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Abstract

We prove the existence of asymptotic spatial patterns for diffusive tracers advected by unsteady velocity fields. The
asymptotic patterns arise from convergence to a time-dependent inertial manifold in the underlying advection–diffusion
equation. For time-periodic velocity fields, we find that the inertial manifold is spanned by a finite number of Floquet
solutions, thestrange eigenmodes, observed first numerically by Pierrehumbert. These strange eigenmodes only admit a
regular asymptotic expansion in the diffusivity if the velocity field is completely integrable.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

In a seminal paper, Pierrehumbert[26] observed intriguing patterns in a diffusive tracer field stirred by the
discrete map model of a time-periodic velocity field. The concentration patterns formed within just a few stirring
periods, then repeated with exponentially decaying intensity as the tracer field approached the fully mixed state.
This exponentially modulated time-periodic behavior and the complex spatial structure prompted Pierrehumbert to
call the repeating patternsstrange eigenmodes.

Several numerical studies have since confirmed that strange eigenmodes develop in periodically stirred two-
dimensional diffusive tracer fields (see, e.g.[3,27,30]). Remarkably, Rothstein et al.[29] observed strange eigen-
modes experimentally in a periodically driven two-dimensional fluid layer. Both the numerical evidence in[26]
and the experimental findings in[29] suggest that strange eigenmodes also appear in flows with aperiodic time-
dependence, as evidenced by an asymptotic self-similarity of the tracer probability distribution function (PDF).
This makes one suspect that the asymptotics of scalar mixing in large-scale geophysical flows may be universally
governed by statistically defined strange eigenmodes (see[16]).
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1.1. Prior work on strange eigenmodes

Pierrehumbert’s observation has led to several statistical theories for the asymptotic decay rate of the tracer vari-
ance. For chaotic advection, Antonsen et al.[3] showed a relationship between the statistics of finite-time Lyapunov
exponents and the decay rate. Fereday et al.[11] and Wonhas and Vassilicos[35] found, however, that the variance re-
mains exponential in examples where the theory in[3] predicts super-exponential decay. The conclusion put forward
by Fereday et al.[11] is that Lyapunov exponents alone fail to describe correctly the exponential decay of tracer vari-
ance. The same conclusion pertains to the work of Pattanayak[25], who generalizes the idea of equating diffusive ef-
fects with straining in the Lagrangian frame (cf.[5,31]) to obtain a variance decay prediction for ergodic fluid mixing.

Working with random but spatially smooth velocity fields, Balkovsky and Fouxon[7] used Lyapunov exponent
statistics to obtain tracer PDF with no asymptotic self-similarity. This suggests that strange eigenmodes are absent
in the Batchelor regime of turbulence, i.e., in the regime with length scales below the viscous cutoff but above the
diffusive cutoff. At the same time, the simulations of Pierrehumbert[27] and Hu and Pierrehumbert[16] showed
self-similar tracer PDF in the same regime, giving further basis to the critical view of Fereday et al.[11] on Lyapunov
exponent-based theories.

Hu and Pierrehumbert[17] and Fereday and Haynes[12] argue that[3,7] both describe a transient stage of tracer
mixing after which strange eigenmodes with self-similar PDF prevail. By contrast, Antonsen and Ott[4] maintain
that the mechanism described in[3] remains an important component in tracer evolution for infinite times, and that
this mechanism provides a lower bound on the decay of the passive scalar variance in the limit of vanishing diffusivity.

Despite all the work on asymptotic variance decay, there has been little progress in justifying the strange eigenmode
view itself. As a notable exception, Antonsen et al.[3] give a heuristic description of the wave-number spectrum
of an eigenmode for flows with no mixing barriers. A refined description of the spectrum appears in Fereday et al.
[11] for a one-dimensional diffusive baker’s map model.

More recently, Sukhatme and Pierrehumbert[30] pointed out a similarity between the differential operators of
advection–diffusion and magnetic dynamo theory. For the latter, rigorous results by Childress and Gilbert[8] guaran-
tee periodic eigenmodes if the velocity field is time-periodic (see also[13]). For smooth velocity fields, the dynamo
operator only differs from the advection–diffusion operator by a bounded term, thus the existence of eigenmodes in
the advection–diffusion equation appears plausible, at least for a smooth, two-dimensional, time-periodic velocity
field.

As Sukhatme and Pierrehumbert[30] note, however, the completeness of the eigenmodes is unknown even in
dynamo theory, thus recurrent patterns may be unobservable for general initial data. In addition, the dynamo analogy
fails for nonsmooth, three-dimensional, or aperiodic velocity fields, leaving the existence of eigenmodes an open
question for realistic applications.

Very recently, Pikovsky and Popovych[28] showed that strange eigenmodes may also be viewed as eigenfunctions
of an appropriate Frobenius–Perron operator. They computed some of these eigenfunctions numerically for a scalar
advected by the standard map. This fresh approach offers an alternative view on scalar mixing, but leaves the
questions of completeness and general time-dependence open.

1.2. The main results of this paper

In this paper, we prove the existence of strange eigenmodes for advection–diffusion problems of the form

ct +∇c · v = κ�c, (1)

wherec(x, t) denotes the tracer concentration,κ > 0 is the diffusivity, andv(x, t) is a bounded velocity field with
general time-dependence. The spatial variablex is defined over a bounded spatial domainS that is either two- or
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Fig. 1. Evolution of the tracer concentrationc(x, t), and the geometry of the Poincaré mapc(x, t) �→ c(x, t + T).

three-dimensional. We show thatEq. (1) admits a finite-dimensional invariant manifoldM(t) in an appropriate
Sobolev space provided that the Laplacian operator� satisfies a spectral gap condition onS. On the manifold
M(t), the tracer evolution is governed by a time-dependent system of linear ordinary differential equations, whose
general solutions are the generalized strange eigenmodes. The slowest-decaying such eigenmode becomes dominant
asymptotically.

Under a stronger gap condition, we show thatM(t) is in fact an inertial manifold, i.e., it attracts all square-integrable
initial tracer distributions in the Sobolev spaceH1(S). Consequently, any initial tracer distribution evolves towards a
finite set of strange eigenmodes and becomes indistinguishable from the slowest-decaying such eigenmode over long
enough time scales. As we show, the stronger gap condition guaranteeing all this holds for canonical two-dimensional
domains such as the square.

If we add a square-integrable source term to the left-hand side of(1), the asymptotic tracer distribution will be
determined by a particular solution, not an eigenmode. Still, the convergence of general solutions to this particular
solution will be governed by strange eigenmodes.

For time-periodic velocity fields that are continuous-in-time, the dynamics on the inertial manifold admits a
classical Floquet decomposition. This decomposition gives a rigorous proof for the time-periodic yet exponentially
fading spatial patterns observed by Pierrehumbert for the tracer field. We show this result schematically inFig. 1.

For incompressible time-periodic velocity fields, we find the weakest Floquet solution to be of the form

c∞(x, t) = exp

[
−κ

(
‖∇ϕ̄0‖2

‖ϕ̄0‖2
+ i
‖∇ϕ̄0‖2‖Reϕ̄0‖2− ‖ϕ̄0‖2‖Re∇ϕ̄0‖2

‖ϕ̄0‖2
∫
S

Reϕ0 Im ϕ0 dV

)
t

]
ϕ0(x, t), (2)

whereϕ0(x, t) = ϕ0(x, t + T) is a complex-valued function depending onκ, overbar denotes temporal averaging
over one period of the velocity field, and‖ ·‖2 = ∫

S
| · |2 dV denotes theL2 norm overS. As we show in an example,

(2) also allows for quasiperiodic and subharmonic eigenmodes.
As anticipated by Sukhatme and Pierrehumbert[30], the behavior ofϕ0 in theκ→ 0 limit turns out to be quite

subtle. We find that any attempt to approximateϕ0 through a regular Taylor-expansion inκ will invariably fail for
nonintegrable velocity fields.

The outline of this paper is as follows. InSection 2, we first give estimates that establish the decay of tracer
variance under general conditions. InSection 3, we prove the existence of an inertial manifold with its attendant
generalized strange eigenmodes.Section 4elaborates on the properties of classical strange eigenmodes observed
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for time-periodic velocity fields, thenSection 5discusses the role of strange eigenmodes in the presence of sources
and sinks. We conclude with a summary and a list of open questions inSection 6.

2. General properties of tracer evolution

Consider an unsteady velocity fieldv(x, t) on a bounded two- or three-dimensional spatial domainS. We denote
the measure (area or volume) ofS by

κ = mes(S). (3)

We assume thatv is incompressible, square-integrable overS, and satisfies periodic, no-flow, or no-slip boundary
conditions on the boundary∂S.

We denote fluid particle positions at timet by x(t; t0, x0), referring to the initial positions asx0 at timet0. We
shall also use the flow mapFtt0(x0) = x(t; t0, x0), the map that relates initial particle positions at timet0 to their
current positions at timet.

We are interested in the mixing of a diffusive tracer fieldc(x, t) under the action ofv. The tracer field is assumed
to satisfy the advection–diffusion equation

ct + ∇c · v = κ�c + f(x, t),

whereκ is the diffusivity of the tracer, andf(x, t) denotes a source term.
Below we collect some basic properties of the solutions of the above equation. Specifically, we estimate how

themean concentration〈c〉 = (1/κ)
∫
S
c dV , theconcentration variance‖c‖2 = ∫

S
c2 dV , and theconcentration-

gradient variance‖∇c‖2 = ∫
S
|∇c|2 dV evolve in time.

Some of the estimates below appear to be unknown in the physical advection–diffusion literature, which has
traditionally preferred statistical models over analytic estimates. Some other reviewed facts, such as the conservation
of mean concentration in the absence of sources, are well-known.

2.1. Evolution of a conserved tracer

In the absence of diffusion, sources, and sinks,c is conserved along fluid trajectories. The governing equation
for c then simplifies to the conservation law

ct + ∇c · v = 0, c(x, t0) = c0(x),
∂c

∂n

∣∣∣∣
∂S

= 0 (4)

with c0(x) denoting the initial concentration att = t0, and with(∂c/∂n)|∂S referring to the normal derivative ofc
along the boundary. The above equation is solved by

c(x, t) = c0(x0(t0; t, x)), (5)

wherex0(t0; t, x) denotes the position at timet0 for the fluid particle that is located at the pointx at timet.

Proposition 1. The solutionc(x, t) of Eq. (4)has the following properties:

(i) The mean concentration is constant in time, i.e., 〈c〉 = 〈c0〉.
(ii) The concentration variance is constant in time, i.e., ‖c‖2 = ‖c0‖2.
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(iii) If v has bounded gradients over S, then the variance of the concentration-gradient satisfies the estimate

‖eλ−(t,t0,x0)(t−t0)∇c0(x0)‖2 ≤ ‖∇c‖2 ≤ ‖eλ+(t,t0,x0)(t−t0)∇c0(x0)‖2,

whereλ+(t, t0, x0) andλ−(t, t0, x0) denote the maximal and minimal finite-time Lyapunov exponent associated
with the fluid trajectory starting fromx0 at timet0. (For two-dimensional flows, we haveλ− = −λ+.)

We prove the above proposition inAppendix A.
Statement (iii) ofProposition 1gives upper and lower bounds on the well-documented growth of tracer gradients

for nondiffusive passive scalars in chaotic or turbulent advection. In particular, the gradient variance does not grow
faster than the initial tracer variance weighted with an exponentially growing term, whose exponent is the finite-time
Lyapunov exponent distribution for the velocity fieldv.

2.2. Evolution of a diffusive tracer

Consider now a diffusive tracerc(x, t) with the corresponding full advection–diffusion equation

ct + ∇c · v = κ�c + f, c(x, t0) = c0(x). (6)

In this section, we fix the Neumann boundary condition(∂c/∂n)|∂S = 0 for concreteness, but our main results in
later sections are equally valid for Dirichlet or spatially periodic boundary conditions.

We define the maximal strain rateσ(t) as the maximal eigenvalue of the rate-of-strain-tensor over allx ∈ S. More
specifically, we let

σ(t) = max
x∈S

λmax(
1
2(∇v(x, t)+ ∇vT(x, t))).

