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Abstract

We prove the existence of asymptotic spatial patterns for diffusive tracers advected by unsteady velocity fields. The
asymptotic patterns arise from convergence to a time-dependent inertial manifold in the underlying advection—diffusion
equation. For time-periodic velocity fields, we find that the inertial manifold is spanned by a finite number of Floquet
solutions, thestrange eigenmodesbserved first numerically by Pierrehumbert. These strange eigenmodes only admit a
regular asymptotic expansion in the diffusivity if the velocity field is completely integrable.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In a seminal paper, Pierrehumb§26] observed intriguing patterns in a diffusive tracer field stirred by the
discrete map model of a time-periodic velocity field. The concentration patterns formed within just a few stirring
periods, then repeated with exponentially decaying intensity as the tracer field approached the fully mixed state.
This exponentially modulated time-periodic behavior and the complex spatial structure prompted Pierrehumbert to
call the repeating patterrs¢range eigenmodes

Several numerical studies have since confirmed that strange eigenmodes develop in periodically stirred two-
dimensional diffusive tracer fields (see, §8;27,30). Remarkably, Rothstein et 429] observed strange eigen-
modes experimentally in a periodically driven two-dimensional fluid layer. Both the numerical evidef in
and the experimental findings [@9] suggest that strange eigenmodes also appear in flows with aperiodic time-
dependence, as evidenced by an asymptotic self-similarity of the tracer probability distribution function (PDF).
This makes one suspect that the asymptotics of scalar mixing in large-scale geophysical flows may be universally
governed by statistically defined strange eigenmodeg{&e
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1.1. Prior work on strange eigenmodes

Pierrehumbert’s observation has led to several statistical theories for the asymptotic decay rate of the tracer vari-
ance. For chaotic advection, Antonsen ef2ilshowed a relationship between the statistics of finite-time Lyapunov
exponents and the decay rate. Fereday gt Bland Wonhas and Vassilicf&5] found, however, that the variance re-
mains exponential in examples where the theof@jipredicts super-exponential decay. The conclusion put forward
by Fereday et a[11] is that Lyapunov exponents alone fail to describe correctly the exponential decay of tracer vari-
ance. The same conclusion pertains to the work of Pattarjaggkvho generalizes the idea of equating diffusive ef-
fects with straining in the Lagrangian frame (&.31]) to obtain a variance decay prediction for ergodic fluid mixing.

Working with random but spatially smooth velocity fields, Balkovsky and FoUuxXpased Lyapunov exponent
statistics to obtain tracer PDF with no asymptotic self-similarity. This suggests that strange eigenmodes are absen
in the Batchelor regime of turbulence, i.e., in the regime with length scales below the viscous cutoff but above the
diffusive cutoff. At the same time, the simulations of Pierrehumf&f} and Hu and Pierrehumb¢g6] showed
self-similar tracer PDF in the same regime, giving further basis to the critical view of FereddL &} ah Lyapunov
exponent-based theories.

Hu and Pierrehumbeft 7] and Fereday and Haynfi] argue thaf3,7] both describe a transient stage of tracer
mixing after which strange eigenmodes with self-similar PDF prevail. By contrast, Antonsen gddl @#intain
that the mechanism described 8} remains an important component in tracer evolution for infinite times, and that
this mechanism provides a lower bound on the decay of the passive scalar variance in the limit of vanishing diffusivity.

Despite all the work on asymptotic variance decay, there has been little progress in justifying the strange eigenmode
view itself. As a notable exception, Antonsen et[d].give a heuristic description of the wave-number spectrum
of an eigenmode for flows with no mixing barriers. A refined description of the spectrum appears in Fereday et al.
[11] for a one-dimensional diffusive baker’'s map model.

More recently, Sukhatme and Pierrehumi§@@] pointed out a similarity between the differential operators of
advection—diffusion and magnetic dynamo theory. For the latter, rigorous results by Childress and& tjoertan-
tee periodic eigenmodes if the velocity field is time-periodic (see[aBP. For smooth velocity fields, the dynamo
operator only differs from the advection—diffusion operator by a bounded term, thus the existence of eigenmodes in
the advection—diffusion equation appears plausible, at least for a smooth, two-dimensional, time-periodic velocity
field.

As Sukhatme and Pierrehumbé€30] note, however, the completeness of the eigenmodes is unknown even in
dynamo theory, thus recurrent patterns may be unobservable for general initial data. In addition, the dynamo analogy
fails for nonsmooth, three-dimensional, or aperiodic velocity fields, leaving the existence of eigenmodes an open
guestion for realistic applications.

Very recently, Pikovsky and Popovy{28] showed that strange eigenmodes may also be viewed as eigenfunctions
of an appropriate Frobenius—Perron operator. They computed some of these eigenfunctions numerically for a scala
advected by the standard map. This fresh approach offers an alternative view on scalar mixing, but leaves the
guestions of completeness and general time-dependence open.

1.2. The main results of this paper

In this paper, we prove the existence of strange eigenmodes for advection—diffusion problems of the form
¢+ Ve-v=r«Ac, (8

wherec(x, 1) denotes the tracer concentratiany 0O is the diffusivity, andv(x, 7) is a bounded velocity field with
general time-dependence. The spatial variakiledefined over a bounded spatial dom&ithat is either two- or
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Fig. 1. Evolution of the tracer concentratiotx, ¢), and the geometry of the Poinéamapc(x, f) — c(X, t + 7).

three-dimensional. We show thEf. (1) admits a finite-dimensional invariant manifaldi(¢) in an appropriate

Sobolev space provided that the Laplacian operataratisfies a spectral gap condition SnOn the manifold

M(1), the tracer evolution is governed by a time-dependent system of linear ordinary differential equations, whose
general solutions are the generalized strange eigenmodes. The slowest-decaying such eigenmode becomes dominal
asymptotically.

Underastronger gap condition, we show thétr) is in fact an inertial manifold, i.e., it attracts all square-integrable
initial tracer distributions in the Sobolev spakié(S). Consequently, any initial tracer distribution evolves towards a
finite set of strange eigenmodes and becomes indistinguishable from the slowest-decaying such eigenmode over long
enough time scales. As we show, the stronger gap condition guaranteeing all this holds for canonical two-dimensional
domains such as the square.

If we add a square-integrable source term to the left-hand sil®),ahe asymptotic tracer distribution will be
determined by a particular solution, not an eigenmode. Still, the convergence of general solutions to this particular
solution will be governed by strange eigenmodes.

For time-periodic velocity fields that are continuous-in-time, the dynamics on the inertial manifold admits a
classical Floquet decomposition. This decomposition gives a rigorous proof for the time-periodic yet exponentially
fading spatial patterns observed by Pierrehumbert for the tracer field. We show this result schematiogll¥ in

For incompressible time-periodic velocity fields, we find the weakest Floquet solution to be of the form

Vaol? . IVaoll2lIRe#oll2 — ll@oll2IReV @02
cou(X. 1) = exp| —& I _(/70! +||| ooll ll @oll“ — llgoll |l ooll | pox. 1), @)
2ol I@oll? [ RegoIm godV

wherego(X, 1) = @o(X, t + T) is a complex-valued function depending onoverbar denotes temporal averaging
over one period of the velocity field, afid||? = fS |-12dV denotes th&.2 norm oversS. As we show in an example,
(2) also allows for quasiperiodic and subharmonic eigenmodes.

As anticipated by Sukhatme and Pierrehumf#fi, the behavior ofyg in thex — 0 limit turns out to be quite
subtle. We find that any attempt to approximagethrough a regular Taylor-expansions«rwill invariably fail for
nonintegrable velocity fields.

The outline of this paper is as follows. Bection 2 we first give estimates that establish the decay of tracer
variance under general conditions.Section 3 we prove the existence of an inertial manifold with its attendant
generalized strange eigenmod8sction 4elaborates on the properties of classical strange eigenmodes observed
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for time-periodic velocity fields, theBection Sdiscusses the role of strange eigenmodes in the presence of sources
and sinks. We conclude with a summary and a list of open questiddsdtion 6

2. General propertiesof tracer evolution

Consider an unsteady velocity fieldx, r) on a bounded two- or three-dimensional spatial donfakve denote
the measure (area or volume) by

3% = mes(S). ©)]

We assume that is incompressible, square-integrable o§eand satisfies periodic, no-flow, or no-slip boundary
conditions on the boundags.

We denote fluid particle positions at timdy x(¢; ro, Xo), referring to the initial positions ag at timer. We
shall also use the flow mdﬁo(xo) = X(t; tg, Xo0), the map that relates initial particle positions at timé¢o their
current positions at time

We are interested in the mixing of a diffusive tracer fie(d, r) under the action of. The tracer field is assumed
to satisfy the advection—diffusion equation

¢+ Ve-v=«kAc+ f(X,1),

wherex is the diffusivity of the tracer, andi(x, r) denotes a source term.

Below we collect some basic properties of the solutions of the above equation. Specifically, we estimate how
themean concentratiokc) = (1/) fS cdV, theconcentration variancéc||2 = fS c2dV, and theconcentration-
gradient variance|Vc||? = [, [Vc|?dV evolve in time.

Some of the estimates below appear to be unknown in the physical advection—diffusion literature, which has
traditionally preferred statistical models over analytic estimates. Some other reviewed facts, such as the conservatiol
of mean concentration in the absence of sources, are well-known.

2.1. Evolution of a conserved tracer
In the absence of diffusion, sources, and sinkis, conserved along fluid trajectories. The governing equation
for ¢ then simplifies to the conservation law

ac

¢+ Ve-v=0, c(X, to) = co(X), =
an |ps

=0 (4)

with ¢o(x) denoting the initial concentration at= tg, and with(dc/dn)|ys referring to the normal derivative of
along the boundary. The above equation is solved by

c(X, 1) = co(Xo(t0; 1, X)), )

whereXg(fo; t, X) denotes the position at timg for the fluid particle that is located at the poinat timer.

Proposition 1. The solutiore(x, #) of Eq. (4)has the following properties

(i) The mean concentration is constant in time., (¢c) = {(co).
(i) The concentration variance is constant in time., ||c[|2 = |coll2.
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(iii) If v has bounded gradients overtfien the variance of the concentration-gradient satisfies the estimate
|- XY e (x0) |2 < [|Ve|? < [|&h+ X0 g (xg) 12,
wherei (t, to, Xo) andA_ (z, 1o, Xo) denote the maximal and minimal finite-time Lyapunov exponent associated

with the fluid trajectory starting fromg at timerg. (For two-dimensional flowsve have._ = —i..)

