t)‖B(V(Ω),V(Ω)) ≤ 2K(w0, η, µN+1, µN)

1 − K(w0, η, µN+1, µN)
< 1. (B.3)

In addition,ΛN(t) is continuous andT -periodic int wheneverv(x, t) is T -periodic, becauseLN(t) andL∞(t) have
similar properties.

As a direct consequence of(B.3), the operator

ΦN(t) = I + ΛN(t) (B.4)

has the following properties.

Lemma B.1. Suppose that the gap condition(15) is satisfied. Then

1. The inverseΦ−1
N (t) of the operatorΦN(t) is a bounded linear operator for allt ∈ R.

2. Φ−1
N (t) is continuous and T-periodic in t ifv(x, t) is T-periodic.

3. ‖ΦN(t)‖B(V(Ω),V(Ω)) ≤ 2 and ‖Φ−1
N (t)‖B(V(Ω),V(Ω)) ≤ C for all t ∈ R, where the constantC > 0 is

independent of t.

We aim to decomposeEq. (12)into coordinate components aligned withM(t) andN(t). The following lemma
shows that such a decomposition is possible, and completes the proof of statement (i) ofTheorem 3.1.

Lemma B.2. For eacht ∈ R, we have the direct sum

V(Ω) =M(t) ⊕N(t). (B.5)

Proof. Since

[I + ΛN(t)]−1B = P+
N [I + ΛN(t)]−1B + P−

N+1[I + ΛN(t)]−1B,
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we have

B = [I + ΛN(t)]{P+
N [I + ΛN(t)]−1B + P−

N+1[I + ΛN(t)]−1B}
= P+

N [I + ΛN(t)]−1B + P−
N+1[I + ΛN(t)]−1B + LN(t)P+

N [I + ΛN(t)]−1B

+ L∞(t)P−
N+1[I + ΛN(t)−1]B. (B.6)

Observe that

P+
N [I + ΛN(t)]−1B + LN(t)P+

N [I + ΛN(t)]−1B ∈M(t),

P−
N+1[I + ΛN(t)]−1B + L∞(t)P−

N+1[I + ΛN(t)−1]B ∈ N(t).

Thus, by(B.6), anyB can be written as the sum of two vectors, one inM(t) and one inN(t).
As a result, to prove(B.5), it suffices to show thatM(t) ∩N(t) = {0}. Let B ∈M(t) ∩N(t). Then there exist

p ∈ V(Ω)+N andq ∈ V(Ω)−N+1 such that

B = p + 0 + LN(t)p + L∞(t)0 = q + 0 + LN(t)0 + L∞(t)q,

which gives

(I + ΛN(t))p = (I + ΛN(t))q.

Hence we havep = q, which is only possible ifp = q = 0 by Lemma B.1. �

B.2. Decay of solutions toM(t)

As mentioned earlier, we shall establish the decay of all solutions by writingB in terms of coordinates aligned
withM(t) andN(t), and then by proving that the latter coordinate component decays exponentially. The reader
may findFig. 2helpful in interpreting the new coordinates we introduce. In our forthcoming argument, we setθ = 0
for simplicity; a similar argument is valid for the caseθ �= 0.

Projecting an arbitrary initial conditionΦ−1
N (0)B0 ∈ V(Ω) onto the subspacesV(Ω)+N andV(Ω)−N+1,we obtain

the vectorsp0 = P+
N Φ−1

N (0)B0 andq0 = P−
N+1Φ

−1
N (0)B0, respectively, with the mapΦN defined in(B.4). As a

result, we have

B0 = [I + ΛN(0)](p0 + q0) = p0 + LN(0)p0 + q0 + L∞(0)q0.

Fig. 2. The definition of the coordinatesCN andC∞.
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LetP(t) andQ(t) be the solutions ofEq. (12)with the initial conditionsp0+LN(0)p0 andq0+L∞(0)q0, respectively.
It then follows from(A.18) that

B(t) = P(t) + Q(t) = P+
N P(t) + LN(t)P+

N P(t) + P−
N+1Q(t) + L∞(t)P−

N+1Q(t)

= [I + ΛN(t)][P+
N P(t) + P−

N+1Q(t)].

Using the above observation, we now introduce the coordinates in which we shall study the decay of solutions to
M(t). We let

C(t) = Φ−1
N (t)B(t) = P+

N P(t) + P−
N+1Q(t), CN(t) = P+

N C(t) = P+
N P(t),

C∞(t) = P−
N+1C(t) = P−

N+1Q(t). (B.7)

The geometry of these coordinates is shown schematically inFig. 2.
To show the decay of solutions toM(t), it suffices to show thatQ(t) decays to zero. In turn, since

Q(t) = [I + ΛN(t)][P−
N+1Q(t)] = [I + ΛN(t)]C∞(t),

it suffices to show thatC∞ decays to zero.
We start by noting thatP = P+

N P(t) + LN(t)P+
N P(t) is a solution of(12), therefore

[P+
N P(t) + LN(t)P+

N P(t)]t + P{(v · ∇)[P+
N P(t) + LN(t)P+

N P(t)]}
= −ηA[P+

N P(t) + LN(t)P+
N P(t)] + P{([P+

N P(t) + LN(t)P+
N P(t)] · ∇)v}.