For two-dimensional flows, incompressibility implies

σ(t) = max
x∈S

1
2(
√
−det[∇v(x, t)+ ∇vT(x, t)]. (7)

Proposition 2. The solutionc(x, t) of Eq. (6)has the following properties:

(i) The mean concentration satisfies〈c〉 = 〈c0〉 +
∫ t
t0
〈f(x, τ)〉dτ. Therefore, 〈c〉 is conserved in the absence of

sinks and sources.
(ii) Let ε > 0 be an arbitrary positive constant, and letµ1 > 0 be the smallest eigenvalue of the Laplacian−�

on the domain S. The concentration variance then satisfies the upper estimate

‖c − 〈c0〉‖2 ≤ ‖c0− 〈c0〉‖2 e−2(κµ1−ε)(t−t0) + 1

2ε

∫ t

t0

e−2(κµ1−ε)(t−τ)‖f − 〈f 〉‖2 dτ. (8)

In particular, in the absence of sinks and sources, the concentration variance obeys the estimate

‖c − 〈c0〉‖2 ≤ ‖c0− 〈c0〉‖2 e−2κµ1(t−t0). (9)

(iii) If v has bounded gradients over S, then withε andµ1 defined above, the variance of the concentration-gradient
satisfies the estimate

‖∇c‖2 ≤ ‖∇c0‖2 e
∫ t
t0

2(σ(τ)−κµ1+ε)dτ + 1

2ε

∫ t

t0

e2
∫ t
τ (σ(r)−κµ1+ε)dr‖∇f‖2

2 dτ. (10)

In particular, in the absence of sinks and sources, we have

‖∇c‖2 ≤ ‖∇c0‖2 e
2
∫ t
t0
(σ(τ)−κµ1)dτ

. (11)
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We prove the above proposition inAppendix B. Note that if the diffusivity is large enough so that

κ >
σ(t)

µ1
, (12)

then, by(11), the norm of the tracer gradient starts decaying exponentially immediately aftert0, regardless of
the initial gradient distribution. Thus maxt≥t0[σ(t)/µ1] gives a lower bound on the diffusivity that is needed to
completely eliminate the initial growth in the tracer gradient variance caused by advection. Selecting a spatial
regionS with a smallerµ1 value is therefore expected to lead to faster mixing for the same diffusivityκ.

If (12)is not satisfied for a given flow, the estimate(10)does notpredict decay for the variance of tracer gradients.
In that case, the estimate simply serves as an upper bound for the growth rate that‖∇c‖2 may exhibit while the
tracer is mixed.

Example 1 (Variance decay estimate for a planar rectangular domain). IfS = [0, a] × [0, b] is a two-dimensional
rectangular domain witha ≥ b > 0, then

µ1 = π2

b2
(13)

and hence immediate exponential decay in the tracer variance occurs for

κ >
b2σ(t)

π2
.

In view of the above discussion, selecting a narrower rectangular domain with smallerb leads to faster mixing for
the same diffusivity.

Example 2 (Vorticity evolution in two-dimensional decaying turbulence). As an illustration ofProposition 2, we
consider a two-dimensional physical domainS, and assume that the velocity fieldv satisfies the incompressible
Navier–Stokes equation

vt + (v · ∇)v = −1

ρ
∇p+ ν∇2v + f .

Hereρ denotes the density,p is the pressure,ν the kinematic viscosity, andf denotes the body force distribution in
the fluid. Taking the curl of this equation and using incompressibility, we arrive at the scalar vorticity equation

ωt + ∇ω · v = ν�ω + (∇ × f)z

with ω = (∇ × v)z denoting the component of the vorticity that is orthogonal to the plane ofS. Sinceω satisfies
Eq. (6), Proposition 2applies and gives

〈ω〉 = 〈ω0〉 +
∫ t

t0

〈(∇ × f(x, τ))z〉dτ,

‖ω − 〈ω0〉‖2 ≤ ‖ω0− 〈ω0〉‖2 e−2(νµ1−ε)(t−t0) + 1

2ε

∫ t

t0

e−2(νµ1−ε)(t−τ)‖(∇ × f(x, τ))z‖2 dτ,

‖∇ω‖2 ≤ ‖∇ω0‖2 e
∫ t
t0

2(σ(τ)−νµ1+ε)dτ + 1

2ε

∫ t

t0

e2
∫ t
τ (σ(r)−νµ1+ε)dr‖∇(∇ × f(x, τ))z‖2

2 dτ

for any constantε > 0.
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If the forcef is potential, then(∇ × f)z ≡ 0, and hence the above argument yield the vorticity decay estimates

〈ω〉 = 〈ω0〉, ‖ω − 〈ω0〉‖2 ≤ ‖ω0− 〈ω0〉‖2 e−2νµ1(t−t0), ‖∇ω‖2 ≤ ‖∇ω0‖2 e
2
∫ t
t0
(σ(τ)−νµ1)dτ

.

The first estimate gives an upper bound on the decay of vorticity variance, while the second estimate establishes an
upper bound on intermediate growth rates for the vorticity gradient variance. If the viscosity is large enough so that
ν > σ(t)/µ1, then we obtain immediate exponential decay for the vorticity gradient distribution.

Example 3 (Tracer variance decay in a numerical example). We consider the two-dimensional square domain
S = [0,1]× [0,1] and fix the diffusivity valueκ = 0.001. Motivated by the example used by Liu et al.[19], Alvarez
et al.[2], and Muzzio et al.[24], we select the velocity field

v1(x, y, t) =
{

sin(πx) cos(πy) if n ≤ t < n+ 0.75,

− sin(2πx) cos(πy) if n+ 0.75≤ t < n+ 1,

v2(x, y, t) =
{
− cos(πx) sin(πy) if n ≤ t < n+ 0.75,

2 cos(2πx) sin(πy) if n+ 0.75≤ t < n+ 1
(14)

and the initial tracer distribution

c0(x, y) =
{

1 if 0 ≤ x ≤ 1
2 and 0≤ y ≤ 1,

0 if 1
2 < x ≤ 1 and 0≤ y ≤ 1

(15)

for the advection–diffusionequation (6)with f ≡ 0. We define

V(t) = ‖c(t)− 〈c0〉‖2

0 5 10 15
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2

t
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V
)

The graph of  νπ2 t+log(V(0))
The graph of log V(t)

Fig. 2. Decay of concentration variance (solid line), and the universal upper estimate for this decay (dashed line).
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and recall that estimate(9) and formula(13)with b = 1 together yield

V(t) ≤ e−κπ
2tV(0). (16)

In Fig. 2, the dashed curve shows log e−κπ2tV(0), the logarithm of the right-hand side of(16), and the dash-dotted
curve shows logV(t). The figure illustrates the universal validity of estimate(9), but also shows that the actual decay
rate of the concentration variance may be much faster than the rate on the right-hand side of(9).

Parallel to the exponential decay of variance, the concentration converges at an exponential speed to a time-periodic
pattern, the strange eigenmode described by Pierrehumbert[26]. Shown inFig. 3, the pattern quickly develops within
a few periods, then fades away gradually as the concentration field converges to the fully mixed statec(x, t) ≡ 〈c0(x)〉.

Fig. 3. Convergence of the concentration to a strange eigenmode. The figures show snapshots of the concentration fieldc(x, t) at multiples of
T = 1, the time period of the velocity field.
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The emergence of strange eigenmodes suggests a deeper mechanism behind the exponential decay of tracer
variance, one that cannot be captured by the elementaryL2 estimates ofProposition 2. In the following sections,
we describe this deeper mechanism using the phase–space geometry of the advection–diffusion equation.

3. Inertial manifold and generalized strange eigenmodes

Here we show that under certain conditions, the advection–diffusionequation (6)admits a finite-dimensional
invariant manifold that inherits any special time-dependence, periodic or quasiperiodic, thatv(x, t) may have.
Under further conditions, this finite-dimensional invariant manifold turns out to be aninertial manifoldthat attracts
all solutions of(6). In that case, the asymptotics ofc(x, t) will always be governed by a finite-dimensional system
of time-dependent linear differential equations, obtained by reducing(6) to the inertial manifold. An independent
set of solutions to this equation can be thought of as a set of generalized strange eigenmodes.

3.1. Invariant and inertial manifolds

To formulate our main result, we first introduce the negative Laplacian operator

A = −�, (17)

defined on mean-zero concentration fields that satisfy the boundary condition in(6), and admit two square-integrable
derivatives in the interior of the physical domainS. Specifically, we defineA on the function space

D(A) =
{
c ∈ H2(S̃) : 〈c〉 = 0,

∂c

∂n

∣∣∣∣
∂S

= 0

}
(18)

with

S̃ = S − ∂S, (19)

denoting the interior of the physical domainS, and withH2(S̃) denoting the Sobolev space of square-integrable
functions with two square-integrable derivatives overS̃ (see[1]). In (18) we fixed Neumann boundary conditions
for c, but our forthcoming analysis is equally valid for periodic or Dirichlet boundary conditions.

By classic results,A is a self-adjoint operator with positive real eigenvalues

0< µ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · · (20)

and with corresponding real eigenfunctionse1(x), . . . , en(x), . . .
We assume that the velocity fieldv(x, t) appearing in(6) is uniformly bounded overS, i.e., there exists a constant

v0 > 0 such that

|v(x, t)| ≤ v0 (21)

for all times inS. We make no assumption about the incompressibility ofv for the following result.

Theorem 1. Assume thatf(x, t) ≡ 0 in the advection–diffusion equation(6).

(i) If, for a positive integerN > 0, the eigenvalues of the operator−� satisfy the gap condition

µN+1− µN >
28π

e

v2
0

κ
, (22)
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thenEq. (6)admits an N-dimensional invariant manifoldM(t) in the function spaceH1(S). The manifoldM(t)

depends continuously on t. Furthermore, if v(x, t) is periodic or quasiperiodic in time, then so isM(t).
(ii) If the eigenvalues of the operator−� satisfy the stronger gap condition

0 ≤ lim sup
n→∞

32
√
πv0√

eκ
√
µn+1− µn − 16

√
πv0

< 1, (23)

thenEq. (6)admits an inertial manifold(a finite-dimensional attracting invariant manifold)M(t) in the function
spaceH1(S). The manifoldM(t) depends continuously on t. Furthermore, if v(x, t) is periodic or quasiperiodic
in time, then so isM(t).

We prove a stronger result inAppendix Cfrom which the above theorem follows. The stronger result establishes
the existence ofM(t) for an abstract parabolic equation in the cruder function spaceH2α for anyα ∈ (0,1). Setting
α = 1/2 in this abstract result yields the condition(23)of Theorem 1.

By the smoothing property of the parabolic advection–diffusion equation (see[15]), anysquare-integrable initial
concentrationc0(x) = c(x, t0) becomes a function inH1(S) immediatelyafter the initial timet0, thusTheorem 1is
strong enough to apply for any realistic choice of the initial tracer distribution.

Notice that for a fixed velocity fieldv(x, t) and a fixed diffusivityκ, the gap conditions(22) and (23)will
automatically hold if

lim sup
n→∞

(µn+1− µn) = ∞. (24)

This last condition is true, for instance, for any two-dimensional rectangular domainS = [0,2π/a] × [0,2π/b]
with (a/b)2 rational, including the case of a square domain (see[20]). As a consequence, we obtain the following
specific result.

Theorem 2. Let S be a two-dimensional rectangular domainS = [0,2π/a]× [0,2π/b] with (a/b)2 rational. Then
there exists an integerN > 0such that the advection–diffusion equation(6)admits an N-dimensional time-dependent
inertial manifoldM(t) in the function spaceH1(S). The manifoldM(t) depends continuously on t. Furthermore,
if v(x, t) is periodic or quasiperiodic in time, then so isM(t).

For three-dimensional flows, condition(23) becomes more restrictive, and may only hold for larger values ofκ,
as the example below shows.

Example 4 (Gap conditions for a three-dimensional domain). Consider the cubic domainS = [0,2π] × [0,2π] ×
[0,2π]. For this physical domain, the gap between adjacent eigenvalues of−� equals 0,1,2, or 3 (cf. [20]).
Therefore, a finite-dimensional invariant manifold exists by (i) ofTheorem 1if

κ >
28πv2

0

3e
.

Furthermore, we have

lim sup
n→∞

32
√
πv0√

eκ
√
µn+1− µn − 16

√
πv0

= 32
√
πv0√

eκ
√

3− 16
√
πv0

,

thus an inertial manifold exists by (ii) ofTheorem 1if

κ >
3× 28πv2

0

e
.
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3.2. Generalized strange eigenmodes

Under the appropriate spectral gap condition,Theorem 1guarantees the existence of a continuous-in-time inertial
manifoldM(t) for any bounded velocity fieldv. Because we do not assume differentiability forv, the manifold
M(t) will exist in any physically relevant velocity field, such as a given realization of a turbulent velocity field,
provided that the spectral gap condition(23) holds. Accordingly, the asymptotic tracer concentration is always
governed by a finite-dimensional linear system of time-dependent ODEs.