We prove the above proposition Appendix A

Statement (i) ofProposition Igives upper and lower bounds on the well-documented growth of tracer gradients
for nondiffusive passive scalars in chaotic or turbulent advection. In particular, the gradient variance does not grow
faster than the initial tracer variance weighted with an exponentially growing term, whose exponent is the finite-time
Lyapunov exponent distribution for the velocity field

2.2. Evolution of a diffusive tracer

Consider now a diffusive tracerx, r) with the corresponding full advection—diffusion equation
¢t +Ve-v=«kAc+ |, c(X, tg) = co(X). (6)

In this section, we fix the Neumann boundary conditiéty on)|3s = O for concreteness, but our main results in
later sections are equally valid for Dirichlet or spatially periodic boundary conditions.

We define the maximal strain rat€r) as the maximal eigenvalue of the rate-of-strain-tensor overals. More
specifically, we let

o(t) = MaX Amax(3 (VWO 1) + VVT (X, 0)).
Xe

For two-dimensional flows, incompressibility implies

o(t) = max 1(V/—detlVv(x, 1) + WT(x, 1)]. (7)
Xe

Proposition 2. The solutior:(x, ) of Eq. (6)has the following properties

(i) The mean concentration satisfi@$ = (co) + f[g(f(x, 7)) dr. Therefore (¢) is conserved in the absence of
sinks and sources

(ii) Lete > 0be an arbitrary positive constayénd letu; > 0 be the smallest eigenvalue of the Laplacian
on the domain S. The concentration variance then satisfies the upper estimate

lle — (colI? < llco — {co) ||? e~ 2kH1=at=io) 4 =

t
216 / efz(lmlfo(l*f)”f _ (f)||2 dr. (8)

]

In particular, in the absence of sinks and sourdd® concentration variance obeys the estimate
lle = (co)lI? < llco — {co)||? e~ 2#2(1=10), ©)

(i) If v has bounded gradients overtBen withe and 1 defined abovghe variance of the concentration-gradient
satisfies the estimate

t _ 1 t "
IVel? < IVeo|2 ooty = / ekt by £12 4r (10)
o

In particular, in the absence of sinks and sourcee have

t
IVel? < [|Veo|? €20 0@ mdr (11)
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We prove the above proposition Appendix B Note that if the diffusivity is large enough so that

K> @, (12)
21

then, by(11), the norm of the tracer gradient starts decaying exponentially immediately:gftegardless of
the initial gradient distribution. Thus max,[o(f)/1] gives a lower bound on the diffusivity that is needed to
completely eliminate the initial growth in the tracer gradient variance caused by advection. Selecting a spatial
regionsS with a smallerus value is therefore expected to lead to faster mixing for the same diffusivity

If (12)is not satisfied for a given flow, the estimé1®)does nopredict decay for the variance of tracer gradients.
In that case, the estimate simply serves as an upper bound for the growth rat® ¢éhaimay exhibit while the
tracer is mixed.

Example 1 (Variance decay estimate for a planar rectangular domairfy.=f[0, a] x [0, b] is a two-dimensional
rectangular domain with > b > 0, then

72

»?

and hence immediate exponential decay in the tracer variance occurs for

Ui = (13)

b2o(t)
> .
ﬂz

In view of the above discussion, selecting a harrower rectangular domain with sinlgléets to faster mixing for
the same diffusivity.

Example 2 (Morticity evolution in two-dimensional decaying turbulence). As an illustratioRmiposition 2we
consider a two-dimensional physical domainand assume that the velocity fieldsatisfies the incompressible
Navier—Stokes equation

1 2
Vi+ (V- V)V=——Vp+vVVv+T,
0

Herep denotes the density, is the pressura; the kinematic viscosity, aniddenotes the body force distribution in
the fluid. Taking the curl of this equation and using incompressibility, we arrive at the scalar vorticity equation

w;+ Vo -V=vAw+ (V x 1),

with w = (V x v), denoting the component of the vorticity that is orthogonal to the plarfe 8fncew satisfies
Eq. (6) Proposition Zapplies and gives

t

(@) = (o) + / (V x Fx, 7). d,

fo

_ v 1
lw — (o) 1% < llwo — (wo) ||? e~ 2VH=O=0) 4 =

t
26/ e 2=9U=D) (¥ x f(x, 7)), ]2 dx,

fo

t . 1 4
Vol = [Vool?elo 2041 4 o [/ @00 903 )
€ Jro

for any constant > 0.
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If the forcef is potential, therV x f), = 0, and hence the above argument yield the vorticity decay estimates

_ - 2 [! (o(—vu1)d
() = (@), llo— (wo)]? < llwo — (wo)[2€7211010) V|2 < || Vap2 €2 o@D

The first estimate gives an upper bound on the decay of vorticity variance, while the second estimate establishes an
upper bound on intermediate growth rates for the vorticity gradient variance. If the viscosity is large enough so that

v > o(t)/ 1, then we obtain immediate exponential decay for the vorticity gradient distribution.

Example 3 (Tracer variance decay in a numerical example). We consider the two-dimensional square domain
S = [0, 1] x [0, 1] and fix the diffusivity value = 0.001. Motivated by the example used by Liu ef&B], Alvarez

et al.[2], and Muzzio et al[24], we select the velocity field

sin (rx) cos(ry) ifn<t<n+0.75
vi(x, y, 1) = . .

—sin(2rx)cos(my) ifn+0.75<t<n+1,

—cos(mx)sin(my) ifn<t<n+0.75
v2(x, y, 1) = . .

2cos(2nx)sin(y) ifn+075<t<n+1

and the initial tracer distribution
1 if0<x<3i and O<y=<1,

co(x,y)={0 If%<x§1 and Ofyfl

for the advection—diffusioequation (6with f = 0. We define

V(1) = Jle(r) — {(co)II?

= = The graph of vié t+log(V(0))
= The graph of log V(t)

log(V)

t

(14)

(15)

Fig. 2. Decay of concentration variance (solid line), and the universal upper estimate for this decay (dashed line).
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and recall that estimai{®) and formula(13) with 4 = 1 together yield
V(1) < 6“7 1V(0). (16)

In Fig. 2 the dashed curve shows Iog(éz’ V(0), the logarithm of the right-hand side (if6), and the dash-dotted
curve shows lod(¢). The figure illustrates the universal validity of estiméd} but also shows that the actual decay
rate of the concentration variance may be much faster than the rate on the right-hand$jde of

Parallel to the exponential decay of variance, the concentration converges at an exponential speed to atime-periodi

pattern, the strange eigenmode described by PierrehufabgrEhown inFig. 3, the pattern quickly develops within
afew periods, then fades away gradually as the concentration field converges to the fully mixed state (co(x)).
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Fig. 3. Convergence of the concentration to a strange eigenmode. The figures show snapshots of the concentration &ieldultiples of
T = 1, the time period of the velocity field.



W. Liu, G. Haller/Physica D 188 (2004) 1-39 9

The emergence of strange eigenmodes suggests a deeper mechanism behind the exponential decay of trace
variance, one that cannot be captured by the elemeiitagstimates oProposition 2In the following sections,
we describe this deeper mechanism using the phase—space geometry of the advection—diffusion equation.

3. Inertial manifold and generalized strange eigenmodes

Here we show that under certain conditions, the advection—diffusipration (6)admits a finite-dimensional
invariant manifold that inherits any special time-dependence, periodic or quasiperiodig(xhatmay have.
Under further conditions, this finite-dimensional invariant manifold turns out to lmeatial manifoldthat attracts
all solutions of(6). In that case, the asymptoticsaik, r) will always be governed by a finite-dimensional system
of time-dependent linear differential equations, obtained by redy6inip the inertial manifold. An independent
set of solutions to this equation can be thought of as a set of generalized strange eigenmodes.

3.1. Invariant and inertial manifolds

To formulate our main result, we first introduce the negative Laplacian operator
A=—-A, a7
defined on mean-zero concentration fields that satisfy the boundary condit&rend admit two square-integrable
derivatives in the interior of the physical domainSpecifically, we definel on the function space
ac

D(A) = {c € H%(S) : (c) =0, —
on

— o} (18)
aS
with
S=25-23s, (19)

denoting the interior of the physical domasnand with H2(S) denoting the Sobolev space of square-integrable
functions with two square-integrable derivatives oSesee[1]). In (18) we fixed Neumann boundary conditions
for ¢, but our forthcoming analysis is equally valid for periodic or Dirichlet boundary conditions.

By classic resultsd is a self-adjoint operator with positive real eigenvalues

O<pr<po < Spp < (20)

and with corresponding real eigenfunctiangx), ... , ¢,(X), ...
We assume that the velocity fieldx, r) appearing in{6) is uniformly bounded oves, i.e., there exists a constant
vo > 0 such that

VX, ] < vo 21)

for all times inS. We make no assumption about the incompressibility fafr the following result.

Theorem 1. Assume thaf(x, r) = 0in the advectiordiffusion equatior{6).
(i) If, for a positive integevV > 0, the eigenvalues of the operaterA satisfy the gap condition
287 v3

MUN+1 — UN > 7? (22)
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thenEgq. (6)admits an N-dimensional invariant manifold (¢) in the function spacHl(S). The manifoldM (1)
depends continuously on t. Furthermgifev(x, ¢) is periodic or quasiperiodic in timghen so isM(¢).
(i) If the eigenvalues of the operaterA satisfy the stronger gap condition

3
0 < limsup 2/mvo <1,
n—oco ~/€ky/tnt+1 — n — 16/mV0
thenEq. (6)admits an inertial manifolda finite-dimensional attracting invariant manifgld(¢) in the function

spaceH(S). The manifold\ (r) depends continuously orRurthermoreif v(x, 7) is periodic or quasiperiodic
in time, then so isM (¢).

(23)

We prove a stronger result &ppendix Cfrom which the above theorem follows. The stronger result establishes
the existence aM (r) for an abstract parabolic equation in the cruder function speédor anya € (0, 1). Setting
o = 1/2 in this abstract result yields the conditi¢#8) of Theorem 1

By the smoothing property of the parabolic advection—diffusion equatiorf15¢eanysquare-integrable initial
concentratiorg(X) = c(X, 1) becomes a function if/1(S) immediatelafter the initial timerg, thusTheorem 1is
strong enough to apply for any realistic choice of the initial tracer distribution.

Notice that for a fixed velocity field/(x, 7) and a fixed diffusivityx, the gap conditiong22) and (23)will
automatically hold if

lim Sup(in+1 — ) = 0. (24)

n—o00

This last condition is true, for instance, for any two-dimensional rectangular do$n&ir{0, 2z/a] x [0, 27/b]
with (a/b)? rational, including the case of a square domain {868. As a consequence, we obtain the following
specific result.