Applying the projectionP+
N to both sides of this last equation, and noting that

P+
N LN(t)P+

N P(t) ≡ 0,

we obtain a finite-dimensional homogeneous linear system of ODEs

CNt + P+
N P [(v · ∇)ΦN(t)CN ] = −ηA+

NCN + P+
N P [(ΦN(t)CN · ∇)v] (B.8)

for the dynamics onM(t). A similar argument that usesP−
N+1 leads to the equation

C∞t + P−
N+1P [(v · ∇)ΦN(t)C∞] = −ηA−

N+1C∞ + P−
N+1[P(ΦN(t)C∞ · ∇)v] (B.9)

for the dynamics on the manifoldN(t).
To show that the coordinateC∞ decays to zero along solutions of(12), we first estimateϕN+1(t) defined in(A.8).

For this, we observe that

max
t≥0

tδ e−bt =
(

δ

b

)δ

e−δ

for anyδ, b > 0. It then follows that for 0< t ≤ 1/2ηµN+1,

ϕN+1(t) = 1√
2et

≤ 1√
et

e−ηµN+1t/2 eηµN+1t/2 ≤ e−1/4

√
t

e−ηµN+1t/2

and for 1/2ηµN+1 < t < ∞,

ϕN+1(t) = √
ηµN+1 e−ηµN+1t = √

ηµN+1t
−1/2 e−ηµN+1t/2t1/2 e−ηµN+1t/2 ≤ e−1/2

√
t

e−ηµN+1t/2.
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Therefore, we deduce from(A.8), (B.2) and (B.9)that

‖C∞(t)‖V(Ω) ≤ ‖e−ηA−
N+1tC∞(0)‖V(Ω) +

∥∥∥∥
∫ t

0
e−ηA−

N+1(t−s)P−
N+1{P(v(s) · ∇)[I + L∞(s)]C∞(s)} ds

∥∥∥∥
V(Ω)

+
∥∥∥∥
∫ t

0
e−ηA−

N+1(t−s)P−
N+1P{([I + L∞(s)]C∞(s) · ∇)v(s)} ds

∥∥∥∥
V(Ω)

≤ e−ηµN+1t‖C∞(0)‖V(Ω)

+
∫ t

0
η−1/2ϕN+1(t − s)‖P−

N+1{P(v(s) · ∇)[I + L∞(s)]C∞(s)}‖L2 ds

+
∫ t

0
η−1/2ϕN+1(t − s)‖P−

N+1P{([I + L∞(s)]C∞(s) · ∇)v(s)}‖L2 ds ≤ e−ηµN+1t‖C∞(0)‖V(Ω)

+ v0

∫ t

0
η−1/2ϕN+1(t − s)‖∇[I + L∞(s)]C∞(s)‖L2 ds

+ u0

∫ t

0
η−1/2ϕN+1(t − s)‖[I + L∞(s)]C∞(s)‖L2 ds.

This implies

‖C∞(t)‖V(Ω) ≤ e−ηµN+1t‖C∞(0)‖V(Ω) + 2v0

∫ t

0
η−1/2ϕN+1(t − s)‖C∞(s)‖V(Ω) ds

+ 2µ
−1/2
1 u0

∫ t

0
η−1/2ϕN+1(t − s)‖C∞(s)‖V(Ω) ds ≤ e−ηµN+1t‖C∞(0)‖V(Ω) + 2w0η

−1/2 e−1/4

×
∫ t

0
(t − s)−1/2 e−ηµN+1(t−s)/2‖C∞(s)‖V(Ω) ds,

leading to

‖C∞(t)‖V(Ω) eηµN+1t/2 ≤ ‖C∞(0)‖V(Ω) + 2w0η
−1/2 e−1/4

∫ t

0
(t − s)−1/2 eηµN+1s/2‖C∞(s)‖V(Ω) ds.

(B.10)

To integrate this last inequality, we recall a modified form of the classic Gronwall inequality (see, e.g., Henry
[8, Lemma 7.1.1]). Suppose thata, b ≥ 0, δ > 0, and the functionφ(t) is nonnegative and locally integrable on
[0, +∞), satisfying

φ(t) ≤ a + b

∫ t

a

(t − s)δ−1φ(s) ds, 0 ≤ t < +∞.

Then

φ(t) ≤ aEδ(θt), 0 ≤ t < +∞, (B.11)

where

θ = (bΓ(δ))1/δ, Eδ(z) =
∞∑

n=0

znδ

Γ(nδ + 1)
� ez

δ
as z → +∞.