As a consequence, the asymptotic tracer concentration on the inertial manifold is of the form

c∞(x, t) = 〈c0〉 +
N∑
k=1

γk(t)ϕk(x, t), M(t) = span{ϕk(x, t)}Nk=1, (25)

whereγ(t) = [γ1(t), . . . , γn(t)] is the solution of a finite-dimensional set of linear ODEs with coefficient matrix

M(t) = (κ�− v ·∇)|M(t). (26)

One may refer to the basis functionsϕk(x, t) onM(t) asgeneralized strange eigenmodes, although these eigen-
modes have a general time-dependence that makes their visualization difficult. They may evolve without recurrent
spatial features, remaining invisible under iterations of the time-T mapc(x, t) �→ c(x, t+T) for any choice ofT . By
the universal estimate(9), however, all eigenmodes decay at least exponentially, thus the one showing the slowest
decay will dominate asymptotically.

The emergence of a dominant eigenmodes in aperiodic flows is consistent with the observations of Hu and
Pierrehumbert[16] and Sukhatme and Pierrehumbert[30], who find that the tracer PDF approaches a self-similar
form when normalized by the tracer variance. But self-similarity of the PDF doesnot follow automatically from
the result(25): the general time-dependence ofγk andϕk disallows here the argument that we use inSection 4.4to
establish self-similarity in the time-periodic case.

4. Strange eigenmodes for time-periodic flows

We now describe the tracer dynamics on the invariant manifoldM(t) for the case of time-periodic flows. As it
turns out, asymptotic tracer patterns are generated by a finite number of Floquet solutions onM(t).

Infinite-dimensional Floquet theory is well-developed for parabolic partial differential equations (see, e.g.[9,10,18]).
Surprisingly, however, none of the available results apply to the advection–diffusionequation (6), as we discuss
in Appendix D.1. This is why we restrict(6) first to its inertial manifold, then apply classical Floquet theory as a
second step.

4.1. Classical Floquet theory

For what follows, we first review the elements of classical Floquet theory for finite-dimensional, time-periodic,
linear systems of differential equations. Consider the linear system

ẏ = A(t)y, A(t) = A(t + T), (27)

wherey is ann-dimensional vector andA(t) is ann × n matrix depending continuously ont. Floquet theory
guarantees that any fundamental matrix solution�(t) of (27)can be written as a product

�(t) = P(t)eBt , (28)

whereP(t) is T -periodicn× n matrix, andB is a constantn× n matrix (see, e.g.[14,33]).
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As a consequence of(28), any solution of(27) is a linear combination of Floquet solutions of the form

y(t) = eλt [�0(t)+ t�1(t)+ t2�2(t)+ · · · + tl−1�l−1(t)],

where the complex constantλ is an eigenvalue of geometric multiplicityl for the matrixB, and�k(t)are time-periodic
complex functions.

In the generic case,B is semisimple (hasN linearly independent eigenvectors), giving rise to asimple Floquet
solution

y(t) = eλt�0(t).

If λ is a real eigenvalue, then the function�0(t) is also real. Ifλ is complex, then the corresponding simple Floquet
solution has two frequencies, 2π/T and Imλ.

4.2. Floquet theory for the advection–diffusion equation

We now assume that the velocity fieldv in the advection–diffusionequation (6)is time-periodic with period
T . By Theorem 1, the time-periodicity ofv(x, t) implies the time-periodicity of the manifoldM(t), thus the
advection–diffusionequation (6)reduced toM(t) is of the type(27). Applying classical Floquet theory to this
reduced system, we obtain the following result.

Theorem 3. Assume that the velocity fieldv(x, t) is time-periodic and continuous in t. Assume further thatf(x, t) ≡
0 in Eq. (6), and the gap condition(22) is satisfied. Then any concentration fieldc(x, t) contained in the invariant
manifoldM(t) can be written in the form

c(x, t) = 〈c0〉 +
N−1∑
k=0

e−λkt [ϕ0
k(x, t)+ tϕ1

k(x, t)+ · · · + tl(k)ϕl(k)k (x, t)],

wherel(k) ≥ 0 are nonnegative integers, and the constantsλk ∈ C satisfy

Reλ0 ≤ Reλ1 ≤ · · · ≤ ReλN−1.

This result is a direct application of classical Floquet theory to the finite-dimensional linear system onM(t). The
initial mean concentration〈c0〉 appears in the above result because we originally prove the existence ofM(t) for
the fieldc(x, t)− 〈c0〉.

The continuous dependence ofM(t) on t (guaranteed byTheorem 1) and the continuity ofv(x, t) in t (assumed
in Theorem 3) are both essential: they ensure continuity for the reduced linear operatorM(t) in (26), and hence
make classical Floquet theory applicable onM(t).

Typically, the Floquet matrixB associated with the reduced advection–diffusion equation is semisimple, i.e.,
B hasN linearly independent eigenvectors. This is the case for spatial domains without any particular symmetry,
or for symmetric domains on which the Laplacian� still has a complete set of eigenfunctions. Examples of such
symmetric domains include the square and the circle. We will refer to the case of a semisimpleB as thegeneric case.

In the generic case, we havel(k) = 0 for all k in the above theorem. As a result, any solution on the inertial
manifold can be written as the sum ofN simple Floquet solutions

c(x, t) = 〈c0〉 +
N∑
k=1

e−λktϕk(x, t).
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For large enough times, therefore, the slowest-decaying Floquet solution will determine the asymptotic behavior of
c on the manifoldM(t):

c(x, t) ≈ 〈c0〉 + c∞(x, t) = 〈c0〉 + e−λ0tϕ0(x, t), as t→∞. (29)

Such an asymptotic factorization ofc(x, t) agrees with the numerical observations of Pierrehumbert[26] and the
experimental results of Rothstein et al.[29]. Following Pierrehumbert, we shall refer to the functionϕ0(x, t) as a
strange eigenmode. Over intermediate time scales, numerical or experimental observations may differ from(29)
if some of the exponentsλ1, . . . , λN−1 are close toλ0. In such a case, two or more eigenmodes will contribute
significantly toc(x, t) for long periods of time, and the asymptotic formula(29) is only observed afterwards.

4.3. Convergence to strange eigenmodes

Theorem 3establishes the existence of strange eigenmodes on the invariant manifoldM(t), but it doesnot
guarantee that anarbitrary solution of the advection–diffusionequation (6)will converge to strange eigenmodes.
Such convergence only follows ifM(t) is in fact an inertial manifold, which requires the stronger gap condition(23)
to hold. Under a yet stronger gap condition, we shall even show that the rate of convergence toM(t) is faster than
the decay rate withinM(t), and hence strange eigenmodes prevail very early in the tracer evolution. Specifically,
we prove the following result inAppendix D.

Theorem 4. Assume that the velocity fieldv(x, t) is time-periodic, f(x, t) ≡ 0, and the gap condition(23) is
satisfied. Then the following hold:

(i) The advection–diffusion equation(6) admits a complete set of Floquet solutions, i.e., for arbitrary ε > 0 there
exist an integerN > 0 such that any concentration fieldc(x, t) can be written in the form

c(x, t) = 〈c0〉 +
N−1∑
k=0

e−λkt [ϕ0
k(x, t)+ tϕ1

k(x, t)+ · · · + tl(k)ϕl(k)k (x, t)] + ĉ(x, t), (30)

‖ĉ‖ + ‖∇ĉ‖ ≤ εe−ρt,

whereλk are complex constants, l(k) ≥ 0 are nonnegative integers, K is a positive constant, and

ρ = κµN − 4π2v2
0. (31)

(ii) If the stronger gap condition

lim sup
n→∞

(
µn+1− µn − v0

κ

√
µn

)
= ∞, (32)

holds, then‖ĉ‖ + ‖∇ĉ‖ decays to zero faster than‖c − ĉ‖ + ‖∇(c − ĉ)‖ does.

As in Theorem 3, formula(30) will have l(k) = 0 for all k in the generic case. Thus, under condition(23), the
concentration field is the sum ofN simple Floquet solutions plus an arbitrarily smallO(e−ρt) term:

c(x, t) = 〈c0〉 +
N−1∑
k=0

e−λktϕk(x, t)+O(e−ρt). (33)

In statement (i) ofTheorem 3, ρ ≤ λk is possible, thus the decay ofĉ(x, t), the noneigenmode contribution, may
be slower than the decay of some Floquet modes. Still, for large enoughN, the exponent−ρ tends to−∞ by (31),
thusĉ will decay faster than the first few dominant Floquet modes.
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If the stronger gap condition(32) also holds, then statement (ii) of the theorem guarantees a decay forĉ that is
faster than the decay ofall of theN Floquet modes. In that case, not only is the initial error between the concentration
andN strange eigenmodes arbitrarily small, but this error also decays faster than the strange eigenmodes do. As a
consequence, the strange eigenmodes already become visible on short time scales.

Example 5 (The strong gap condition(32) for a square domain). Let us considerS = [0, π] × [0, π], a square
domain on the two-dimensional plane, and let 0< µ1 ≤ µ2 ≤ · · · denote the eigenvalues of the operatorA = −�
onS. We recall that

lim
n→∞µn = ∞. (34)

We define the quantity

ratio(n) = µn+1− µn√
µn

and show its numerically computed distribution as a function ofn in Fig. 4. Note that ratio(n) remains bounded,
thus its lim sup is finite. Our calculation suggests the numerical value

lim sup
n→∞

ratio(n) = a ≈ 0.04.

Fig. 4. The graph of ratio(n) for n values up to 6.3× 106. The maximum of the graph is approximately 2.1.
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We then have

lim sup
n→∞

µn+1− µn − (1/2)a√µn√
µn

= a

2
> 0,

thus(34) implies

lim sup
n→∞

(µn+1− µn − 1
2a
√
µn) = ∞.

As a result, for

v0

κ
<
a

2
≈ 0.02,

we have

lim sup
n→∞

(
µn+1− µn − v0

κ

√
µn

)
≥ lim sup

n→∞

(
µn+1− µn − 1

2
a
√
µn

)
= ∞.

Hence the gap condition(32) is satisfied for the domainS = [0, π] × [0, π] if κ > 50v0.
Theorem 4clarifies some of the views in the literature about qualitatively different stages of tracer evolution.

Some authors distinguish between super-exponential decay, exponential decay, and near-constant behavior for the
tracer variance, noting that the strange eigenmode description may only be valid for certain types of flows (those
with no barriers), or for certain stages of the tracer evolution (asymptotic time scale).

By our results, no such distinction is justified: under condition(23), which holds for the two-dimensional geome-
tries considered in the literature, any concentrationc(x, t) is close to a finite set of strange eigenmodesregardless
of the mixing properties of the flow, and regardless of the time that has elapsed. Generically, a single mode with
the weakest decay will prevail in the end, but the intermediate stages of tracer mixing are also governed by finitely
many additional strange eigenmodes that have yet to decay to invisibility.

Example 6 (Variance decay patterns generated by strange eigenmodes). To illustrate the above discussion, we
consider the function

C(t) = ‖c(x, t)‖2 = e−2λ0t + e−2λ1t + e−2λ2t ,

to model the tracer variance evolution on a three-dimensional inertial manifoldM(T) of the Poincaré mapc(x, t) �→
c(x, t+ T). Here the inertial manifold is spanned by three eigenmodes with Floquet exponents−λk. For simplicity,
we have assumed

‖ϕk(x, T)‖2 = 1,
∫
S

ϕk(x, T)ϕj(x, T)|j �=k dV = 0.

We show the decay of the model-variance,C(t), for three different choices of the Floquet exponents inFig. 5.
Fig. 5a shows the type of variance decay that is widely considered to be the indication of a single strange eigenmode

(see, e.g.[30]). Fig. 5b shows the type of decay seen in flows with mixing barriers, for which the strange eigenmode
description is generally viewed inapplicable (see, e.g.[3,30]). Finally, Fig. 5c shows what is often thought to be a
super-exponential transient preceding the strange eigenmode state (see, e.g.[3,11,35]).

Despite the above views, all three phenomena shown inFig. 5 occur on inertial manifolds spanned by Floquet
modes. All three types of variance decay are exponential: it is only the ratio of the participating exponents that is
different in each case.
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Fig. 5. Decay of the logarithm of the model-varianceC(t) for different parameter values: (a)λ0 = 0.25, λ1 = 0.3, λ2 = 0.35; (b)
λ0 = 0.01, λ1 = 3, λ2 = 10; (c)λ0 = 0.1, λ1 = 3, λ2 = 10.