Theorem 2. Let S be a two-dimensional rectangular dom&ie [0, 277/a] x [0, 277/b] with (a/b)? rational. Then
there exists anintege¥ > 0such that the advection—diffusion equat{6hadmits an N-dimensional time-dependent
inertial manifold M (z) in the function spacéf1(S). The manifoldM (r) depends continuously on t. Furthermpre
if v(X, t) is periodic or quasiperiodic in timghen so isSM ().

For three-dimensional flows, conditig®3) becomes more restrictive, and may only hold for larger values of
as the example below shows.

Example 4 (Gap conditions for a three-dimensional domain). Consider the cubic ddmaif0, 2] x [0, 2] x
[0, 27]. For this physical domain, the gap between adjacent eigenvalueshoéquals 01, 2, or 3 (cf.[20]).
Therefore, a finite-dimensional invariant manifold exists by (ifTb&orem Iif

2871’1)%
K >
3e
Furthermore, we have
. 32 /mv 32 /mv
lim sup 2v/7v0 2v/7vo

n—00 \/a\/ Mn+1 — Un — 16ﬁ”0 - \/a\/é - 16«/;1)0’
thus an inertial manifold exists by (ii) atheorem Iif
3 x 28711%

e

K >
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3.2. Generalized strange eigenmodes

Under the appropriate spectral gap conditibmeorem Jguarantees the existence of a continuous-in-time inertial
manifold M(¢) for any bounded velocity field. Because we do not assume differentiability ¥oithe manifold
M () will exist in any physically relevant velocity field, such as a given realization of a turbulent velocity field,
provided that the spectral gap conditi{®B) holds. Accordingly, the asymptotic tracer concentration is always
governed by a finite-dimensional linear system of time-dependent ODEs.

As a consequence, the asymptotic tracer concentration on the inertial manifold is of the form

N
Coo(X, 1) = (co) + Y i Dpe(X, D, M(t) = sparfgr(x, D}y, (25)
k=1
wherey(t) = [y1(d), ... , v» (9] is the solution of a finite-dimensional set of linear ODEs with coefficient matrix
M) = (kA =V - V)| m@- (26)

One may refer to the basis functiopg(x, r) on M (z) asgeneralized strange eigenmogakhough these eigen-
modes have a general time-dependence that makes their visualization difficult. They may evolve without recurrent
spatial features, remaining invisible under iterations of the titmeapc(x, 7) — c¢(X, ¢t + T) for any choice of. By
the universal estimat®), however, all eigenmodes decay at least exponentially, thus the one showing the slowest
decay will dominate asymptotically.

The emergence of a dominant eigenmodes in aperiodic flows is consistent with the observations of Hu and
Pierrehumberf16] and Sukhatme and Pierrehumbf@®], who find that the tracer PDF approaches a self-similar
form when normalized by the tracer variance. But self-similarity of the PDF dotfllow automatically from
the resul(25): the general time-dependenceygfandy; disallows here the argument that we us&eétction 4.40
establish self-similarity in the time-periodic case.

4. Strange eigenmodes for time-periodic flows

We now describe the tracer dynamics on the invariant manifdid) for the case of time-periodic flows. As it
turns out, asymptotic tracer patterns are generated by a finite number of Floquet solutiet(s)on
Infinite-dimensional Floquet theory is well-developed for parabolic partial differential equations (sf% 1€.4.8).
Surprisingly, however, none of the available results apply to the advection—diffagigation (6) as we discuss
in Appendix D.1 This is why we restric{6) first to its inertial manifold, then apply classical Floquet theory as a
second step.

4.1. Classical Floquet theory

For what follows, we first review the elements of classical Floquet theory for finite-dimensional, time-periodic,
linear systems of differential equations. Consider the linear system
y=A®y, A®O=AC+D), (27)

wherey is ann-dimensional vector ané(¢) is ann x n matrix depending continuously an Floquet theory
guarantees that any fundamental matrix soluttgn) of (27) can be written as a product

o) =P ¥, (28)

whereP(r) is T-periodicn x n matrix, andB is a constant x n matrix (see, e.q14,33).
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As a consequence (28), any solution of27)is a linear combination of Floquet solutions of the form

y(1) = "[@g(1) + 101() + 12@p(t) + - - - + 1,1 (0],

where the complex constanis an eigenvalue of geometric multiplicitfor the matrixB, ande, (1) are time-periodic
complex functions.

In the generic casd is semisimple (ha#’ linearly independent eigenvectors), giving rise teimple Floquet
solution

y() = €"gq(0).

If 1 is a real eigenvalue, then the functi@g(z) is also real. I is complex, then the corresponding simple Floguet
solution has two frequenciesg2T and Ima.

4.2. Floquet theory for the advection—diffusion equation

We now assume that the velocity fieldin the advection—diffusiomquation (6)is time-periodic with period
T. By Theorem 1 the time-periodicity ofv(x, r) implies the time-periodicity of the manifold(z), thus the
advection—diffusiorequation (6)reduced taM(r) is of the type(27). Applying classical Floquet theory to this
reduced system, we obtain the following result.

Theorem 3. Assume that the velocity fieldx, 7) is time-periodic and continuous in t. Assume further that 1) =
0in Eq. (6) and the gap conditiof22) is satisfied. Then any concentration fielg, r) contained in the invariant
manifold M (r) can be written in the form

N-1
_ I(k
c(x. 1) = (co) + Yy e M [@dx. 1) + 19 (x. ) + - + ' PP x, 1),
k=0

wherel(k) > 0 are nonnegative integerand the constants; € C satisfy

Relg < Rei; <--- < ReAn_1.

This result is a direct application of classical Floquet theory to the finite-dimensional linear systéfispiThe
initial mean concentratiofrg) appears in the above result because we originally prove the existenerpfor
the fieldc(Xx, 1) — (co).

The continuous dependence®f(r) ont (Quaranteed byheorem ) and the continuity of/(x, ) in ¢t (assumed
in Theorem 3 are both essential: they ensure continuity for the reduced linear op&fdtpin (26), and hence
make classical Floquet theory applicablebt(z).

Typically, the Floquet matriB associated with the reduced advection—diffusion equation is semisimple, i.e.,
B hasN linearly independent eigenvectors. This is the case for spatial domains without any particular symmetry,
or for symmetric domains on which the Laplaciarstill has a complete set of eigenfunctions. Examples of such
symmetric domains include the square and the circle. We will refer to the case of a semimsyilegeneric case

In the generic case, we haig) = 0 for all k£ in the above theorem. As a result, any solution on the inertial
manifold can be written as the sum &fsimple Floquet solutions

N
(X, 1) = {co) + Y € gp(x, ).
k=1
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For large enough times, therefore, the slowest-decaying Floquet solution will determine the asymptotic behavior of
¢ on the manifoldM (¢):

c(X, 1) & (co) + Coo(X, 1) = (co) + € ' po(X, 1), ast— oo. (29)

Such an asymptotic factorization ofx, r) agrees with the numerical observations of PierrehurnBéitand the
experimental results of Rothstein et @9]. Following Pierrehumbert, we shall refer to the functiayix, 7) as a
strange eigenmoddver intermediate time scales, numerical or experimental observations may diffe(edm

if some of the exponentss, ... , Ay—1 are close to\g. In such a case, two or more eigenmodes will contribute
significantly toc(x, r) for long periods of time, and the asymptotic form(®®) is only observed afterwards.

4.3. Convergence to strange eigenmodes

Theorem 3establishes the existence of strange eigenmodes on the invariant mamife)d but it doesnot
guarantee that aarbitrary solution of the advection—diffusioaquation (6)will converge to strange eigenmodes.
Such convergence only follows#1 () is in fact an inertial manifold, which requires the stronger gap cond{#a8h
to hold. Under a yet stronger gap condition, we shall even show that the rate of convergari¢g ie faster than
the decay rate withio\(r), and hence strange eigenmodes prevail very early in the tracer evolution. Specifically,
we prove the following result ilppendix D

Theorem 4. Assume that the velocity fieldx, ¢) is time-periodi¢c f(x,7) = 0, and the gap conditiorf23) is
satisfied Then the following hold

() The advection—diffusion equati¢®) admits a complete set of Floquet solutipins, for arbitrary ¢ > Othere
exist an integeV > 0 such that any concentration fietdx, r) can be written in the form
N—-1
c(x. 1) = (co) + Yy e M [@lx, 1) + 19 (x. 1) + - + 1" PP x, D] + 2(x. 1), (30)
k=0
el 4+ vell < ee™,
where); are complex constantgk) > 0 are nonnegative integerK is a positive constanand
0= KIUN — 47!21)%. (31)

(i) If the stronger gap condition
. 1Y
lim sup (Mn+1 — iy — =2 Mn) = 00, (32)

n—00 K

holds then||c| + || V¢| decays to zero faster thar — ¢|| + ||V (c — ¢)|| does

As in Theorem 3formula(30) will have I(k) = O for all k in the generic case. Thus, under condit{B), the
concentration field is the sum &f simple Floquet solutions plus an arbitrarily smaile™*") term:
N—1
c(x, 1) = (co) + Y € ep(x, 1)+ OE"). (33)
k=0
In statement (i) ofTheorem 3 < ) is possible, thus the decay ofx, ¢), the noneigenmode contribution, may
be slower than the decay of some Floquet modes. Still, for large enéutite exponent-p tends to—oco by (31),
thusc will decay faster than the first few dominant Floquet modes.
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If the stronger gap conditio(82) also holds, then statement (ii) of the theorem guarantees a decayhfatris
faster than the decay afl of the N Floquet modes. In that case, not only is the initial error between the concentration
andN strange eigenmodes arbitrarily small, but this error also decays faster than the strange eigenmodes do. As
consequence, the strange eigenmodes already become visible on short time scales.

Example 5 (The strong gap conditio(82) for a square domain). Let us consider= [0, 7] x [0, 7], a square
domain on the two-dimensional plane, and let 1 < u2 < --- denote the eigenvalues of the operatoe — A
on S. We recall that

lim pw, = co. (34)

n—oo

We define the quantity

Mn+1 — MUn

N

and show its numerically computed distribution as a function of Fig. 4. Note that ratign) remains bounded,
thus its lim sup is finite. Our calculation suggests the numerical value

ratio(n) =

lim sup ratio(n) = a ~ 0.04.

n—o0

25 T T T T T T

1.5F —

ratio

0.5F -

0 1 2 3 4 5 6 7
n x10°

Fig. 4. The graph of rati@) for n values up to 8 x 10°. The maximum of the graph is approximately 2.1.
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We then have

n _n_12 A/ Mn
Iimsup“ 17 M = A/2)ayi :‘_l>0,

n—o00 ~ Mn 2
thus(34) implies

lim sup(unt1 — pn — %a\/ n) = OO.

n—oQ

As aresult, for

Vo a
— < = ~0.02
K = 2

we have

n—o00 K 2

. vo . 1
lim sup (Mn+1 —Mn — — ,U«n) > lim sup (MnJrl —Mn — 54 ,U«n> = 0.
n—00

Hence the gap conditiof32) is satisfied for the domaisi = [0, 7] x [0, n] if ¥ > 50vg.