The generalized Gronwall inequality(B.11)applied to(B.10)gives

‖C∞(t)‖V(Ω) eηµN+1t/2 ≤ ‖C∞(0)‖V(Ω)E1/2((2w0η
−1/2 e−1/4√π)2t)

≤ C‖C∞(0)‖V(Ω) exp(4πη−1 e−1/2w2
0t), (B.12)
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or, equivalently,

‖C∞(t)‖V(Ω) ≤ C‖C∞(0)‖V(Ω) exp[−(0.5ηµN+1 − 4πη−1 e−1/2w2
0)t], (B.13)

whereC denotes a positive constant. Under the gap condition(15), we have

3√
µN+1

≤ 2√
µN+1 − √

µN

+ 1√
µN+1

<
η

3w0

and thenηµN+1/2 > 40w2
0/η > 4πη−1 e−1/2w2

0. Hence(B.13) shows the exponential decay of the coordinate
component transverse toM(t), completing the proof of statement (ii) ofTheorem 3.1.

Appendix C

Here we proveTheorem 3.2.
By the assumptions ofTheorem 3.2, for any smallε > 0, we can select an integerN(ε) such that the gap condition

(15)holds and

‖C∞(0)‖V(Ω) = ‖P−
N+1Φ

−1
N (0)B0‖V(Ω) ≤ ε

2C
, (C.1)

where the coordinateC∞ and the mappingΦN(ε) are defined in(B.7) and (B.4), respectively, andC is the constant
appearing in the estimate(B.13). The inequality(C.1)follows because the remainder term ofN(ε)th-order expansion
of Φ−1

N (0)B0 with respect to the eigenfunctions ofA can be made arbitrarily small for large enoughN(ε).
For the above choice ofN(ε), Theorem 3.1gives the existence of anN(ε)-dimensional linear inertial manifold
M(t). Restricting the dynamo equation to this manifold yields anN(ε)-dimensional, homogenous set of linear
ODEs, which we wrote out inEq. (B.8). The coefficient matrix of this set of equations is continuous int by
assumption.

Invoking the classical Floquet theory for ordinary differential equations (see, e.g.[24]), we obtain that solutions
of the ODE onM(t) are linear combinations of Floquet solutions of the form

fk(x, t) = f0
k (x, t) + tf1

k (x, t) + · · · + tl(k)f l(k)
k (x, t), k = 1, . . . , N(ε),

wherefj

k (x, t) areT -periodic in time. This means that a solution onM(t) can be written as

CN(ε) =
N(ε)∑
k=1

ck eλktfk(x, t),

whereλk denotes the Floquet exponent corresponding tofk(x, t).
We then obtain that

ek(x, t) = ΦN(ε)(t)fk(x, t) = ΦN(ε)(t)f0
k (x, t) + tΦN(ε)(t)f1

k (x, t) + · · · + tl(k)ΦN(ε)(t)f
l(k)
k (x, t),

k = 1, . . . , N(ε),

are eigenmodes ofEq. (12)with eigenvaluesλk, and that the full solution of(12)can be written as

B(x, t) = ΦN(ε)(t)(CN + C∞) =
N(ε)∑
k=1

ck eλktek(x, t) + ΦN(ε)(t)C∞,

which proves(17). The estimate(18) then follows from(B.13).
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Appendix D

Here we proveTheorem 3.3.
In the generic case, the Floquet exponents associated with the linear flow on the inertial manifoldM(t) are not

repeated. In that case, substitution of the simple Floquet solution eλ0te0(x, t) into the dynamoequation (1)gives

∂te0 + λ0e0 + (v · ∇)e0 = η∇2e0 + (e0 · ∇)v. (D.1)

Multiplying this equation bye∗
0 (the complex conjugate ofe0) leads to

e∗
0 · ∂te0 + λ0|e0|2 + e∗

0 · (v · ∇)e0 = ηe∗
0 · ∇2e0 + e∗

0 · (e0 · ∇)v.

We add this last equation to its complex conjugate, and integrate over the domainΩ to obtain

d

dt
‖e0‖2 = −2 Reλ0‖e0‖2 −

∫
Ω

v · ∇(‖e0‖2) dV + 2η

∫
Ω

e∗
0 · ∇2e0 dV + 2 Re

∫
Ω

e∗
0 · (e0 · ∇)v dV

= −2 Reλ0‖e0‖2 − 2η‖∇e0‖2 + 2 Re
∫

Ω

e∗
0 · (e0 · ∇)v dV, (D.2)

where we used the incompressibility ofv as well as the boundary conditions onv ande0.
By theT -periodicity of the functione0, integration of(D.2) with respect tot over [0, T ] gives

α = Reλ0 = −η‖∇e0‖2 + Re〈e0, (e∗
0 · ∇)v〉

‖e0‖2
, (D.3)

which proves the first formula in(20).
Next, we splite0 andλ0 into real and imaginary parts by letting

e0(x, t) = g(x, t) + ih(x, t), λ0 = α + iβ,

whereα andβ are real constants, andg andh are real vector-valued functions that satisfy the boundary conditions,
and areT -periodic int. Substitution into(D.1) then gives a complex equation whose real part is

gt + (v · ∇)g = −αg + βh + η∇2g + (g · ∇)v.

Multiplying this equation byg, integrating over the domainΩ, then averaging in time as before leads to

β = α‖g‖2 + η‖∇g‖2 − 〈g, (g · ∇)v〉
〈g, h〉 , (D.4)

which proves the second formula in(20).
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