4.4. Statistical implication: self-similarity of tracer PDFs

We define the asymptotic tracer PDF as

PDF∞t (z) = 〈p{c∞(x, t) < z}〉,
wherep{B}measures the probability of eventB, the operation〈·〉 refers to spatial averaging over the domainS, and
c∞(x, t) is the asymptotic tracer concentration on the invariant manifoldM(t) (cf. (29)). Since we have

PDF∞t+T (z)= 〈p{c∞(x, t + T) < z}〉 = 〈p{e−λ0(t+T)ϕ0(x, t + T) < z}〉
= 〈p{c∞(x, t) < eλ0T z}〉 = PDF∞t (e

λ0T z),

we can write

‖PDF∞t+T ‖2 =
∫ +∞

−∞
[PDF∞t+T (z)]

2 dz =
∫ +∞

−∞
[PDF∞t (w)]

2 dw

eλ0T
= e−λ0T ‖PDF∞t ‖2.
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We therefore obtain

‖PDF∞t+T ‖2

‖c∞(x, t + T)‖2
= ‖PDF∞t ‖2

‖c∞(x, t)‖2
, (35)

becausec∞(x, t + T) = e−λT c∞(x, t).
Under the spectral gap condition(23), all solutions converge to the inertial manifold, and hence formula(35)

gives asymptotic self-similarity in the sense of Sukhatme and Pierrehumbert[30] for anyconcentration field.

4.5. Generic form of strange eigenmodes

We now consider the generic case in which the concentrationc(x, t) converges to a simple Floquet solution as
described in(29). From now on, an overbar will refer to time-averaging over the interval [0, T ], i.e., we write

ā = 1

T

∫ T

0
a(t)dt

for any functiona(t). We have the following result on the relation between Floquet exponents and the corresponding
strange eigenmodes.

Theorem 5. For a generic, two-dimensional, time-periodic, incompressible velocity field defined on the spatial
domain S, the concentrationc(x, t)− 〈c0〉 converges to a Floquet solution of the form

c∞(x, t) = exp

[
−κ

(‖∇ϕ̄0‖2

‖ϕ̄0‖2
+ i
‖∇ϕ̄0‖2‖Reϕ̄0‖2− ‖ϕ̄0‖2‖Re∇ϕ̄0‖2

κ‖ϕ̄0‖2〈Reϕ0 Im ϕ0〉

)
t

]
ϕ0(x, t), (36)

whereϕ0(x, t) and∇ϕ0(x, t) are square-integrable complex functions for allt > 0, and the constantκ is defined
in (3).

We prove the above theorem inAppendix E. Note that(36) implies

‖c̄∞‖2 = exp

[
−2κ

‖∇ϕ̄0‖2

‖ϕ̄0‖2
t

]
‖ϕ0‖2, ‖∇c̄∞‖2 = exp

[
−2κ

‖∇ϕ̄0‖2

‖ϕ̄0‖2
t

]
‖∇ϕ̄0‖2. (37)

4.6. Quasiperiodic and subharmonic eigenmodes

Formula(36) shows thatc∞ is either time-periodic (as observed originally by Pierrehumbert[26]) or time-
quasiperiodic. The latter case occurs if Im(λ0), the imaginary part of the exponent in(36), is nonzero and rationally
independent of 2π/T . If Im(λ0) is rationally related to 2π/T , then the resulting pattern is again time-periodic, but
with a period equal to the maximum of 2π/Im(λ0) andT . Thus, if 2π/Im(λ0) > T , then we have asubharmonic
eigenmode.

Example 7 (Subharmonic eigenmode). The velocity field

v1(x, y, t) = sin(πx)[ cos(πy) cos(πx)+ cos(2πt) sin(πy)] + sin(πx) sin(πy) cos(2πt) cos(πy),

v2(x, y, t) = − cos(πx)[ sin (πy) cos(πx)+ cos(2πt) sin(πy)] + sin2(πx) sin(πy),

whose time-period isT = 1, gives rise to a strange eigenmode whose period isT̂ = 7. We show this period-seven
eigenmode inFig. 6after a long spin-up time of�t = 43. For reasons of symmetry, Im(λ0) = 2π/T̂ is rationally
related to 2π/T , resulting in a pattern whose period is longer than the period of the velocity field.
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Fig. 6. Snapshots of a strange eigenmode with time-periodT̂ = 7, taken at multiples of the velocity periodT = 1. Note that the exact pattern at
t = 43 only comes back—with weaker intensity—att = 50. (The parameters areκ = 0.001, f ≡ 0, S = [0,1]× [0,1]; initial condition as in
Fig. 3.)

4.7. Numerical extraction of the dominant Floquet exponent

Here we discuss how the dominant (i.e., slowest-decaying) Floquet exponent can be extracted from simulated or
measured concentration datawithoutassuming that the general Floquet expansion(30) simplifies to(33). In other
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words, we do not assume here that the advection–diffusion equation reduced toM(t) admits a semisimple Floquet
decomposition.

Under the conditions ofTheorem 3, if −λ0 is a Floquet exponent forEq. (6), then there exists a nonzero initial
conditionc0 that leads to a solution

c(x, t) = 〈c0〉 + e−λ0t [ϕ0
0(x, t)+ tϕ1

0(x, t)+ · · · + tl(0)ϕl(0)0 (x, t)].

Subtracting〈c0〉, multiplying both sides by their complex conjugates, and integrating over the domainS, we obtain

‖c − 〈c0〉‖ = e−Reλ0t‖ϕ0
0 + tϕ1

0 + · · · + tl(0)ϕl(0)0 ‖.

Thus

tReλ0 = − ln
‖c − 〈c0〉‖

‖ϕ0
0 + tϕ1

0 + · · · + tl(0)ϕl(0)0 ‖
= − ln

‖c − 〈c0〉‖
c0− 〈c0〉‖ + ln

‖ϕ0
0 + tϕ1

0 + · · · + tl(0)ϕl(0)0 ‖
‖c0− 〈c0〉‖ .

Therefore, by the boundedness ofϕ0
0, . . . , ϕ

l(0)
0 , we obtain

Reλ0 = lim sup
t→∞

1

t
ln
‖c0− 〈c0〉‖
‖c − 〈c0〉‖ . (38)

Calculating the above exponent for a general concentrationc(x, t) will render the real part of the weakest-decaying
strange eigenmode.

Example 8 (Dominant Floquet exponent inExample 3). We now reconsider the velocity field(14)from Section 2.2
with the same initial condition and diffusivity. BeyondV = ‖c− 〈c0〉‖ and the upper estimate(9), Fig. 7shows the
exponential decay rate we extracted using formula(38). Note that the final asymptotic decay of the concentration
variance is indeed dominated by the exponent Reλ0 given in(38).

Formula(37)gives another way to identify the dominant strange eigenmode for time-periodic velocity fields. In
particular,(37)gives

‖∇c̄∞‖2

‖c̄∞‖2
= ‖∇ϕ̄0‖2

‖ϕ̄0‖2
,

implying the asymptotic relation (cf.(29))

c(x, t) ≈ 〈c0〉 + exp

[
−κ ‖∇c̄‖2

‖c̄ − 〈c0〉‖2
t

]
ϕ0(x, t) as t→∞. (39)

We then obtain the following expressions for the weakest-decaying Floquet exponent and the corresponding eigen-
mode:

Reλ0 = lim
t→∞

κ‖ ∫ t+T
t

∇c dt‖2

‖ ∫ t+T
t

(c − 〈c0〉)dt‖2
, ϕ0(x, t) = lim

t→∞ [c(x, t)− 〈c0〉] eλ0t .

We close by noting that the exponent in formula(39) clarifies why the quantity of‖∇c‖2/‖c‖2, proposed by
Pattanayak[25] is indeed a relevant indicator of the strange eigenmode stage in the evolution ofc.
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Fig. 7. Decay of tracer variance (solid line), universal upper estimate for the decay (dashed lined), and decay rate extracted using formula(38)
(dash dotted line).

4.8. The conservative limit of strange eigenmodes

While an analytic computation of strange eigenmodes appears beyond reach, one may try to approximate them
for smallκ ≥ 0 in the form

�0(x, t) = φ0(x, t)+ κφ1(x, t)+O(κ2), φk(x, t) = φk(x, t + T ), (40)

whereφ0(x, t) is a solution of the conservative limitingequation (4).
As we show below, however, an asymptotic expansion(40) with boundedφ1 may only exist forcompletely

integrablevelocity fields, i.e., for those that generate formally integrable particle motions. Thus, Sukhatme and
Pierrehumbert[30] are quite correct when they expect theκ→ 0 behavior of strange eigenmodes to be delicate by
analogy with scalar dynamo problems.

Theorem 6. Assume that an asymptotic expansion of the form(40) exists for a Floquet solution of the advection–
diffusion equation(6). Let D denote the set in space–time on which∇φ0(x, t) �= 0. Then the domain D is invariant
under the velocity fieldv(x, t), andv(x, t) is completely integrable on D.

We prove this theorem inAppendix F. The main consequence of this result is that strange eigenmodes in chaotic
particle mixing cannot be expanded in terms of the diffusivity parameterκ. In other words, strange eigenmodes are
nondifferentiable with respect to the diffusivity atκ = 0.

Moffatt and Proctor[22] obtained results similar toTheorem 6for kinematic dynamos. They showed that a
topological constraint, the conservation of magnetic helicity, precludes a nonzero growth rate for the magnetic field
in the limit of vanishing magnetic diffusivity.
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5. Strange eigenmodes in the presence of sources and sinks

Here we briefly consider the long-term behavior of a diffusive tracerc(x, t) in the full advection–diffusion
equation (6), including a nonzero source distributionf(x, t) on the right-hand side. Letc̄ be the solution of

c̄t + ∇ c̄ · v = κ�c̄ + f − 〈f 〉, c̄(x, t0) = 0,
∂c̄

∂n

∣∣∣∣
∂S

= 0

andĉ be the solution of

ĉt + ∇ ĉ · v = κ�ĉ, ĉ(x, t0) = c0(x)− 〈c0〉, ∂ĉ

∂n

∣∣∣∣
∂S

= 0. (41)

Then we have

c = 〈c0〉 + ĉ + c̄ +
∫ t

0
〈f 〉dτ,

wherec(x, t) is the solution of(6).
The above shows that the full concentration fieldc−〈c0〉 is the superposition of the particular solutionc̄+∫ t0〈f 〉dτ

and the solution̂c of the homogeneous system(41). The homogeneous solutionĉ admits strange eigenmodes under
the conditions we described earlier, and these strange eigenmodes are linearly superimposed onto the spatiotemporal
patterns of the particular solution. Thus,strange eigenmodes govern the way in which the tracer field converges to
the particular solution̄c + ∫ t0〈f 〉dτ.
6. Conclusions

We have shown that if the spectrum of the Laplacian� admits large enough gaps, then the advection–diffusion
equation (1)possesses a finite-dimensional attracting invariant manifold. This inertial manifold is spanned by
generalized strange eigenmodes that simplify to the Floquet-type recurrent eigenmodes of Pierrehumbert[26] in
the case of velocity fields with periodic and continuous time-dependence. The slowest-decaying such eigenmode
leads to a self-similar tracer PDF in the time-periodic case.

Our results imply that flows with mixing barriers also admit strange eigenmodes, but a single dominant eigenmode
may take longer time to emerge. Furthermore, strange eigenmodes compete throughout the whole evolution of the
tracer variance, with all but one mode decaying to invisibility over long enough time scales. These results hold
for general velocity fields in two- and three-dimensions, although in specific three-dimensional examples our main
spectral gap condition may only hold for large enough diffusivity or for small enough velocities.

The zero-diffusivity limit of strange eigenmodes is a natural candidate for perturbation theory, yet may only lead
to consistent results for completely integrable velocity fields (cf.Section 4.8). Numerical experiments suggest that
strange eigenmodes are supported over invariant sets of the velocity field in theκ→ 0 limit. This is in agreement
with the findings of Voth et al.[34] who observe a perfect relation between unstable manifolds of the velocity field
and lines of large gradients in the strange eigenmodes.