Theorem 4clarifies some of the views in the literature about qualitatively different stages of tracer evolution.
Some authors distinguish between super-exponential decay, exponential decay, and near-constant behavior for the
tracer variance, noting that the strange eigenmode description may only be valid for certain types of flows (those
with no barriers), or for certain stages of the tracer evolution (asymptotic time scale).

By our results, no such distinction is justified: under condi{@B), which holds for the two-dimensional geome-
tries considered in the literature, any concentratioq f) is close to a finite set of strange eigenmodkggardless
of the mixing properties of the flow, and regardless of the time that has elapsed. Generically, a single mode with
the weakest decay will prevail in the end, but the intermediate stages of tracer mixing are also governed by finitely
many additional strange eigenmodes that have yet to decay to invisibility.

Example 6 (Variance decay patterns generated by strange eigenmodes). To illustrate the above discussion, we
consider the function

Cl) = e(x, |2 = 6 20! 4 g2t 4 gDt

to model the tracer variance evolution on a three-dimensional inertial man{glf) of the Poincaré mag(x, ) —
c¢(X, t + T). Here the inertial manifold is spanned by three eigenmodes with Floquet expefigntsor simplicity,
we have assumed

lox(x, DII* = 1, /Sfpk(X, Dej(x, Dl jzcdV = 0.

We show the decay of the model-varian€&s), for three different choices of the Floquet exponentBig 5.

Fig. 5a shows the type of variance decay that is widely considered to be the indication of a single strange eigenmode
(see, e.gl30]). Fig. 5b shows the type of decay seen in flows with mixing barriers, for which the strange eigenmode
description is generally viewed inapplicable (see, B&O0]). Finally, Fig. 5c shows what is often thought to be a
super-exponential transient preceding the strange eigenmode state (48¢1£,.85).

Despite the above views, all three phenomena shoviign5 occur on inertial manifolds spanned by Floquet
modes. All three types of variance decay are exponential: it is only the ratio of the participating exponents that is
different in each case.
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Fig. 5. Decay of the logarithm of the model-varian€ér) for different parameter values: (&y = 0.25i1; = 0.3,1, = 0.35; (b)
X0 =001 11 =3, 42 = 10; (C)Ao = 0.1, A1 = 3, A» = 10.

4.4. Statistical implication: self-similarity of tracer PDFs

We define the asymptotic tracer PDF as
PDF(2) = (plcoo(X, 1) < 2}),

wherep{B} measures the probability of eveBtthe operatior{-) refers to spatial averaging over the dom&jmand
coo(X, 1) is the asymptotic tracer concentration on the invariant manifeld) (cf. (29)). Since we have

PDRY7(2) = (pleco(X, 1+ 1) < 2}) = (ple 0 Doo(x, 1 + ) < z})
= (pleso(X, ) < €077}y = PDE® (e ),

we can write

+00 +00 d
IPDFY 7% = / [PDFY7(2)]7 dz = / PR (w)]? 57 = &7 |PDF.
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We therefore obtain

IPDEY, > IPDFE®|? (35)
leoo, 14+ D% lleco(X, D12
becauses (X, 1 + T) = e M coo (X, 1).
Under the spectral gap conditig@3), all solutions converge to the inertial manifold, and hence forni34g
gives asymptotic self-similarity in the sense of Sukhatme and PierrehufBbgfor any concentration field.

4.5. Generic form of strange eigenmodes

We now consider the generic case in which the concentration) converges to a simple Floquet solution as
described in(29). From now on, an overbar will refer to time-averaging over the interva[0i.e., we write

;
a:%/o at) dt

for any functioru(r). We have the following result on the relation between Floquet exponents and the corresponding
strange eigenmodes.

Theorem 5. For a generi¢ two-dimensionaltime-periodi¢ incompressible velocity field defined on the spatial
domain Sthe concentratior (X, 1) — (co) converges to a Floquet solution of the form

IVéoll? | . IV @oll*IIRego]” ||¢o||2||ReV<7)0||2> t} 00X, )
I @oll® #I1%oll?(Rego Im ¢o) o

Coo(X, 1) = EXp |:—I( < (36)

wherego(X, r) and Vgo(X, ) are square-integrable complex functions foral 0, and the constant is defined
in (3).

We prove the above theoremAppendix E Note that(36) implies

_ IVgoll* T, _ IV@ol? T -
||coo||2=exp[—2x ol I@ol%  IVésol? =exp AT 1V goll®. (37)

4.6. Quasiperiodic and subharmonic eigenmodes

Formula(36) shows thatc., is either time-periodic (as observed originally by Pierrehumf28i) or time-
quasiperiodic The latter case occurs if I¢hg), the imaginary part of the exponent(86), is nonzero and rationally
independent of 2/ T. If Im (Lo) is rationally related to 2/ T, then the resulting pattern is again time-periodic, but
with a period equal to the maximum ofrf2m(ig) andT. Thus, if 2r/Im(Ag) > T, then we have aubharmonic
eigenmode.

Example 7 (Subharmonic eigenmode). The velocity field
v1(x, y, 1) = sin(zx)[ cos(rry) cos(mx) + cos(2rt) sin(mry)] + sin(zx) sin(;ry) cos(2rt) cos(ry),
v2(x, y, 1) = — cos(mrx)[ sin (;ry) cos(mrx) + cos(2xt) sin(ry)] + sin?(rx) sin(my),

whose time-period i§ = 1, gives rise to a strange eigenmode whose peridd-is7. We show this period-seven
eigenmode irFig. 6 after a long spin-up time ohz = 43. For reasons of symmetry, (i) = 27/7 is rationally
related to Z/ T, resulting in a pattern whose period is longer than the period of the velocity field.
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Fig. 6. Snapshots of a strange eigenmode with time-pdtied7, taken at multiples of the velocity peridd= 1. Note that the exact pattern at
t = 43 only comes back—with weaker intensity—at 50. (The parameters ake= 0.001, f = 0, S = [0, 1] x [0, 1]; initial condition as in
Fig. 3)

4.7. Numerical extraction of the dominant Floquet exponent

Here we discuss how the dominant (i.e., slowest-decaying) Floquet exponent can be extracted from simulated ot
measured concentration datithoutassuming that the general Floquet expang$&i)) simplifies to(33). In other
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words, we do not assume here that the advection—diffusion equation redutéd)tadmits a semisimple Flogquet
decomposition.

Under the conditions ofheorem 3if —X¢ is a Floquet exponent fd£q. (6) then there exists a nonzero initial
conditioncg that leads to a solution

c(x, 1) = {co) + € [g(x, 1) + 19§ (X, 1) + - + Qg (x, ).

Subtractingco), multiplying both sides by their complex conjugates, and integrating over the démamobtain
lle = (o)l = € R |1 + 15 + - + Q.

Thus

1(O
lle — (co)ll le —teolll , 193 + 193 + - - + 11O

tRerg=—1In o =~
IS + 193 + - - - + 1O co — (co)ll llco = (co)

Therefore, by the boundednessygf . . . ,<pf)(°), we obtain

1 _
Reig = limsup2 In 10— {coll.
i—oo 1 llc = {co)l

(38)

Calculating the above exponent for a general concentratiar) will render the real part of the weakest-decaying
strange eigenmode.

Example 8 (Dominant Floquet exponent Example 3. We now reconsider the velocity fie{d4) from Section 2.2
with the same initial condition and diffusivity. Beyoi= ||c — (co)| and the upper estima(B), Fig. 7 shows the
exponential decay rate we extracted using forn{@&). Note that the final asymptotic decay of the concentration
variance is indeed dominated by the exponentfRgiven in(38).

Formula(37) gives another way to identify the dominant strange eigenmode for time-periodic velocity fields. In
particular,(37) gives

Vel IV@oll?

10012 1gollz

implying the asymptotic relation (c29))

L Ive)2
c(X, 1) & (co) + exXp| —k-—————1 [ po(X, 1) ast — oo. (39)
llc = {colll

We then obtain the following expressions for the weakest-decaying Floquet exponent and the corresponding eigen-
mode:

e — | il [T Ved 2
ho = tLrgo 1+T 2’
I /i7" (¢ = (co)) de|l

go(x, 1) = lim [e(x, 1) = (co)] ",

We close by noting that the exponent in form(®&®9) clarifies why the quantity ofiVc||2/||c||2, proposed by
Pattanayak25] is indeed a relevant indicator of the strange eigenmode stage in the evolution of
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Estimates of Decay of Tracer Variance

log(V)
o

= = The graph of vie t+log(V(0))
The graphof A t+log(V(0))

7F = The graph of log V(t)

t

Fig. 7. Decay of tracer variance (solid line), universal upper estimate for the decay (dashed lined), and decay rate extracted usi@@@formula
(dash dotted line).

4.8. The conservative limit of strange eigenmodes

While an analytic computation of strange eigenmodes appears beyond reach, one may try to approximate then
for smallx > 0 in the form

©o(X, 1) = do(X, 1) + kg1 (X, D) + O, (X, 1) = gp(X, 1 + T), (40)

wherego(X, ) is a solution of the conservative limitireguation (4)

As we show below, however, an asymptotic expangéd) with boundedg; may only exist forcompletely
integrableselocity fields, i.e., for those that generate formally integrable particle motions. Thus, Sukhatme and
Pierrehumberf30] are quite correct when they expect the> 0 behavior of strange eigenmodes to be delicate by
analogy with scalar dynamo problems.

Theorem 6. Assume that an asymptotic expansion of the f@@) exists for a Floquet solution of the advection—
diffusion equatior{6). Let D denote the set in space—time on wiNapy(X, 7) # 0. Then the domain D is invariant
under the velocity fiel#(x, ¢), andv(x, ¢) is completely integrable on.D

We prove this theorem iAppendix F The main consequence of this result is that strange eigenmodes in chaotic
particle mixing cannot be expanded in terms of the diffusivity parameterother words, strange eigenmodes are
nondifferentiable with respect to the diffusivity mt= 0.