The experimental findings of Voth et al.[34] also point to a close connection between large gradients of the
finite-time Lyapunov exponent distribution and those of the strange eigenmodes. Thus, while a quantitative prediction
of asymptotic tracer decay appears to need more than just Lyapunov exponent statistics (see[11,35]), the spatial
distribution of Lyapunov exponents seems intimately linked to strange eigenmodes. The recent work of Pikovsky and
Popovych[28] and Gilbert[13] (as well as the references therein) may offer new ways to approximate eigenmodes
in the vanishing diffusion limit.
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Finding a sharp analytic prediction for the asymptotic decay rate of the tracer variance (i.e., for the exponent of
the weakest Floquet mode) remains a challenge, because theκ = 0 limit of the advection–diffusion equation is
singular. A sharp analytic estimate may be possible to derive by exploiting the form of strange eigenmodes in the
universal estimates ofSection 2.2.

A conceptual question is whether the weakest Floquet exponent indeed becomes a nonzero constant asκ → 0.
As we noted earlier, Pierrehumbert[26] and Antonsen et al.[3] report asymptotic constancy for two-dimensional
flows, but Toussaint et al.[32] observe logarithmic or power-law dependence inκ for some three-dimensional steady
flows. Pikovsky and Popovych[28] find that the decay exponent approaches zero in their standard map example.
At the same time, Fereday and Haynes[12] find the same limiting exponent to be nonzero for alternating sinusoidal
shear-flow maps. On the strict analytic side, even the existence of limκ→0+ λ0(κ) is questionable, let alone the
asymptotic flatness ofλ0(κ) atκ = 0.

The asymptotic self-similarity of the tracer PDF also remains to be established for velocity fields with aperiodic
time-dependence. We have shown that the tracer concentration converges to solutions of a linear system of ODEs,
but this system has general time-dependence, and hence the existence of an exponentially decaying solution—one
that would generate PDF self-similarity—is unknown. More work is needed, therefore, to explore the structure
of the reduced linear operatorM(t) in (26), which may give clues about the self-similarity observed by Hu and
Pierrehumbert[16] and Sukhatme and Pierrehumbert[30].

A further open question is the existence of strange eigenmodes for chemically or biologically active tracers. A
promising starting point is the numerical evidence of Muzzio and Liu[23] and Tél et al.[31], both showing recurrent
asymptotic patterns for active tracers.
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Appendix A

Here we proveProposition 1. First, we integrateEq. (4)over the spatial domainS to obtain

0= κ
d

dt
〈c〉+

∫
S

∇c · v dV = κ
d

dt
〈c〉+

∫
S

[∇ · (cv)− c∇ · v] dV = κ
d

dt
〈c〉+

∫
∂S

cv · dn = κ
d

dt
〈c〉, (A.1)

where we used the boundary conditions assumed forv, as well as the incompressibility ofv. But (A.1) implies
statement (i) ofProposition 1.

Next we multiplyEq. (4)by c and integrate overS to find

0=
∫
S

[cct + c∇c · v] dV = 1

2

d

dt

∫
S

c2 dV + 1

2

∫
S

[∇ · (c2v)− c2∇ · v] dV

= 1

2

d

dt
‖c‖2+ 1

2

∫
∂S

c2v · dn − 1

2

∫
S

c2∇ · v dV = 1

2

d

dt
‖c‖2,

which proves statement (ii) ofProposition 1.

‖c‖ = ‖c0‖. (A.2)
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To prove statement (iii) of the proposition, we recall that the gradient ofc satisfies the linear differential equation

D

Dt
∇c = −∇vT∇c, (A.3)

where D/Dt refers to the material derivative along a fluid trajectoryx(t; t0, x0), andAT denotes the transpose of
the matrixA. Using the flow mapFtt0(x0) = x(t; t0, x0), the solution ofEq. (A.3)can be written as

∇c(x, t) = [∇Ftt0(x0)]
−T∇c0(x0) (A.4)

with the notationA−T = (A−1)T. Multiplying (A.4) by ∇cT gives

|∇c(x, t)|2 = ∇c0(x0)
T[Ct

t0
(x0)]

−1∇c0(x0), (A.5)

where

Ct
t0
(x0) = [∇Ftt0(x0)]

T∇Ftt0(x0), (A.6)

is the Cauchy–Green strain-tensor.Eq. (A.5)leads to the estimate

Λmin(Ct
t0
(x0))|∇c0(x0)|2 ≤ |∇c(x, t)|2 ≤ Λmax(Ct

t0
(x0))|∇c0(x0)|2, (A.7)

whereΛmax(A) andΛmin(A) denote the largest eigenvalue ofA. BecauseCt
t0
(x0) is a symmetric, positive definite

matrix with determinant one, all its eigenvalues are positive, and

0< Λmin(Ct
t0
(x0)) ≤ 1≤ Λmax(Ct

t0
(x0)).

By definition, the largest and smallest finite-time Lyapunov exponents associated with the trajectoryx(t; t0, x0) are

λ+(t; t0, x0) = 1

2(t − t0) logΛmax(Ct
t0
(x0)) > 0, λ−(t; t0, x0) = 1

2(t − t0) logΛmin(Ct
t0
(x0)) < 0.

(For two-dimensional flows, we haveΛmin(Ct
t0
(x0)) = 1/Λmax(Ct

t0
(x0)), thereforeλ− = −λ+.) Using these

Lyapunov exponents, we rewrite the inequality(A.7) as

e2λ−(t;t0,x0)|∇c0(x0)|2 ≤ |∇c(x, t)|2 ≤ e2λ+(t;t0,x0)|∇c0(x0)|2,
which, after integration overS, proves statement (iii) ofProposition 1.

Appendix B

Here we proveProposition 2. IntegratingEq. (6)overS gives

d

dt
〈c〉 = 1

κ

∫
S

(κ�c + f)dV = κ

κ

∫
∂S

∇c · dn + 〈f 〉 = 〈f 〉,

where we used the boundary conditions onv andc. Integrating the above equation in time yields statement (i) of
Proposition 2.

To prove statement (ii), we first introduce the new variablec̃ = c−〈c〉, which has zero spatial mean, and satisfies
the advection–diffusion equation

c̃t +∇c̃ · v = κ�c̃ + f̃ , c̃(x, t0) = c̃0(x),
∂c̃

∂n

∣∣∣∣
∂S

= 0, (B.1)
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wheref̃ = f − 〈f 〉, andc̃0 = c0 − 〈c0〉. Multiplying (B.1) by c̃ and using the boundary conditions leads to the
equation

1

2

d

dt
‖c̃‖2 = −κ‖∇c̃‖2+ κ〈c̃f̃ 〉. (B.2)

Becausẽc has zero mean, the Poincaré inequality (see, e.g.[1]) applies and yields

µ1‖c̃‖2 ≤ ‖∇c̃‖2, (B.3)

whereµ1 is the smallest eigenvalue of the Laplacian−� over the domainS. We can thus rewrite(B.2) as

1

2

d

dt
‖c̃‖2 ≤ −κµ1‖c̃‖2+ κ〈c̃f̃ 〉 ≤ −κµ1‖c̃‖2+ κ〈c̃f̃ 〉. (B.4)

By Cauchy’s inequality (see, e.g.[1]), for any constantε > 0, we have

κ〈c̃f̃ 〉 =
∫
S

c̃f̃ dV ≤ ε‖c̃‖2+ 1

4ε
‖f̃‖2,

thus the inequality(B.4) can further be written as

1

2

d

dt
‖c̃‖2 ≤ −(κµ1− ε)‖c̃‖2+ 1

4ε
‖f̃‖2.

Because−(κµ1− ε) may be negative, the classic Gronwall inequality does not apply here. Instead, we write

d

dt
[‖c̃‖2 e2(κµ1−ε)(t−t0)] =

[
d

dt
‖c̃‖2+ 2(κµ1− ε)‖c̃‖2

]2

e2(κµ1−ε)(t−t0) ≤ 1

2ε
‖f̃‖2 e2(κµ1−ε)(t−t0),

which, after integration over [t0, t], gives

‖c̃‖2 ≤ ‖c̃0‖2 e−2(κµ1−ε)(t−t0) + 1

2ε

∫ t

t0

e−2(κµ1−ε)(t−τ)‖f̃‖2 dτ, (B.5)

proving formula(8). The inequality(9) then follows if we take the limitε→ 0 in (B.5) for the casef ≡ 0.
To prove statement (iii) ofProposition 2, we multiply(6) by−�c and integrate overS to obtain

1

2

d

dt

∫
S

|∇c|2 dV = −κ
∫
S

|�c|2 dV +
∫
S

∇c ·∇(v ·∇c)dV +
∫
S

∇c ·∇f dV

= −κ
∫
S

|�c|2 dV −
∫
S

∇c · (∇vT∇c)dV +
∫
S

∇c ·∇f dV

−
∫
S

∇c ·
(
u
∂∇c
∂x

+ v∂∇c
∂y

+ w∂∇c
∂z

)
dV

= −κ
∫
S

|�c(t)|2 dA−
∫
S

∇cT∇vT∇c dV +
∫
S

∇c ·∇f dV

≤ −(σ(t)− κµ1)

∫
S

|∇c(t)|2 dV +
∫
S

∇c ·∇f dV. (B.6)

By Cauchy’s inequality, for anyε > 0, we have∣∣∣∣
∫
S

∇c ·∇f dV

∣∣∣∣ ≤
∫
S

|∇c||∇f |dV ≤ ε‖∇c‖2+ 1

4ε
‖∇f‖2,
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thus(B.6) can be rewritten as

d

dt

∫
S

|∇c|2 dV ≤ −2(σ(t)− κµ1+ ε)‖∇c‖2+ 1

2ε
‖∇f‖2,

implying formula(10) in statement (iii) of the proposition. Again, the estimate(11) follows if we take theκ → 0
limit in (10) for the case off(x, t) ≡ 0.

Appendix C

Here we prove the existence of a finite-dimensional invariant manifold for a general class of parabolic equations.
Settingα = 1/2 in our main result (Theorem C.1below) provesTheorem 1. Our argument follows the ideas of
Chow et al.[9] for one-dimensional parabolic equations.

C.1. Preliminary definitions

Let S̃ be the open domain defined in(19)for R
2 orR3, and letAbe the linear operator defined in(17)on the domain

(18). Recall thatA is a self-adjoint positive operator with the discrete eigenvaluesµ1 ≤ µ2 ≤ · · · ≤ µn ≤ · · ·
listed in (20), and with the corresponding real eigenfunctionse1(x), . . . , en(x), . . . For any constantα ∈ [0,1),
these eigenfunctions form an orthogonal basis for the function space

H2α =
{
u =

∞∑
i=1

aiei

∣∣∣∣∣
∞∑
i=1

|ai|2λ2α
i <∞

}
,

which we equip with the norm

‖u‖H2α =
( ∞∑
i=1

|ai|2λ2α
i

)1/2

.

Following Henry[15], we define fractional powers ofA by the formula

Aαu =
∞∑
i=1

aiλ
α
i ei, where u =

∞∑
i=1

aiei ∈ H2α.

Note that

‖u‖H2α = ‖Aαu‖L2. (C.1)

For two positive integersm ≤ n, we define the following subspaces ofH2α for later reference:

H+n = span{ei}ni=1, Hm,n = span{ei}mi=n, H−n = span{ei}∞i=n
with norms inherited fromH0. Furthermore, we let

H2α+
n = H+n ∩H2α, H2α+

m,n = H+m,n ∩H2α, H2α−
n = H−n ∩H2α

with the norm inherited fromH2α. Finally, letP+n , Pm,n, P−n denote the corresponding orthogonal projections from
H0 toH+n ,Hm,n andH−n , respectively, and letA+n = A|H+n , Am,n = A|Hm,n , andA−n = A|H−n denote the appropriate
restrictions ofA toH+n ,Hm,n andH−n .
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C.2. A general class of parabolic equations

Let us consider the abstract equation

ct = −κAc+ V(t)Aαc, c(0) = c0, (C.2)

where 0≤ α < 1, V(t) is a bounded linear operator onH0 for everyt ∈ R, andV(t) is a globally bounded function
of t ∈ R. Without loss of generality, we assume that〈c0〉 = 0 in (C.2), which implies〈c〉 = 0 for all t by an
argument similar to the one used in the proof ofProposition 2. (If 〈c0〉 �= 0, we redefinec by lettingc→ c− 〈c0〉.)

The advection–diffusionequation (6)is a special case of the abstractEq. (C.2), which can be seen as follows.
Motivated by the identity

‖∇u‖2 = −
∫
S

u�udA =
∑

a2
nµn = ‖(−�)1/2u‖2, (C.3)

we seek to view the gradient operator∇ as an equivalent of the operatorA1/2 = (−�)1/2. To this end, we consider
the ranges of the two operators,∇(H1) ⊂ L2 × L2 and(−�)1/2(H1) ⊂ L2, and define a linear “identification”
mapI : ∇(H1)→ (−�)1/2(H1) between the two ranges by letting

I(∇u) = (−�)1/2u.
We then have(−�)1/2 = I ◦ ∇, and from(C.3)we obtain‖I‖ = 1, i.e.,I is a bounded linear map. Furthermore,
using the velocity fieldv(x, t), we define the bounded linear operatorV = v ◦ I−1, which enables us to write

(v ◦∇)u = (v ◦ I−1 ◦ I ◦∇)u = (V ◦ (−�)1/2)u.
This last equation shows that the advection–diffusionequation (6)is a special case of the abstractequation (C.2)
with α = 1/2.

C.3. Existence of two invariant manifolds

Here we prove the existence of a finite-dimensional and an infinite-dimensional invariant manifold forEq. (C.2),
assuming that a gap condition holds for two adjacent eigenvalues of the operatorA (cf. (C.6)below). Under a stronger
gap condition, the finite-dimensional invariant manifold becomes the inertial manifold described inTheorem 1.

To state the main result, we define the quantity

M(α) = (23−α + 24−3α)
Γ(α)eα−1

(1− α)α , (C.4)

whereα ∈ [0,1) is a parameter, andΓ denotes the classical Gamma function. Sinceα = 1/2 is relevant for the
advection–diffusionequation (6), we note that

M

(
1

2

)
= (25/2+ 25/2)

√
π e−1/2

√
1/2

= 16

√
π

e
. (C.5)

We shall use the condition
M(α)v0

[κ(µN+1− µN)]1−α < 1, (C.6)

wherev0 is defined in(21). Note that(C.6)simplifies to(22) in the case ofequation (6).

Theorem C.1. Suppose that for a positive integer N, the gap condition(C.6)holds. Then the following are satisfied:
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(i) Eq. (C.2)has two invariant manifolds of the form

M = {(t, p+ LN(t)p)|(t, p) ∈ R×H2α+
N }, (C.7)

M∞ = {(t, q+ L∞(t)q)|(t, q) ∈ R×H2α−
N+1}, (C.8)

whereLN(t) : H2α+
N → H2α−

N+1 andL∞(t) : H2α−
N+1 → H2α+

N are bounded linear operators that depend
continuously on t.

(ii) The operatorsLN(t) andL∞(t) satisfy the estimates

‖L∞(t)‖
B(H2α−

N+1,H
2α+
N )

, ‖LN(t)‖
B(H2α+

N ,H2α−
N+1)

≤ M(α)v0

(κ(µN+1− µN))1−α −M(α)v0
. (C.9)

(iii) If V(t) is T-periodic in t, thenLN(t) andL∞(t) are also T-periodic in t.

Proof.

(A) Construction ofM. We introduce the constants

γ = 1
2(µN+1+ µN), η = 1

4(µN+1− µN)

and define the function space

X−α,η = {f : (−∞,0] → H2α|f ∈ C0, sup
t≤0

eκηt‖f‖H2α <∞}. (C.10)

This complete metric space contains functions that grow slower in backward time than e−κηt does. Note that
if nonempty,X−α,η is an invariant set for(C.2)by definition. We equipX−α,η with the norm

‖f‖X−α,η = sup
t≤0

eκηt‖f‖H2α . (C.11)

We want to construct anN-dimensional invariant manifoldM for Eq. (C.2)with solutions that do not grow
faster than e−κηt in backward time. In other words, we want to solve(C.2) on the spaceX−α,η to obtain a
finite-dimensional “pseudo-stable manifold” of solutions that decay faster to the zero solution than other
solutions do.

We rewrite(C.2) in terms of the scaled variablev = eκγtc to obtain

vt = κ(γ − A)v+ V(t + θ)Aαv. (C.12)

Here we have introduced the phase parameterθ ∈ R to account for solutions launched at an arbitrary initial
time t0 = θ. (Recall that in the definition ofX−α,η, the time variablet is restricted to nonpositive values.) The
manifoldM will be constructed as the set of points through which the solutions of(C.12)do not grow faster
than e−κηt does ast→−∞.

First note that anyv ∈ X−α,η solution of(C.12)satisfies the integral equations

P+N v(t) = eκ(γ−A
+
N)tp+

∫ t

0
eκ(γ−A

+
N)(t−s)P+NV(θ + s)Aαv(s)ds,

P−N+1v(t) = eκ(γ−A
−
N+1)(t−τ)P−N+1v(τ)+

∫ t

τ

eκ(γ−A
−
N+1)(t−s)P−N+1V(θ + s)Aαv(s)ds, (C.13)
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by the variation of constants formula. Since, for anyv ∈ X−α,η, we have

‖eκ(γ−A−N+1)(t−τ)P−N+1v(τ)‖H2α ≤ eκ(γ−µN+1)(t−τ)‖v(τ)‖H2α ≤ eκ(γ−µN+1)t eκ(µN+1−γ−η)τ‖v‖X−α,η
= eκ(γ−µN+1)t eκ(µN+1−µN)τ/4‖v‖X−α,η ,

we obtain

lim
τ→−∞‖e

κ(γ−A−N+1)(t−τ)P−N+1v(τ)‖H2α = 0

and hence, by taking theτ →−∞ limit in (C.13), we can deduce that

P−N+1v(t) =
∫ t

−∞
eκ(γ−A

−
N+1)(t−s)P−N+1V(θ + s)Aαv(s)ds.

Therefore, any solutionv ∈ X−α,η of (C.12)satisfies the integral equation

v(t)= eκ(γ−A
+
N)tp+

∫ t

0
eκ(γ−A

+
N)(t−s)P+NV(θ + s)Aαv(s)ds

+
∫ t

−∞
eκ(γ−A

−
N+1)(t−s)P−N+1V(θ + s)Aαv(s)ds (C.14)

withp = P+N v(0). Conversely, direct substitution into(C.12)shows that solutions of the integralequation (C.14)
are also solutions of(C.12).

We now show thatEq. (C.14)has a unique solution by applying a contraction mapping argument. To this
end, we rewrite the integralequation (C.14)as a fixed point problem

v = F(v, p, θ),

where

F(v, p, θ) = eκ(γ−A
+
N)tp+

∫ t

0
eκ(γ−A

+
N)(t−s)P+NV(θ + s)Aαv(s)ds

+
∫ t

−∞
eκ(γ−A

−
N+1)(t−s)P−N+1V(θ + s)Aαv(s)ds.

We start by showing thatF(v, p, θ) mapsX−α,η ×H+N × R intoX−α,η. To see this, we estimate the first term in
F(v, p, θ) as

‖eκ(γ−A+N)tp‖H2α ≤ eκ(γ−µN)t‖p‖H2α = e2κηt‖p‖H2α . (C.15)

To estimate the remaining two terms inF(v, p, θ), we shall use three ingredients. First, we observe that

max
t≥0

tδ e−bt =
(
δ

b

)δ
e−δ (C.16)

for anyδ, b > 0. Second, we recall from Henry[15] that ifA is the generator of an analytic semigroup e−At,
and the real part of the spectrum ofA satisfies Reσ(A) > δ > 0, then we have

‖Aα e−At‖L2 ≤ Γ(α)t−α e−δt (C.17)
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with Γ(α) denoting the classical gamma function. Third, by(C.1), we have

∥∥∥∥
∫ t

0
eκ(γ−A

+
N)(t−s)P+NV(θ + s)Aαv(s)ds

∥∥∥∥
H2α

=
∥∥∥∥Aα

∫ t

0
eκ(γ−A

+
N)(t−s)P+NV(θ + s)Aαv(s)ds

∥∥∥∥
L2
.

(C.18)

Using(C.16)–(C.18), we estimate the second term in the definition ofF(v, p, θ) as follows:

∥∥∥∥
∫ t

0
eκ(γ−A

+
N)(t−s)P+NV(θ + s)Aαv(s)ds

∥∥∥∥
H2α

≤
∫ 0

t

Γ(α)(s− t)−α eκ(µN−γ)(s−t)‖V(θ + s)Aαv(s)‖L2 ds

≤ v0

∫ 0

t

Γ(α)(s− t)−α eκ(µN−γ)(s−t)‖Aαv(s)‖L2 ds

= v0

∫ 0

t

Γ(α)(s− t)−α eκ(µN−γ)(s−t)‖v(s)‖H2α ds

≤ v0‖v‖X−α,η
∫ 0

t

Γ(α)(s− t)−α eκ(µN−γ)(s−t)−κηs ds

= Γ(α)v0‖v‖X−α,η
(

1

1− α(−t)
1−α eκ(γ−µN)t − κ(µN − γ − η)

1− α
∫ 0

t

(s− t)1−α eκ(µN−γ)(s−t)−κηs ds

)

≤ Γ(α)

(
1− α

κ(γ − µN)
)1−α

eα−1v0‖v‖X−α,η
(

1

1− α +
κ(γ + η− µN)

1− α
∫ 0

t

e−κηs ds

)

≤ Γ(α)

(
1− α

κ(γ − µN)
)1−α

eα−1v0‖v‖X−α,η
(

1

1− α +
(γ + η− µN)
(1− α)η e−κηt

)

= Γ(α)

(
2(1− α)

κ(µN+1− µN)
)1−α

eα−1v0‖v‖X−α,η
(

1

1− α +
3

1− α e−κηt
)
. (C.19)

Similarly, the third term in the definition ofF(v, p, θ) can be estimated as follows:

∥∥∥∥
∫ t

−∞
eκ(γ−A

−
N+1)(t−s)P−N+1V(θ + s)Aαv(s)ds

∥∥∥∥
H2α

≤
∫ t

−∞
Γ(α)(t − s)−α eκ(γ−µN+1)(t−s)‖V(θ + s)Aαv(s)‖L2 ds

≤ v0

∫ t

−∞
Γ(α)(t − s)−α eκ(γ−µN+1)(t−s)‖v(s)‖H2α ds

≤ v0‖v‖X−α,η
∫ t

−∞
Γ(α)(t − s)−α eκ(µN+1−γ)(s−t)−κηs ds

= Γ(α)v0‖v‖X−α,η
κ(µN+1− γ − η)

1− α
∫ t

−∞
(t − s)1−α eκ(µN+1−γ)(s−t)−κηs ds

= Γ(α)v0‖v‖X−α,η
κη

1− α
∫ t

−∞
(t − s)1−α e−κ(µN+1−γ)t+(1/4)κ(µN+1−γ)s e(3/4)κ(µN+1−γ)s−κηs ds



30 W. Liu, G. Haller / Physica D 188 (2004) 1–39

×(apply(C.16) to(t − s)1−α e(1/4)ν(λN+1−k)s)

≤ Γ(α)

(
4(1− α)

κ(µN+1− γ)
)1−α

eα−1v0‖v‖X−α,η
κη

1− αe−3κηt/2
∫ t

−∞
eκηs/2 ds

≤ 2Γ(α)

1− α
(

8(1− α)
κ(µN+1− µN)

)1−α
eα−1v0‖v‖X−α,η e−κηt. (C.20)

The estimates(C.15), (C.19) and (C.20)imply thatF(v, p, θ) is bounded in the norm(C.11), and hence
F(v, p, θ) indeed maps intoX−α,η.

Next we want to show thatF defines a contraction mapping onX−α,η. From(C.19) and (C.20)we see that
for anyv1, v2 ∈ X−α,η

‖F(v1, p, θ)− F(v2, p, θ‖X−α,η ≤ (23−α + 24−3α)
Γ(α)eα−1

1− α
(

1− α
κ(µN+1− µN)

)1−α
v0‖v1− v2‖X−α,η

= M(α)v0

(κ(µN+1− µN))1−α ‖v1− v2‖X−α,η , (C.21)

whereM(α) is defined in(C.4). But the estimate(C.21) and condition(C.6) together establish thatF is a
contraction mapping on the complete metric spaceX−α,η.