Moffatt and Proctof22] obtained results similar tdheorem 6for kinematic dynamos. They showed that a
topological constraint, the conservation of magnetic helicity, precludes a nonzero growth rate for the magnetic field
in the limit of vanishing magnetic diffusivity.
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5. Strange eigenmodesin the presence of sourcesand sinks

Here we briefly consider the long-term behavior of a diffusive traggr¢) in the full advection—diffusion
equation (6)including a nonzero source distributigix, r) on the right-hand side. Létbe the solution of

.
G+ Ve V=KkAGH f—(f), Ex10)=0 = =
andc be the solution of
"
G+ VE-V=kAL, 1) = cox) — (o), | =o. (41)
on |y

Then we have
t

c=(co)+6+5+/ (f)dr,

0

wherec(x, 1) is the solution of6).
The above shows that the full concentration field(co) is the superposition of the particular solutﬁmfé (fyde
and the solutioii of the homogeneous systddil). The homogeneous solutiéGradmits strange eigenmodes under
the conditions we described earlier, and these strange eigenmodes are linearly superimposed onto the spatiotempore
patterns of the particular solution. This$range eigenmodes govern the way in which the tracer field converges to
the particular solutiort + [3(f) d.

6. Conclusions

We have shown that if the spectrum of the Laplacdaadmits large enough gaps, then the advection—diffusion
equation (1)possesses a finite-dimensional attracting invariant manifold. This inertial manifold is spanned by
generalized strange eigenmodes that simplify to the Floquet-type recurrent eigenmodes of PierrgR6iribert
the case of velocity fields with periodic and continuous time-dependence. The slowest-decaying such eigenmode
leads to a self-similar tracer PDF in the time-periodic case.

Our results imply that flows with mixing barriers also admit strange eigenmodes, but a single dominant eigenmode
may take longer time to emerge. Furthermore, strange eigenmodes compete throughout the whole evolution of the
tracer variance, with all but one mode decaying to invisibility over long enough time scales. These results hold
for general velocity fields in two- and three-dimensions, although in specific three-dimensional examples our main
spectral gap condition may only hold for large enough diffusivity or for small enough velocities.

The zero-diffusivity limit of strange eigenmodes is a natural candidate for perturbation theory, yet may only lead
to consistent results for completely integrable velocity fieldsetction 4.8 Numerical experiments suggest that
strange eigenmodes are supported over invariant sets of the velocity fielddr$h@ limit. This is in agreement
with the findings of Voth et al34] who observe a perfect relation between unstable manifolds of the velocity field
and lines of large gradients in the strange eigenmodes.

The experimental findings of Voth et dB4] also point to a close connection between large gradients of the
finite-time Lyapunov exponentdistribution and those of the strange eigenmodes. Thus, while a quantitative prediction
of asymptotic tracer decay appears to need more than just Lyapunov exponent statisfits, &de the spatial
distribution of Lyapunov exponents seems intimately linked to strange eigenmodes. The recent work of Pikovsky and
Popovych28] and Gilberf13] (as well as the references therein) may offer new ways to approximate eigenmodes
in the vanishing diffusion limit.
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Finding a sharp analytic prediction for the asymptotic decay rate of the tracer variance (i.e., for the exponent of
the weakest Floquet mode) remains a challenge, becauge=h® limit of the advection—diffusion equation is
singular. A sharp analytic estimate may be possible to derive by exploiting the form of strange eigenmodes in the
universal estimates @ection 2.2

A conceptual question is whether the weakest Floquet exponent indeed becomes a nonzero canstaft as
As we noted earlier, Pierrehumb§?6] and Antonsen et a[3] report asymptotic constancy for two-dimensional
flows, but Toussaint et gl32] observe logarithmic or power-law dependencefor some three-dimensional steady
flows. Pikovsky and Popovyd28] find that the decay exponent approaches zero in their standard map example.
At the same time, Fereday and Hayfit2] find the same limiting exponent to be nonzero for alternating sinusoidal
shear-flow maps. On the strict analytic side, even the existence pf, imig(x) is questionable, let alone the
asymptotic flatness dfp(x) atx = 0.

The asymptotic self-similarity of the tracer PDF also remains to be established for velocity fields with aperiodic
time-dependence. We have shown that the tracer concentration converges to solutions of a linear system of ODEs
but this system has general time-dependence, and hence the existence of an exponentially decaying solution—on
that would generate PDF self-similarity—is unknown. More work is needed, therefore, to explore the structure
of the reduced linear operatdf (¢) in (26), which may give clues about the self-similarity observed by Hu and
Pierrehumberfl16] and Sukhatme and Pierrehumb&a].

A further open question is the existence of strange eigenmodes for chemically or biologically active tracers. A
promising starting point is the numerical evidence of Muzzio and23jand Tél et al[31], both showing recurrent
asymptotic patterns for active tracers.
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Appendix A

Here we proveProposition 1First, we integrat&q. (4)over the spatial domaii to obtain

d d d d
0= %E(c)—i—/;Vc-VdV: %a(c)—i-/s[v-(cv) —cV-v]dV:%E(cH-/ach-dn :%E(c), (A.1)

where we used the boundary conditions assumed.fas well as the incompressibility ®f But (A.1) implies
statement (i) oProposition 1
Next we multiplyEq. (4)by ¢ and integrate oves to find

1d 1
0=/[cq+ch~v]dV=——/cde+—/[V-(czv)—czv-v]dV
S 2dt S 2 S
1d

1 1 1d
2 2 2 —lclf?
—_ — V«dn—— V-VdV=— i
st [ e > [ e el

which proves statement (ii) ¢froposition 1
liell = licoll- (A.2)
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To prove statement (iii) of the proposition, we recall that the gradientsatisfies the linear differential equation

D
5, Ve = —VVv've, (A.3)

where DYDr refers to the material derivative along a fluid traject®ty; 1o, xo), andAT denotes the transpose of
the matrixA. Using the flow ma;FiO(xo) = X(t; t9, X0), the solution ofEq. (A.3)can be written as

Ve(x, 1) = [VF, (x0)] T Veo(Xo) (A.4)
with the notatiorPA~T = (A~1)T. Multiplying (A.4) by VT gives

[Ve(x, D)|? = Veo(xo) '[Cl, (x0)] " Veo(X0). (A.5)
where

Cl, (x0) = [VF} (x0)] VF} (X0). (A.6)

is the Cauchy—Green strain-tenddg. (A.5)leads to the estimate
Amin(Cl, (X0))|Veo(X0)|? < [Ve(x, 1% < Amax(Cl, (X0))|Veo(X0)|%, (A7)

whereAmax(A) and Anin(A) denote the largest eigenvalueAufBecaus;e’:i0 (Xo) iIs a symmetric, positive definite
matrix with determinant one, all its eigenvalues are positive, and

0< Amin(CfO(XO)) <1< Amax(cio(xo))«

By definition, the largest and smallest finite-time Lyapunov exponents associated with the trajéctorykog) are

Ay (t; 1o, Xo) =

log Amax(Cfy(X0)) >0,  A_(t; 10, X0) = log Amin(Cj, (x0)) < O.

1
2(t — to)

(For two-dimensional flows, we havAmin(Cgo(xo)) = 1/Amax(C§0(Xo)), thereforeA_ = —Ai,.) Using these
Lyapunov exponents, we rewrite the inequa(#y7) as

2(t — to)

- (E10X0) |y ¢(x0)|? < |Ve(x, 1)|? < e+ 1050 |y ¢h(x0) |2,

which, after integration ove$, proves statement (iii) dProposition 1

Appendix B

Here we provéroposition 2IntegratingEq. (6)over S gives

d
dr

K

(c) = 1/(/<Ac+f)dV: —/ Ve-dn+(f) = (f),
7 Js 7 Jas
where we used the boundary conditionswoandc. Integrating the above equation in time yields statement (i) of
Proposition 2
To prove statement (ii), we first introduce the new variabte ¢ — (c), which has zero spatial mean, and satisfies
the advection—diffusion equation

i 9
G+ VEN=KAG+ X 10) = ox),  —| =0, (B.1)
an lys
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wheref = f — (f), and&y = co — (co). Multiplying (B.1) by ¢ and using the boundary conditions leads to the
equation

1d .
5> g 1el1% = =Kl VEl? + 52 7). (B.2)
Becaus& has zero mean, the Poincaré inequality (see[&]applies and yields

uallel® < Ve, (B.3)
whereu is the smallest eigenvalue of the Laplacian over the domairs. We can thus rewrit€B.2) as

1d .

anuz < —kpallE)? + %@ f) < —kpallE)? + »(Ef). (B.4)

By Cauchy'’s inequality (see, e.fi.]), for any constant > 0, we have
o o . 1 -
#(Ef) =/cde < ellel®+ I FI%,
S
thus the inequalityB.4) can further be written as
1d 1 -
S e* = —Gemr —@l21% + 1717

Because-(ku1 — €) may be negative, the classic Gronwall inequality does not apply here. Instead, we write
2
E[”E”Z eZ(Kul—E)(t—lo)] — 2”5”2 + 2(kp1 — €)”5”2 eZ(Kul—e)(t—to) < i”}‘HZ eZ(Kul—s)(t—to)’
dt dt 2¢
which, after integration overd, 7], gives
t
61 < ol e 20t 4 = / e 29| 72 . (B.5)

proving formula(8). The inequality(9) then follows if we take the limi¢ — 0 in (B.5) for the casef = 0.
To prove statement (i) dProposition 2we multiply (6) by —Ac and integrate ove§ to obtain

1d
——/|Vc|2dv :—K/|Ac|2dV+[Vc-V(v-Vc)dV+fVc~Vde
2dr Jg s s s

:—K/|Ac|2dV—[Vc-(VVTVc)dV+/Vc-Vde
S S S

A Ve Ve
— | Ve - lu— +v—F+w— | dV
s ox ay 0z

= —K/ |Ac(t)|2dA—/VCTVVTVCdV+/VC-Vde
S S S
< —(G(t)—/c,ul)/ |Vc(t)|2dV+/Vc-Vde. (B.6)
S S