As a contraction mapping,F has a unique fixed pointv(t;p, θ) in X−α,η for anyθ ∈ R and for anyp ∈ H+N ,
implying a unique solution for(C.14)inX−α,η. For such a fixed pointv(t;p, θ), the estimates(C.15) and (C.21)
imply that

‖v‖X−α,η = ‖F(v, p, θ)‖X−α,η ≤ ‖F(v, p, θ)− F(0, p, θ)‖X−α,η + ‖F(0, p, θ)‖X−α,η
≤ M(α)v0

(κ(µN+1− µN))1−α ‖v‖X
−
α,η
+ ‖p‖H2α,

which in turn gives

‖v‖X−α,η ≤
(κ(µN+1− µN))1−α

(κ(µN+1− µN))1−α −M(α)v0
‖p‖H2α . (C.22)

Based on(C.20) and (C.22), the linear operator

LN(θ)p = P−N+1v(0;p, θ) =
∫ 0

−∞
eκ(γ−A

−
N+1)(t−s)P−N+1V(θ + s)Aαv(s;p, θ)ds, (C.23)

satisfies the estimate

‖LN(θ)p‖H2α ≤ M(α)v0

(κ(µN+1− µN))1−α ‖v‖X
−
α,η

≤ M(α)v0

(κ(µN+1− µN))1−α
(κ(µN+1− µN))1−α

(κ(µN+1− µN))1−α −M(α)v0
‖p‖H2α

= M(α)v0

(κ(µN+1− µN))1−α −M(α)v0
‖p‖H2α,

which implies

‖LN(θ)‖
B(H2α+

N ,H2α−
N+1)

≤ M(α)v0

(κ(µN+1− µN))1−α −M(α)v0
.

In addition, ifV(t) is T -periodic, then by(C.14)so isv(s;p, θ)in θ, and hence, by(C.23), L(θ) is T -periodic
in θ. A similar argument establishes quasiperiodicity forM(t) if V(t) is quasiperiodic, i.e., we have
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V(t) = Ṽ (ω1t, . . . , ωlt), whereṼ is T -periodic in each phase variableωjt. Finally, the setM defined by
(C.7)is T -periodic int. BecauseM contains full solutions of(C.2),M is an invariant manifold forEq. (C.2).

(B) Construction ofM∞. The construction of the invariant setM∞ follows a procedure similar to the one described
above forM∞. This time we buildM∞ from the solutions ofEq. (C.12)on the function space

X+α,η = {f : [0,∞)→ H2α(S)|f ∈ C0, sup
t≥0

e−κηt‖f‖H2α <∞},

equipped with the weighted norm

‖f‖X+α,η = sup
t≥0

e−κηt‖f‖H2α .

Thus,M∞ consists of all initial conditions for which the solutions of(C.12)do not grow faster than eκηt as
t→∞. Again, we obtainM∞ from a fixed point argument as above. �

C.4. Continuity ofM in time

The continuity ofM(t) will follow form the uniform continuity of the mapθ �→ v(·;p, θ), with p varying on
bounded sets. Specifically, for any fixedθ0, we need to show that

v(·;p, θ)→ v(·;p, θ0), (C.24)

in the spaceX−α,η asθ → θ0−, which establishes the left-continuity for the mapθ �→ v(·;p, θ) at θ = θ0. (The
proof of right-continuity is similar.) We shall sketch this procedure up to a point from which a similar argument by
Chow et al.[9] for one-dimensional parabolic equations applies and completes the proof. In the interest of brevity,
we omit this lengthy final part of the argument and refer the reader to[9] for details.

For everyθ ≤ θ0, Eq. (C.14)implies

v(t;p, θ)− v(t;p, θ0) = F(v(·;p, θ), p, θ)− F(v(·;p, θ0), p, θ)+ I1+ I2, (C.25)

where

I1 =
∫ t

0
eκ(γ−A

+
N)(t−s)P+N (V(θ + s)− V(θ0+ s))Aαv(s;p, θ0)ds,

I2 =
∫ t

−∞
eκ(γ−A

−
N+1)(t−s)P−N+1(V(θ + s)− V(θ0+ s))Aαv(s;p, θ0)ds.

Using estimate(C.21)and the definition ofI1 andI2, we deduce from(C.25)the estimate

‖v(·;p, θ)− v(·;p, θ0)‖X−α,η ≤
M(α)v0

(κ(µN+1− µN))1−α ‖v(·;p, θ)− v(·;p, θ0)‖X−α,η + ‖I1‖X−α,η + ‖I2‖X−α,η ,

which implies

‖v(·;p, θ)− v(·;p, θ0)‖X−α,η ≤
(κ(µN+1− µN))1−α

(κ(µN+1− µN))1−α −M(α)v0
(‖I1‖X−α,η + ‖I2‖X−α,η ).

Thus, to prove(C.24), it suffices to prove that

I1, I2 → 0 in X−α,η as θ→ θ−0 ,

which is discussed by Chow et al.[9] in detail.
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C.5. Decoupling the evolution equation

Next we want to find conditions under which the invariant manifoldM(t) attracts all solutions of the advection–
diffusion equation, i.e., under whichM(t) is an inertial manifold. To establish the decay of all solutions toM(t), we
need to decouple the abstractequation (C.2)into coordinates aligned with the two invariant manifoldsM andM∞

(cf. Theorem C.1). As a second step, we need to estimate the decay of the coordinates aligned withM∞. The steps
of this construction follow closely the steps used by Chow et al.[9] for parabolic equations with a one-dimensional
spatial variable. For this reason, we omit the proofs of some technical lemmas and refer the interested reader to[9]
for further details.

In order to decoupleequation (C.2)into a finite-dimensional fast-decaying and an infinite-dimensional slow-
decaying component, we define the linear operatorΛN(t) : H2α → H2α by letting

ΛN(t)c = LN(t)p+ L∞(t)q, (C.26)

wherep = P+N c ∈ H2α+
N andq = P−N+1c ∈ H2α−

N+1. If the gap condition(C.6) is satisfied,Theorem C.1guarantees
thatΛN(t) is a bounded linear operator with

‖ΛN(t)‖B(H2α,H2α) ≤
2M(α)v0

(κ(µN+1− µN))1−α −M(α)v0
(C.27)

and thatΛN(t) is continuous andT -periodic int wheneverV(t) is T -periodic. By(C.27), the operator

ΦN(t) = (I +ΛN(t))
−1,

is well-defined ifK(α, κ,N, V) defined by(C.6) is less than 1/2. We now state without proof a few properties of
ΦN(t) that are simple to establish (cf.[9]).

Lemma C.1. If K(α, κ,N, V) defined by(C.6) is less than1/2, then

1. ΦN(t) is a bounded linear map fromH2α toH2α.
2. ΦN(t) is continuous and T-periodic in t ifV(t) is T-periodic.
3. limN→∞ΦN(t) = limN→∞Φ−1

N (t) = I uniformly with respect to t∈ R.

To decouple theequation (C.2), we shall project an arbitrary concentrationc ∈H2α onto the invariant subspaces

M(t) = {c|(t, c) ∈M}, M∞(t) = {c|(t, c) ∈M∞},

whereM andM∞ are the invariant manifolds given by(C.7) and (C.8), respectively. Adapting the proof of Lemma
5.1 of Chow et al.[9], we obtain the following result on the projection ofc onto the above subspaces.

Lemma C.2. Suppose that there existsN > 0 such that

0<
2M(α)v0

(κ(µN+1− µN))1−α −M(α)v0
< 1. (C.28)

Then for eacht ∈ R we have the direct sum

H2α =M(t)⊕M∞(t).
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Moreover, the associated projectionsΠN(t) : H2α →M(t) andΠ∞(t) : H2α →M∞(t) are given by

ΠN(t)u = P+N (I +ΛN(t))
−1u+ LN(t)P+N (I +ΛN(t))

−1u,

Π∞(t)u = P−N+1(I +ΛN(t))
−1u+ L∞(t)P−N+1(I +ΛN(t))

−1u.

With the help of this last lemma, we can now decoupleequation (C.2). For anyc ∈ H2α, we write

c = p+ q,
wherep = P+N c ∈ H2α+

N andq = P−N+1c ∈ H2α−
N+1. ThenEq. (C.2)can be written as

pt = −κA+Np+ P+NV(t)Aαc, (C.29)

qt = −κA−N+1q+ P−N+1V(t)A
αc. (C.30)

Repeating the proof of Lemma 5.2 of Chow et al.[9], we obtain the following final decoupled form.

Lemma C.3. Suppose that the gap condition(C.28) is satisfied. Then the transformationu = ΦN(t)c transforms
equations(C.29) and (C.30)to the decoupled equations

uNt = −κA+NuN + P+NV(t)Aα[I + LN(t)]uN, (C.31)

u∞t = −κA−N+1u∞ + P−N+1V(t)A
α[I + L∞(t)]u∞, (C.32)

whereu = ΦN(t)c, uN = P+Nu ∈ H2α+
N andu∞ = P−N+1u ∈ H2α−

N+1.

C.6. M(t) is an inertial manifold

We first recall a modified form of the classic Gronwall inequality (see, e.g.[15, Lemma 7.1.1]). Suppose that
a, b ≥ 0, δ > 0, and the functionφ(t) is nonnegative and locally integrable on [0,+∞), satisfying

φ(t) ≤ a+ b
∫ t

a

(t − s)δ−1φ(s)ds, 0 ≤ t < +∞.

Then

φ(t) ≤ aEδ(θt), 0 ≤ t < +∞, (C.33)

where

θ = (bΓ(δ))1/δ, Eδ(z) =
∞∑
n=0

znδ

Γ(nδ+ 1)
! ez

δ
asz→+∞.

To show the attractivity ofM(t), we first recall formula(C.28)and note that if

lim sup
n→∞

2M(α)v0

(κ(µn+1− µn))1−α −M(α)v0
< 1, (C.34)

is satisfied, then there exist a sequenceN1 < N2 < · · · < Ni < · · · of indices such that

2M(α)v0

(κ(µNi+1− µNi))1−α −M(α)v0
< 1, i = 1,2, . . .
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holds. The operators

ΦNi(t) = (I +ΛNi(t))
−1, i = 1,2, . . .

are therefore well-defined by(C.27), and satisfy the properties listed inLemma C.1. By Lemma C.3, eachΦNi(t)
transformsEqs. (C.29) and (C.30)to the decoupledequations (C.31) and (C.32).

Let c be a solution of(C.2) in H2α with the initial condition

c0 =
∞∑
i=1

c0
iNj
Φ−1
Nj
(0)ei.

By Lemma C.1, we have

lim
j→∞

∞∑
i=1

c0
iNj
ei = lim

j→∞
ΦNj(0)c0 = c0 =

∞∑
i=1

c0
i ei.

We select a small constantε > 0, and pickNj0 large enough so that∥∥∥∥∥∥
∞∑

i=Nj0+1

c0
i ei

∥∥∥∥∥∥
H2α

≤ ε

2
,

∥∥∥∥∥
∞∑
i=1

c0
iNj0

ei −
∞∑
i=1

c0
i ei

∥∥∥∥∥
H2α

≤ ε

2
.

Then the “tail” of
∑∞

i=1 c
0
iNj0

ei obeys the estimate

∥∥∥∥∥∥
∞∑

i=Nj0+1

c0
iNj0

ei

∥∥∥∥∥∥
H2α

≤
∥∥∥∥∥∥

∞∑
i=Nj0+1

c0
iNj0

ei −
∞∑

i=Nj0+1

c0
i ei

∥∥∥∥∥∥
H2α

+
∥∥∥∥∥∥

∞∑
i=Nj0+1

c0
i ei

∥∥∥∥∥∥
H2α

≤ ε. (C.35)

Next, we selectu to be the solution of(C.31) and (C.32)in H2α with initial condition

u(0) = ΦNj0
(0)c0 =

∞∑
i=1

c0
iNj0

ei.

Then the two components ofu appearing in the decoupledequations (C.31) and (C.32)are

uNj0
(0) = P+Nj0u(0) =

Nj0∑
i=1

c0
iNj0

ei ∈ H2α+
Nj0

, u∞(0) = P−Nj0+1u(0) =
∞∑

i=Nj0+1

c0
iNj0

ei.