By Cauchy'’s inequality, for any > 0, we have

/Vc-Vde
S

2, 1 2
= | VeIV fIdV < €l|Vel + VSIS
S
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thus(B.6) can be rewritten as
d 2 2, 1 2
— | IVel?dV = =2(()) — k1 + Vel + IV fI7
dr S 2¢
implying formula(10) in statement (iii) of the proposition. Again, the estimété) follows if we take thec — 0
limitin (10) for the case off(x, r) = 0.
Appendix C
Here we prove the existence of a finite-dimensional invariant manifold for a general class of parabolic equations.
Settinga = 1/2 in our main resultTheorem C.Jbelow) provesTheorem 1 Our argument follows the ideas of
Chow et al[9] for one-dimensional parabolic equations.
C.1. Preliminary definitions
Let S be the open domain defined(ito)for R2 or R3, and letA be the linear operator defined(iti7) on the domain
(18). Recall thatA is a self-adjoint positive operator with the discrete eigenvalues s < -+ < up < ---

listed in (20), and with the corresponding real eigenfunctien&), ... , e,(X), ... For any constank € [0, 1),
these eigenfunctions form an orthogonal basis for the function space

o0 o0
H* =1uy= Za[ei Z |al~|2)\i2"‘ <00},
i=1 i=1

which we equip with the norm

o 1/2
lul oo = (Z |a,-|2A?“) :

i=1

Following Henry[15], we define fractional powers of by the formula

o0 o0
A%u = Zaik?‘ei, where u = Zaiei € H*.
i=1 i=1

Note that
lull oo = [[A%ull 2. (C.1
For two positive integers: < n, we define the following subspaces@#* for later reference:

H =spane;}}_;,  Hp, =spanie)l’,,  H, =spare},

n

with norms inherited fron#°. Furthermore, we let

20+ + 20 200+ + 20 20— — 2a
H*' =HInH*  HX =H} NH*  H* =H,NH

n

with the norm inherited froné/%*. Finally, let P}, P,,.,, P, denote the corresponding orthogonal projections from
HOto H}, H, ,andH, ,respectively,andlet) = Al Apn = Aln,,,,andA; = Aly- denote the appropriate
restrictions ofA to H,", H,, , andH, .



26 W. Liu, G. Haller/Physica D 188 (2004) 1-39

C.2. A general class of parabolic equations

Let us consider the abstract equation
¢ = —kAc+ V() A%, c(0) = ¢, (C.2)

where 0< « < 1, V(r) is a bounded linear operator @ff for everyr € R, andV(z) is a globally bounded function
of + € R. Without loss of generality, we assume tlja§) = O in (C.2), which implies(c) = 0 for all r by an
argument similar to the one used in the prooPobposition 2(If (co) # 0, we redefine by lettingc — ¢ — (co).)

The advection—diffusioequation (6)s a special case of the abstr&aj. (C.2) which can be seen as follows.
Motivated by the identity

IVul? = — /S uAudA =" aZp, = ||(—2)"2u)?, (C3)

we seek to view the gradient opera®ias an equivalent of the operatét/2 = (—A)Y2. To this end, we consider
the ranges of the two operatofé(H') c L2 x L2 and(—A)Y2(HY) ¢ L2, and define a linear “identification”
map/ : V(HY) — (—A)Y2(HY) between the two ranges by letting

I(Vu) = (—AM)Y2.

We then havé—A)1/2 = [ o V, and from(C.3)we obtain| /|| = 1, i.e.,I is a bounded linear map. Furthermore,
using the velocity field/(x, r), we define the bounded linear operatbe= v o -1, which enables us to write

VoViu= ol toloViu=(Vo(—A)Y?u.

This last equation shows that the advection—diffusggnation (6)s a special case of the abstracfuation (C.2)
with ¢ = 1/2.

C.3. Existence of two invariant manifolds

Here we prove the existence of a finite-dimensional and an infinite-dimensional invariant manitetd {Qr.2)
assuming that a gap condition holds for two adjacent eigenvalues of the opefetqiC.6)below). Under a stronger
gap condition, the finite-dimensional invariant manifold becomes the inertial manifold describedarem 1

To state the main result, we define the quantity

No)e* 1
(1—a)

wherea € [0, 1) is a parameter, anfi denotes the classical Gamma function. Siace 1/2 is relevant for the
advection—diffusiorequation (6)we note that

M(e) = (2879 4 243 , (C.4)

1\ _ sz, s vTet? o [x
M(z)_(Z +IYT =16 (C.5)

We shall use the condition
M(a)vo

[c(uns1 — uw)]

whereug is defined in(21). Note that(C.6) simplifies to(22) in the case oéquation (6)

<1 (C.6)

Theorem C.1. Suppose that for a positive integertNe gap conditiorfC.6)holds. Then the following are satisfied
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() Eg. (C.2)has two invariant manifolds of the form

M= (@t p+LYOp)t p) € R x HFTY, (C.7)
M ={(t,q+ L™ (0)g)|(t. q) € R x H¥ .}, (C.8)

where LN () : HZ" — HY and L®(1) © Hi, — HZ*" are bounded linear operators that depend
continuously on.t
(i) The operatord.” () and L*°(r) satisfy the estimates

Ol 1 Ol sy = g o (C.9)
(iii) If V(r) is T-periodic in t then L™ (r) and L>°(¢) are also T-periodic in.t
Proof.
(A) Construction ofM. We introduce the constants
Y= 3(uns1+ un), n=3(UN+1— 1N)
and define the function space
Xo, ={f1(=00,0] > H*|f € C%  supe™| f|lyz < o0}. (C.10)

t<0

This complete metric space contains functions that grow slower in backward timethamees. Note that
if nonempty, X, , is an invariant set fofC.2) by definition. We equipX,, ,, with the norm

||f||x;,} = Su(Pemt”f”HZa- (C.11)
=<

We want to construct aiv-dimensional invariant manifoldA for Eq. (C.2)with solutions that do not grow
faster than 8" in backward time. In other words, we want to sof@&2) on the spaceX,, , to obtain a
finite-dimensional “pseudo-stable manifold” of solutions that decay faster to the zero solution than other
solutions do.

We rewrite(C.2)in terms of the scaled variable= €"¢ to obtain

v = k(y — A)v+ V(t + 0) A%. (C.12)

Here we have introduced the phase parameterR to account for solutions launched at an arbitrary initial
time 7o = 0. (Recall that in the definition ok, ,, the time variable is restricted to nonpositive values.) The
manifold M will be constructed as the set of points through which the solutiof€.42)do not grow faster
than e does ag — —oo.

First note that any € X, , solution of(C.12)satisfies the integral equations

t
PI-\’,_U(I) — eK()/—A;)fp +/ eK(V—A?\—/)(I—S)p]-vF V(6 + 5)A%(s) ds,
0

- l —_
Py () = €A poy(n) + / AN U= po V(O + 5) A%(s) ds, (C.13)
T
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ayr We have

by the variation of constants formula. Since, for ang X

”eK(V*Aﬁﬂ)(f*T) P]G+1U(T)||H2'1 < elf()/*MNJrl)(l*f)”U(T)”Hzﬂ < g =Nt e(((//«N+1*V*'))T||v||XOzn
— gr=nn+1)t e(((uN+1—MN)T/4”v|| _
Xay’
we obtain

lim (|~ Av)D pru(@)]| 2 = 0

T—>—00

and hence, by taking the— —oo limitin (C.13) we can deduce that

[ —
Py (1) = / e ANDI=I o V(O + 5) A%(s) ds.

—00

Therefore, any solution € X, of (C.12)satisfies the integral equation
t
() = VAN ¢ / =AY =9 P V(O + 5)A%(s) ds
0
t —_
+ /_ N AN pU V(O 4 5) A%(s) ds (C.14)

with p = P;;v(O). Conversely, direct substitution intG.12)shows that solutions of the integeajuation (C.14)
are also solutions dfc.12)

We now show thaEq. (C.14)has a unique solution by applying a contraction mapping argument. To this
end, we rewrite the integralquation (C.14as a fixed point problem

v=F(v, p,0),
where
t
Fu, p,6) = =401, ¢ / =AY =9 PV + 5)A%u(s) ds
0
t —
+ / er=Ay (=9 Py 1 V(O + 5)A%V(s) ds.
—00
We start by showing thaft(v, p, 6) mapsX, , x H;; x Rinto X, ,. To see this, we estimate the first term in
F(v, p,0) as
||e’((V_A;)’p||H2a < & bl 2w = €M pll e (C.15)

To estimate the remaining two terms#itv, p, 8), we shall use three ingredients. First, we observe that

S )
max > e Pt = (5) ed (C.16)

>0

for anys, b > 0. Second, we recall from Henfg5] that if A is the generator of an analytic semigroup'e
and the real part of the spectrum #fsatisfies Re(A) > § > 0, then we have

|AY e A, 2 < Moy e (C.17)
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with I'(«) denoting the classical gamma function. Third,(8y1), we have

t t
f ef(W—Aﬁ)(’—S)P;V(e+s)A“v(s) ds = HA"‘ / ef“V—AW—S)P;V(e+s)A“v(s) ds
0 H2 0 L2

(C.18)

Using(C.16)—(C.18)we estimate the second term in the definitiorFos, p, 6) as follows:

t
/ e=ANE) pEy(G + 5) A%(s) ds
0 HZOL

0
< / Na) (s — )~ HN=VE=D (9 4 5) A%0(s)|| 2 ds
t
0
<o f Na) (s — 1)~ UN=VE=D ) A%y (5)||, 2 ds
t
0
= v / Na) (s — 1)~ N =VE=D 1y (5) || yaa ds
t

0
< wollvlly;, f M) (s — = @60 g
TJt

1

1-« 1o 1 1 k(y +n— /'LN) g Kns
<ro () ¢ ”0“”“xm(1_a+ [fera

1-« - = 1 (y+n—un) —Knt
< I'a) <m) e UO“U”XOZ,7 (1—0{ + 1—-ow)n © )

l-«o
= ) <M) e“—1v0||v||X;_n (ﬁ +

K(UN+1 — N)

1 _
— F(a)UOHUHX;,, <1_ a(_t)l—a gy—mne _ K(MN—O[U)/ (s — t)l o (N =) (s=0)—kns ds>

T e"‘”’) . (C.19)

Similarly, the third term in the definition af(v, p, #) can be estimated as follows:

H / AN D= po V(O + 5) A%(s) ds

HZa
< / a) (t — )% @=Hv+D0=9) (9 4 ) A%0(s) || 2 ds
—0oQ

t
< v / (@)t — ) & HIDE9 [y [ 20 s

—0o0

t
< wollvlly,, / M@)(t — )7 @nmnE=0=an g
’ —00

— F(W)UOHU”)(* (MN+1 77)/ s)lfoz g nt1=(s=0—Kkns g ¢

— 1’*(01)1)0”1)”)(37 1 / (t— S)lfa e KN 1=/ Dr(pn11=1)s o3/ Dr(unt1=Y)s—kns d
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x (apply(C.16) to (t — 5)1 7@ el/Dvin+1=hs)
41— 1-a ¢

< ) (&) ed—lvonv”X_ ie—&('ﬁ/Z/ gns/2 gy

K(UN+1 = Y) “n]l—a —o0

- 2M(a) < 8(1—a)
T 1l-a \k(UN+1— 4N)
The estimate¢C.15), (C.19) and (C.2Gnply that F(v, p, 6) is bounded in the norrfC.11) and hence
F(v, p, 0) indeed maps int&, .