BecauseEq. (C.31)is a finite-dimensional linear ODE, it admits a fundamental matrix solutionUNj0
(t) such that

uNj0
(t) = (e1, . . . , eNj0

)UNj0
(t)c0

Nj0
,

wherec0
Nj0
= (c0

1Nj0
, . . . , c0

Nj0Nj0
)T. We then have

c = Φ−1
Nj0
(t)u = Φ−1

Nj0
(t)(uNj0

+ u∞) =
n∑
i=1

(Φ−1
Nj0
(t)e1, . . . , Φ

−1
Nj0
(t)eNj0

)UNj0
(t)c0

Nj0
+Φ−1

Nj0
(t)u∞.
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Furthermore,Eqs. (C.9), (C.32) and (C.17)imply

‖u∞(t)‖H2α =
∥∥∥∥e
−κA−Nj0+1t

u∞(0)+
∫ t

0
e
−κA−Nj0+1(t−s)

P−Nj0+1V(s)A
α(I + L∞(s))u∞(s)ds

∥∥∥∥
H2α

≤ e
−κµNj0+1t‖u∞(0)‖H2α + 2Γ(α)v0

∫ t

0
(t − s)−α e

−κµNj0+1(t−s)‖u∞(s)‖H2α ds,

or, equivalently

‖u∞(t)‖H2α e
κµNj0

+1t ≤ ‖u∞(0)‖H2α + 2Γ(α)v0

∫ t

0
(t − s)−α e

κµNj0
+1s‖u∞(s)‖H2α ds.

Then the generalized Gronwall inequality(C.33)gives

‖u∞(t)‖H2α e
κµNj0

+1t ≤ ‖u∞(0)‖H2αE1−α((2Γ(α)v0Γ(1− α))1/(1−α)t)
≤ C(α)‖u∞(0)‖H2α exp((2Γ(α)v0Γ(1− α))1/(1−α)t),

whereC(α) denotes a positive constant depending onα. Then estimate(C.35)yields∥∥∥∥∥c −
n∑
i=1

(Φ−1
Nj0
(t)e1, . . . , Φ

−1
Nj0
(t)eNj0

)UNj0
(t)c0

Nj0

∥∥∥∥∥
H2α

= ‖Φ−1
Nj0
(t)u∞(t)‖H2α ≤ C(α)‖Φ−1

Nj0
‖‖u∞(0)‖H2α exp(((2Γ(α)v0Γ(1− α))1/(1−α) − κµNj0+1)t)

≤ εC(α)‖Φ−1
Nj0
‖exp(−(κµNj0+1− (2Γ(α)v0Γ(1− α))1/(1−α))t). (C.36)

This last formula shows that all solutions converge toM(t) exponentially in theH2α norm for large enoughNj0,
and henceM(t) is an inertial manifold.

Appendix D

Here we first review some facts about infinite-dimensional Floquet theory, then proveTheorem 4.

D.1. Infinite-dimensional Floquet theory

A Floquet theory for the abstractequation (C.2)is described by Kuchment[18] for the case of aT -periodicV(t).
Specifically, Kuchment shows that the space of all solutions of the form

c(x, t) = eλt
n∑
l=0

tlϕl(x, t), λ ∈ C, ϕl(x, t) = ϕl(x, t + T),

is complete in the function spaceL2(R+, H0), provided that

lim inf
n→∞

2v0(κµn+1)
α

κ(µn+1− µn) < 1, (D.1)

wherev0 is the minimal upper bound on|V | defined in(21).
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Originally obtained by Miloslavskii[21], condition(D.1) is too restrictive to cover physically relevant velocity
fields in the advection–diffusionequation (6). For instance, for the square domainS = [0, π]×[0, π], the eigenvalues
of A areµm,n = m2+ n2 (m, n = 0,1,2, . . . ). In this case, after settingα = 1/2 in (D.1), we obtain the condition

lim inf
n→∞

µ
1/2
n+1

µn+1− µn <
√
κ

2v0
.

The limit on the left-hand side of this inequality seems impossible to compute analytically, but appears to be plus
infinity in numerical calculations. If the limit is indeed infinity, thenv0 needs to be zero by condition(D.1), which
makes the Miloslavskii–Kuchment result inapplicable to nontrivial velocity fields.

The above shortcoming of existing Floquet theory for parabolic PDEs has prompted us to adapt the approach of
Chow et al.[9], who developed a Floquet theory for parabolic equations in one spatial dimension. We have extended
their approach to our current higher-dimensional context by first proving the existence of an inertial manifold in
H1(S̃), then applying the classical finite-dimensional Floquet decomposition on the inertial manifold.

D.2. Classical Floquet decomposition on the inertial manifold

If V(t) is T -periodic int, it thenΦ−1
Nj0
(t) is alsoT -periodic int. As a result, by finite-dimensional Floquet theory,

there exists aT -periodicNj0 ×Nj0 matrixPNj0 (t), and a constantNj0 ×Nj0 matrixBNj0 such that

UNj0
(t) = PNj0

(t)e
BNj0

t
. (D.2)

SettingNj0 ≡ N in (C.36)and using(D.2) with α = 1/2, we obtain statement (i) ofTheorem 4.

D.3. Faster convergence outsideM(t) than inside

To prove statement (ii) ofTheorem 4, we multiply(C.32)by uNj0 , integrate over the domainS, and use(C.9) to
find that

d

dt
‖uNj0‖2

L2 = −2κ
∫
S

(A+Nj0uNj0 )uNj0 dV +
∫
S

[P+Nj0V(t)A
α(I + LNj0 (t))uNj0 ]uNj0 dV

≥ −2κµNj0‖uNj0‖2
L2 − ‖P+Nj0V(t)A

α(I + LNj0 (t))uNj0‖L2‖uNj0‖L2

≥ −2κµNj0‖uNj0‖2
L2 − v0‖Aα(I + LNj0 (t))uNj0‖L2‖uNj0‖L2

= −2κµNj0‖uNj0‖2
L2 − v0‖(I + LNj0 (t))uNj0‖H2α‖uNj0‖L2

= −2κµNj0‖uNj0‖2
L2 − 2v0‖uNj0‖H2α‖uNj0‖L2 ≥ −2κµNj0‖uNj0‖2

L2 − 2µαNj0
v0‖uNj0‖2

L2,

where we used the inequality‖uNj0‖H2α ≤ µαNj0
‖uNj0‖. The above estimate then implies

‖uNj0‖2
L2 ≥ exp[−2(κµNj0 + µαNj0v0)t]‖uNj0 (0)‖2

L2.

Now theH2α norm and theL2 norm are equivalent on the finite-dimensional spaceH2α+
Nj0

, thus we have

‖uNj0‖H2α ≥ C̃ exp[−(κµNj0 + µαNj0v0)t]‖uNj0 (0)‖H2α (D.3)

for an appropriatẽC > 0. Settingα = 1/2 in (C.36) and (D.3), we obtain that for large times‖uNj0‖H1 decays
slower than‖u∞‖H1 does if

κµNj0
+ µαNj0v0 < κµNj0+1− 4π2v2

0,
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or, equivalently

µNj0+1− µNj0 −
v0

κ

√
µNj0

> 4π2v2
0/κ.

But this condition is always satisfied under(32) for large enoughNj0, thus statement (ii) ofTheorem 4follows.

Appendix E

Here we proveTheorem 5. Substituting the limiting Floquet solution e−λ0tϕ0(x, t) into the advection–diffusion
equation (6)gives

∂tϕ0− λ0ϕ0+∇ϕ0 · v = κ�ϕ0. (E.1)

Multiplying this equation byϕ∗0, the complex conjugate ofϕ0, gives

ϕ∗0∂tϕ0− λ0|ϕ0|2+ ϕ∗0∇ϕ0 · v = κϕ∗0�ϕ0.

Adding this equation to its complex conjugate, and integrating over the domainS leads to

d

dt
‖ϕ0‖2 = 2

∫
S

Reλ0|ϕ0|2 dV − 2
∫
S

ϕ∗0∇ϕ0 · vdV + 2κ
∫
S

ϕ∗0�ϕ0 dV

= 2Reλ0‖ϕ0‖2− 2
∫
S

1

2
[∇ · (|ϕ0|2v)− |ϕ0|2∇ · v] dV − 2κ

∫
S

[∇ · (ϕ∗0∇ϕ0)− |∇ϕ0|2] dV

= 2Reλ0‖ϕ0‖2−
∫
∂S

|ϕ0|2v · n dA+ 2
∫
S

|ϕ0|2∇ · v dV − 2κ
∫
∂S

ϕ∗0∇ϕ0 · n dA+ 2κ‖∇ϕ0‖2

= 2Reλ0‖ϕ0‖2+ 2κ‖∇ϕ0‖2, (E.2)

where we used the incompressibility ofv as well as the boundary conditions onv andϕ0.
By theT -periodicity of the functionϕ0, integration of(E.2)with respect tot over [0, T ] gives

Reλ = κ
‖∇ϕ̄0‖2

‖ϕ̄0‖2
, (E.3)

where the bar denotes temporal averaging over [0, T ].
Next we splitϕ0 andλ0 into real and imaginary parts by letting

�0(x, t) = g(x, t)+ ih(x, t), λ = µ+ iρ,

whereµ andρ are real constants, andg andh are real-valued functions that satisfy the boundary conditions, and
areT -periodic int. Substitution into(E.1) then gives the two equations

gt + ∇g · v = µg− ρh+ κ�g, ht + ∇h · v = ρg+ µh+ κ�h. (E.4)

Multiplying the first equation by complex conjugateg∗, integrating over the domainS, then averaging in time as
before leads to

ρ = µ‖ḡ‖2− κ‖∇ḡ‖2

κ〈gh〉 . (E.5)

Thus, based on(E.3) and (E.5), a simple Floquet solutions of(6) has the general form

c(x, t) = exp

[
−κ

(‖∇ϕ̄0‖2

‖ϕ̄0‖2
+ i
‖∇ϕ̄0‖2‖Reϕ̄0‖2− ‖ϕ̄0‖2‖Re∇ϕ̄0‖2

κ‖ϕ̄0‖2〈Reϕ0 Im ϕ0〉

)
t

]
ϕ0(x, t) (E.6)

for someT -periodic, complex-valuedH1 functionϕ0.
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Appendix F

Here we proveTheorem 6. Substituting(40) into the Floquet solution(36) then, in turn, intoEq. (6)gives

∂tφ0+∇φ0 · v+κ[∂tφ1+Λ0φ0−�φ0] +O(κ2) = 0,

which yields the equation

∂tφ0+∇φ0 · v = 0,

in theκ = 0 limit.
Letψ(x, t) denote the streamfunction associated with the time-periodic velocity fieldv(x, t), i.e., let

v(x, t) = J∇ψ(x, t), J =
(

0 −1
1 0

)
.

Furthermore, letI be a parameter with values taken from a closed intervalI ∈ R, and letγ ∈ S1 be aT -periodic
coordinate on a circle of perimeterT . We define the Hamiltonian

H(x, γ, I) = ψ(x, γ)+ I
and the associated two-degree-of-freedom Hamiltonian system

ẋ = J∇xH(x, I, γ), İ = −∂γH(x, I, γ), γ̇ = ∂IH(x, I, γ). (F.1)

Becauseφ0(x, t) is aT -periodic solution of(4), a direct calculation shows that

p1(x, γ) = φ0(x, γ),

is a first integral for system(F.1). Another first integral for(F.1) is

p2(x, γ, I) = H(x, γ, I),

which is in involution withp1, i.e.

{p1, p2} = ∂p1

∂x2

∂p2

∂x1
− ∂p1

∂x1

∂p2

∂x2
+ ∂p1

∂I

∂p2

∂γ
− ∂p1

∂γ

∂p2

∂I
≡ ∂x2φ0∂x1H − ∂x1φ0∂x2H − ∂tφ0

= −∂tφ0+∇φ0 · v ≡ 0. (F.2)

In addition, we have

∇p1 = (∂x1φ0, ∂x2φ0,0, ∂tφ0), ∇p2 = (∂x1ψ, ∂x2ψ,1, ∂tψ),

therefore the vectors∇p1 and∇p2 are linearly independent whenever∇p1 �= 0. Furthermore, any common level
setL(α1, α2) of p1 andp2, defined as

L(α1, α2) = {(x, I,�) ∈ S × I× S1|p1(x, I,�) = α1, p2(x, I,�) = α2},
is compact by the compactness ofS×I×S1. Then, by the Liouville–Arnold theorem[6], any connected component
of the setL(α1, α2) is diffeomorphic to a two-dimensional torus, and hence system(F.1) is completely integrable
whenever∇p1|L(α1,α2) �= 0, or, equivalently

∇φ0|L(α1,α2) �= 0. (F.3)

This last inequality follows from∇p1|L(α1,α2) �= 0, because∇φ0(x, t) = 0 implies ∂tφ0(x, t) = 0 by Eq. (4).
Because∇Ftt0(x0) is a diffeomorphism, the regionD defined in the statement of the theorem contains full trajectories
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of v along which∇c0(x, t) �= 0 (cf. formula(A.4)). Therefore, condition(F.3) holds for all trajectories withinD,
makingv completely integrable onD.
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