Next we want to show that' defines a contraction mapping &, ,,. From(C.19) and (C.20yve see that
foranyvi, vp € Xon

1-«
> & uoflvlly,, €. (C.20)

Na) et 1-
|F(v1. p.6) = Flug, p. 0l < (23 4 202 11 ( -

l1-«a
vollva — v2ll x-
1—a \k(puns1-— MN)) Xaun
_ M(a)vg
(k(un+1 — pa)
where M(«) is defined in(C.4). But the estimat€C.21) and condition(C.6) together establish that is a
contraction mapping on the complete metric sp&ige.
As a contraction mapping; has a unique fixed point(z; p, 0) in X, , for any6 € R and for anyp € HY,
implying a unique solution fofC.14)in X, . For such a fixed point(z; p, 6), the estimategC.15) and (C.21)
imply that

lvs —v2llx; . (C.21)

lollx,, = I1F@, p,O)lx;, < II1F, p,6) = FO, p,0)lx, +IFO p,Olx,,
M(a)vo
T (k(uN1 — N)
which in turn gives

el + 1Pl

k(a1 — pw)
- < Pl g C.22
I, = (e(pn+1 — pa)= — M(a)vo 1Pl ( )

Based on(C.20) and (C.22)the linear operator

0 _
LY@)p = Py, 1v(0; p,0) = / AN po V(O + 5)A%(s; p, 0) ds, (C.23)
—00
satisfies the estimate
M(x)vg
ILY (0) pll o < vl -
PRAz = e — e K
M(a)vo (e(un+1 — NI 1l 2
= (N1 — )T (g1 — ) — M(@yvg
M(e)vo

= (K(MN+1 _ H’N))lia _ M(Ol)l)o ”p”HZua

which implies
- M(a)vo
)T k(41 — )Y = M(a)vo’
In addition, if V(z) is T-periodic, then by{C.14)so0 isu(s; p, #)in 8, and hence, b{C.23) L(0) is T-periodic
in 6. A similar argument establishes quasiperiodicity fdt(r) if V() is quasiperiodic, i.e., we have

Ly ot 20
“ (0)”3(1.11% +>H}%/a+1
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V(t) = V(w1t, ..., o), whereV is T-periodic in each phase variabigz. Finally, the setM defined by
(C.7)is T-periodic int. BecauseM contains full solutions ofC.2), M is an invariant manifold foEq. (C.2)

(B) Construction of\°. The construction of the invariant s&1* follows a procedure similar to the one described
above forM®. This time we buildM* from the solutions oEg. (C.12)on the function space

X5, ={f:10.00) > H*()|f € C°,  supe™|f| ya < oo},
t>0

equipped with the weighted norm

—Knt
I/llxg, = supe NS N g2
P

Thus, M consists of all initial conditions for which the solutions(@.12)do not grow faster than‘® as
t — oo. Again, we obtainM* from a fixed point argument as above. O

C.4. Continuity ofM in time

The continuity of M () will follow form the uniform continuity of the map — v(:; p, 6), with p varying on
bounded sets. Specifically, for any fixés] we need to show that
v(:; p, 0) = v(; p, Oo), (C.24)

in the spaceX,,, as® — 6p—, which establishes the left-continuity for the map-> v(-; p, 6) ato = 6o. (The
proof of right-continuity is similar.) We shall sketch this procedure up to a point from which a similar argument by
Chow et al[9] for one-dimensional parabolic equations applies and completes the proof. In the interest of brevity,
we omit this lengthy final part of the argument and refer the read@] tor details.

For everyd < 6o, Eq. (C.14)implies

where
! +
L= /0 AN pEVO + 5) — V(6o + ) A%(s; p, 6o) ds,
t —
I = / e Av)I=I po (VO + 5) — V(B0 + 5) A%v(s; p, o) ds.
—00

Using estimat€C.21)and the definition of1 and />, we deduce fronfC.25)the estimate
M(a)vg
(k(UN+1 — N)

loC: p.6) = v p. 6=, < 0GP0 = v p o), + g, + 2l

which implies

(e(un+1 — NI
v(e; p, ) —v(; p, B0 - < 1l = + 120 = )-
v(; p P.oo)lx;, Ot = P — M@ 11l + 12l

Thus, to proveC.24) it suffices to prove that

I1,[ob— 0 in X;ﬂ asf — 6y,

which is discussed by Chow et §)] in detail.
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C.5. Decoupling the evolution equation

Next we want to find conditions under which the invariant manifdidr) attracts all solutions of the advection—
diffusion equation, i.e., under which (¢) is an inertial manifold. To establish the decay of all solutionst¢), we
need to decouple the abstracuation (C.2)nto coordinates aligned with the two invariant manifolfdsand M
(cf. Theorem C.1L As a second step, we need to estimate the decay of the coordinates alignadithhe steps
of this construction follow closely the steps used by Chow gB&for parabolic equations with a one-dimensional
spatial variable. For this reason, we omit the proofs of some technical lemmas and refer the interested[8ader to
for further details.

In order to decouplequation (C.2)Jnto a finite-dimensional fast-decaying and an infinite-dimensional slow-
decaying component, we define the linear operate(r) : H* — H?* by letting

An@®e =L@ p+ L®(1)q, (C.26)

wherep = Pfgc € Hf,“‘* andg = Py_c € Hf\,‘)jl. If the gap conditior{C.6)is satisfied,Theorem C.lguarantees

that Ay (¢) is a bounded linear operator with
2M (o) vg

| AN 01 pearze, 2oy < c.27
TR = (a1 — mv)) T = M(@)vo (€27

and thatA y (¢) is continuous and™-periodic int wheneveV(r) is T-periodic. By(C.27) the operator
Dy(0) =T+ AyD)

is well-defined ifK (e, k, N, V) defined by(C.6) is less than 1/2. We now state without proof a few properties of
@y (1) that are simple to establish (¢9]).

LemmaC.1. If K(w, &, N, V) defined by(C.6)is less tharl/2,then

1. @x(¢) is a bounded linear map frofH?* to H%,
2. @N(1) is continuous and T-periodic in t if(¢) is T-periodic
3. My oo®n () = IimN_qu;,l(t) = I uniformly with respect to & R.

To decouple thequation (C.2)we shall project an arbitrary concentratios H>* onto the invariant subspaces
M(0) = {cl(t, ) € M}, M(1) = {c|(t, ©) € M},
whereM and M®™ are the invariant manifolds given I§§.7) and (C.8)respectively. Adapting the proof of Lemma

5.1 of Chow et al[9], we obtain the following result on the projectionobnto the above subspaces.

Lemma C.2. Suppose that there exists> 0 such that

2M(a)vg

< T <1 (C.28)
(k(Un+1— 1N))—* — M(a)vo

Then for each € R we have the direct sum

H?* = M(t) & M> ().
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Moreover the associated projection3™ (1) : H® — M(r) andIT® (1) : H® — M™>(z) are given by

oY @u = PYI+ An@) Yu+ LN PEUI + An () tu,
O°@Wu = Py, (I + An®) u+ L0 Py (I + An@) .

With the help of this last lemma, we can now decowggeation (C.2)For anyc € H%, we write

c=p-+gq,

wherep = Pyc € H¥*" andg = Py, ic € HZ;. ThenEq. (C.2)can be written as
pr = —kALp+ PY V(D) A%, (C.29)
G = —KcAy 14 + Py, V) A%. (C.30)

Repeating the proof of Lemma 5.2 of Chow et[8], we obtain the following final decoupled form.

Lemma C.3. Suppose that the gap conditi¢@.28)is satisfied. Then the transformatian= @y (r)c transforms
equationgC.29) and (C.30)o the decoupled equations

unt = —KkAfuy + PR VO A + LY 0]uy, (C.31)
Uoor = —Kk Ay qitoo + Py VIOAYLT + L™ (0)]uco, (C.32)

whereu = ®y(f)c, uy = Piu € Hy" andus = Py qu € Hi' .
C.6. M(?) is an inertial manifold

We first recall a modified form of the classic Gronwall inequality (see,[&é%).Lemma 7.1.1)] Suppose that
a,b> 0,8 > 0, and the functio(¢) is nonnegative and locally integrable on {fcc), satisfying

t
o) <a+ b/ (t — s)‘s_ld)(s) ds, 0<t< +oo.

Then
o) <aks(), 0<t< +oo, (C.33)
where
= b €
6 =0ron'’,  Es@) = th)m ~ - ast - foo.

To show the attractivity oV (), we first recall formulgC.28)and note that if

) 2M(a)vo
lim sup - <
n—oo (K(nt1 — pn))*~% — M(a)vo

(C.34)

is satisfied, then there exist a sequenge< N> < --- < N; < --- of indices such that

2M () vg

<1 i=12...
(k(N+1 — )™ — M(a)vo
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holds. The operators
on () =T+ An)7E  i=12 ...

are therefore well-defined K{.27) and satisfy the properties listediemma C.1By Lemma C.3 each®y;, (1)
transformsEgs. (C.29) and (C.3ap the decouple@quations (C.31) and (C.32)
Let ¢ be a solution ofC.2)in H%* with the initial condition

o
co = Z c&j@&}(O)ei.
i=1

By Lemma C.lwe have

o0 o0
R 0 R 0
lim E Cin,€i = lemoo @, (0)co = co = E cie.
i=1

j— 00
J = i=1

We select a small constaat- 0, and pickN j, large enough so that

oo € oo oo €
0 0 0
Z c; € < E’ ZCiNjoei_Zciei < E
l=N/0+1 2 i=1 i=1 H2«
Then the “tail” of )2, Ci?\lj e; obeys the estimate
= 0
oo oo o0 o0
0 0 0 0
2 e < D e — e e <
Z CiNj, i < Z CiN, i Z cie + Z cje <e (C.35)
i=Njy+1 2 i=Njy+1 i=Nj,+1 2 i=Njy+1 2

Next, we seleck to be the solution ofC.31) and (C.32)n H?* with initial condition
o
0
u(0) = dy, (O)co =Y CiN €i-
i=1
Then the two components afappearing in the decoupledjuations (C.31) and (C.33je
Nj (0.¢]
un;, (0) = P,J\?jou(O) = Zcﬁ\,joe,- € Hﬁ‘j{;, Uso(0) = Py, 1u(0) = Z Ci?\ljoei‘
i=1 i=Njo+1
Becausdeq. (C.31)is a finite-dimensional linear ODE, it admits a fundamental matrix sollmpjra () such that

0
uNjO(t) = (61, R} eNfO)UNfO(t)CNjo’

0 0 0 T
wherecy, = (c s, C . We then have
NjO ( leO NjON-/O)

n
1 —1 -1 -1 0 -1
c= @Njo (Hu = Q)Nfo (t)(uNjo +Uu) = E (Q§Nj0 (Heq, ..., ®Nj0 (t)eNfo)UNjo(t)CNjo + @Njo(t)uoo.
i=1
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FurthermoreEgs. (C.9), (C.32) and (C.1inply

t

—KkAy. Lq(=s5)
ol 2o = e Mot PNjO+1V(s)A"‘(I + L%°(8))uso(s) ds

e Moy (0) + /
0

H2«

—K,

< & Mo |l ()| e + 2D(e) g fot(t — )7 M0 1 g (5) ] e s,
or, equivalently

lttoo ()] e €M7 < it () 2 + 200 fo (= 97 €07 e () g .
Then the generalized Gronwall inequalfty.33)gives

K,

100 (D)1] 20 €7Vio ™ < [0 (O] 20 E1—o (2T (@) v0 (1 — )Y 3=%)p)
< C(@) |10 (0) || 20 €XP(2I (@) 00 (L — @)Y =¥y,

whereC(«) denotes a positive constant dependingrohen estimatéC.35)yields

n
-1 -1 0
= (P, D @i, Dew Uy (O
=

H2«
= @y, Dol g2 < C@IPy (100 (O] 20 EXP(RIe)vol (L — )™ — iy 1))
< €C@)|| Py 1eXP(—(kpanj 11 — (T@)vol (L = )Y E=yp). (C.36)

This last formula shows that all solutions convergeMtir) exponentially in theH2* norm for large enouglv,,
and henceM(z) is an inertial manifold.

Appendix D

Here we first review some facts about infinite-dimensional Floquet theory, then pheazem 4

D.1. Infinite-dimensional Floquet theory

A Floquet theory for the abstraetjuation (C.2)s described by Kuchmefit8] for the case of &-periodicV(r).
Specifically, Kuchment shows that the space of all solutions of the form

n
cx.y =€ "tox.n,  reC. =@k 1+,
=0

is complete in the function spa¢&(R+, H?), provided that

2 o
liminf 20K+ D)” (D.1)

n—=00 K(fp+1 — Mn)

whereug is the minimal upper bound div| defined in(21).
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Originally obtained by Miloslavskij21], condition(D.1) is too restrictive to cover physically relevant velocity
fields in the advection—diffusicaquation (6)For instance, for the square domdie= [0, 7] x [0, 7], the eigenvalues
of Aarew,., =m?+n?(m,n=0,1,2,...). Inthis case, after setting= 1/2 in (D.1), we obtain the condition

1/2
.. 143 K
liminf — 2+ K

n>00 [yl — fn 200
The limit on the left-hand side of this inequality seems impossible to compute analytically, but appears to be plus
infinity in numerical calculations. If the limit is indeed infinity, thep needs to be zero by conditi¢B®.1), which
makes the Miloslavskii—-Kuchment result inapplicable to nontrivial velocity fields.

The above shortcoming of existing Floquet theory for parabolic PDEs has prompted us to adapt the approach of
Chow et al[9], who developed a Floquet theory for parabolic equations in one spatial dimension. We have extended
their approach to our current higher-dimensional context by first proving the existence of an inertial manifold in
H(S), then applying the classical finite-dimensional Floquet decomposition on the inertial manifold.

D.2. Classical Floquet decomposition on the inertial manifold

If V() is T-periodic int, it thenq);,jlO (r) is alsoT-periodic int. As a result, by finite-dimensional Floquet theory,
there exists &-periodicNj, x N, matrix PN_,O(t), and a constanV;, x N, matrix By, such that

By,
Unjy (1) = Py (e o', (D-2)
SettingNj, = N in (C.36)and usingD.2) with o = 1/2, we obtain statement (i) Gfheorem 4

D.3. Faster convergence outsidé (¢) than inside

To prove statement (ii) oFheorem 4we multiply (C.32)by UNjy» integrate over the domai$y and us€C.9)to
find that

d 2 + + N;
E”uNjo”LZ = —ZK/S(ANI,OMNJ.O)MN].O dv+/S[PNjo V(A% + L /o(t))ul\/jo]u]\/jO dv

v

—2pi Iy 122 = 1P VIOAST + Lo (), 2l ]2

v

2 N;
=2, lunio 152 = voll A(1 + LYo ())yun, Il 2 llun, Il 2
2 N;
= —2kpn, lun 72 — voll(X + L7 @)un; Nl goollun, Il 2
= 2y lung 172 — 2volluw g Il ellien ol 2 = =2 llewso 172 — 2ufy, vollu 172,
where we used the inequaliﬂythO | o« < ,u‘;(,jo llun, II- The above estimate then implies
luwyl72 = expl-2(cn,y + ufy, vo) lun,, (O)17.
Now the H%* norm and the.? norm are equivalent on the finite-dimensional spH%:, thus we have
llun gl o = CeXIO[—(KMN_,0 + M‘}(;jo vo)t]llun;, (O]l 2= (D.3)

for an appropriat€ > 0. Settinge = 1/2 in (C.36) and (D.3)we obtain that for large time|$uNj0 |1 decays
slower than|u || ;71 does if

2.2
KNGy F I V0 < KINjo+1 — 410,



W. Liu, G. Haller/Physica D 188 (2004) 1-39 37
or, equivalently
- _ / > 47t2v2//c
/'LN‘,'O+1 MNjo P /'LN‘,'O o/ K-

But this condition is always satisfied undq@e) for large enoughv,, thus statement (ii) ofheorem 4ollows.

Appendix E
Here we proveTheorem 5 Substituting the limiting Floquet solutiom &g (x, 1) into the advection—diffusion
equation (6)gives
390 — Aowo + Vo - V = kAgo. (E.D)
Multiplying this equation byp{, the complex conjugate @f, gives
950190 — holpol® + @5 Vo - V = Kkg§ Ago.

Adding this equation to its complex conjugate, and integrating over the dasriaads to
d
Euq)ouz = 2/ Rek0|<pg|2dV—2/<p8V<po : vdv+2/</<p3A<podv
s s s
1
= 2Redollgol® — 2/ SIV - (lpol*V) = Igol*V -v]dV — 2K/[V (95 V90) — Vol 1dV
S S

= 2Rekoll¢oll2 — / lpol>v - ndA + 2/ l9ol?V -vdV — ZK/ @5V o - ndA + 2¢|| Vol|?
aS S aS
= 2Rexollpoll? + 2« Voll, (E.2)

where we used the incompressibilitywés well as the boundary conditions wandgo.
By the T-periodicity of the functionpg, integration of(E.2) with respect ta over [0, T] gives
IV goll?
I@oll?
where the bar denotes temporal averaging over[0
Next we splitpg andig into real and imaginary parts by letting

Relx =«

(E.3)

@o(X, ) = g(X, 1) +ih(X, 1), A=u+ip,

wheren andp are real constants, argdand/ are real-valued functions that satisfy the boundary conditions, and
areT-periodic ins. Substitution intqE.1)then gives the two equations

g +Vg-v=ug— ph+kAg, hi +Vh-v=pg+ uh+«Ah. (E.4)

Multiplying the first equation by complex conjugag®, integrating over the domaisi, then averaging in time as
before leads to

_ 1@l - Vel

— (E.5)
»(gh)
Thus, based ofE.3) and (E.5)a simple Floquet solutions ¢6) has the general form
Vol Vaol2lIRe@oll? — [|@oll2IReV &ol2
(. t)zexp[_,(<|| Boll” IV fol*IRegol” — lioll”IRe Vol H ool E£6)
%ol s|@oll?(Rego Im ¢o)

for someT-periodic, complex-valued* function gg.
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Appendix F

Here we provélheorem 6 Substituting(40) into the Floquet solutiof36) then, in turn, intdeq. (6)gives
3o + Voo - VA1 + Aodo — Ado) + O(k?) = 0,
which yields the equation
d¢o+ Vgo-v=0,
in thex = 0 limit.

Let yr(x, r) denote the streamfunction associated with the time-periodic velocitwigld), i.e., let

0 -1
V(X, ) = JIVY(X, 1), J= <1 0 ) .

Furthermore, lef be a parameter with values taken from a closed intefvalR, and lety € S be aT-periodic
coordinate on a circle of perimet&r We define the Hamiltonian

HX,y, D=y, y) +1
and the associated two-degree-of-freedom Hamiltonian system
X = JVyH(X, 1, ), 1=-3,H(x 1Y), v =01HX, L ). (F.1)
Becausepo(X, 1) is aT-periodic solution 0of4), a direct calculation shows that
p1(X, ¥) = ¢o(X, p),
is a first integral for syster(F.1). Another first integral fo(F.1)is
p2(X, v, ) = HX, v, D),
which is in involution withpq, i.e.

op1dp2  Op1dp2  Op1dp2  dp1dp2
pp) =22 R Te AT e e, H — 83,000y, H — 8
{p1, p2} Y T T + ol oy oy ol , P00, 1 POOx, 20
= —d;¢0 + Vo - v = 0. (F.2)
In addition, we have

V p1 = (0x;¢0, 0x,0, 0, 3:¢0), Vp2 = (0¥, 0¥, 1, 0),

therefore the vector® p; andV p» are linearly independent whenewep1 # 0. Furthermore, any common level
setL (a1, ap) of p1 andp,, defined as

L(a1, @2) = {(X, ,y) € S x T x S p1(x, I,y) = a1, pa(X, I, y) = a2},

is compact by the compactnesssot Z x 1. Then, by the Liouville—Arnold theore{6], any connected component
of the setL (a1, a2) is diffeomorphic to a two-dimensional torus, and hence sygteft) is completely integrable
whenever p1|Ly,q2) # 0, Of, equivalently

Vool (a,ar) # 0. (F.3)

This last inequality follows fronV p1|r (a;.a0) # 0, becaus&Veo(x, 1) = 0 implies 3;¢o(x, r) = O by Eq. (4)
Becausé&/F; (o) is a diffeomorphism, the regiah defined in the statement of the theorem contains full trajectories
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of v along whichVco(x, 1) # 0 (cf. formula(A.4)). Therefore, conditiorfF.3) holds for all trajectories withirD,
makingv completely integrable o®.
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