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Abstract

The problem of exponential stability of the problem of transmission of the wave
equation with lower-order terms is considered. Making use of the classical energy
method and multiplier technique, we prove that this problem of transmission is
exponentially stable.
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1. Introduction

Throughout this paper, let Ω be a bounded domain (open, nonempty, and
connected) in lRn ( n ≥ 1) with a boundary Γ = ∂Ω of class C2 which consists
of two parts, S1 and S2 (see Figure 1 below). S1 is assumed to be either empty
or to have a nonempty interior and S2 6= ∅ and relatively open in Γ. Assume
S1 ∩S2 = ∅. Let S0 with S0 ∩S1 = S0 ∩S2 = ∅ be a regular hypersurface of class
C2 , which separates Ω into two domains, Ω1 and Ω2 , such that S1 ⊂ Γ1 = ∂Ω1 and
S2 ⊂ Γ2 = ∂Ω2 . For T > 0, set Q = Ω×(0, T ), Q1 = Ω1×(0, T ), Q2 = Ω2×(0, T ),
Σi = Si × (0, T ) (i = 0, 1, 2). The following figure is a typical domain of this kind.
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In this paper we shall be concerned with the problem of rate of exponential
decay of energy for the problem of transmission of the wave equation with lower-
order terms and with dissipative boundary condition of Robin type:





u′′i − ai∆ui + qui = 0 in Ωi × (0,∞),
ui(x, 0) = u0

i (x), u′i(x, 0) = u1
i (x) in Ωi, i = 1, 2,

u1 = 0 on S1 × (0,∞),
∂u2

∂ν
+ α(x)u2 + σ(x)u′2 = 0, on S2 × (0,∞),

u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0 × (0,∞).

(1.1)

In (1.1), ν denotes the unit normal on Γ and S0 directing towards the exterior
of Ω and Ω1 , a1 and a2 are positive constants, the functions q : Ω → lR, α, σ :
S2 → lR are nonnegative and satisfy

q ∈ L∞(Ω), α, σ ∈ C1(S2). (1.2)

There has been extensive work on energy decay for the wave equation. The
poineering work (see [17], [23]) was first performed in the mid-seventies in studies
aimed at achieving energy decay rates for the wave equation exterior to a bounded
obstacle ( the so-called “exterior” problem). In contrast, the “interior” problem is
more difficult than the “exterior” problem, since the latter enjoys the advantage
that the energy distributes itself over an infinite region as t → ∞ . Russell [21]
made a conjecture in 1974 concerning uniform energy decay rates for the interior
problem. This conjecture was (see [2-6]) verified by Chen (see [2-6]) under some
natural geometrical conditions on Ω. Lagnese [11] further relaxed the geometrical
conditions on Ω by obtaining a key inequality which is of independent interest. More
recently, Bardos, Lebeau, and Rauch [1] considered general second order hyperbolic
equations but with smooth coefficients.

We note that in the previous work the coefficients of the equation are required
to be sufficiently smooth and it seems that the problem of transmission has not been
considered yet. Therefore, by applying the classical energy method and multiplier
technique, we here discuss this problem and generalize some known results to the
case of transmission.

Set

u =
{

u1, x ∈ Ω1,
u2, x ∈ Ω2,

u0 =
{

u0
1, x ∈ Ω1,

u0
2, x ∈ Ω2,

u1 =
{

u1
1, x ∈ Ω1,

u1
2, x ∈ Ω2.

We define the energy of system (1.1) by

E(u, t) =
1
2

∫

Ω

[
| u′(x, t) |2 +a(x) | ∇u(x, t) |2 +q(x)|u(x, t)|2

]
dx

+
1
2

∫

S2

a(x)α(x)|u|2dΓ.

2



Let Hs(Ω) always denote the usual Sobolev space and ‖ · ‖s,Ω its norm for any
s ∈ lR. Let

L2(Ω, S1) =
{ {u ∈ L2(Ω) :

∫
Ω

u(x) dx = 0}, if S1 = ∅, q ≡ 0, and α ≡ 0,
L2(Ω), otherwise;

(1.3)

H1(Ω, S1) =
{ {u ∈ H1(Ω) :

∫
Ω

u(x) dx = 0}, if S1 = ∅, q ≡ 0, and α ≡ 0,
{u ∈ H1(Ω) : u = 0 on S1}, otherwise;

(1.4)

H1
S1

(Ω) =
{

H1(Ω), if S1 = ∅,
{u ∈ H1(Ω) : u = 0 on S1}, otherwise.

(1.5)

The main result of this paper is as follows.

Theorem 1.1. Let ν denote the unit normal on Γ and S0 directing towards
the exterior of Ω and Ω1 . Assume there is a vector field l(x) = (l1(x), · · · , ln(x))
of class C2(Ω) such that

(i) l · ν ≤ 0 a.e. on S1 with respect to the (n-1)-dimensional surface measure;

(ii) l · ν ≥ η > 0 a.e. on S2 with respect to the (n-1)-dimensional surface
measure;

(iii) (a1 − a2)l · ν ≥ 0 a.e. on S0 with respect to the (n-1)-dimensional surface
measure;

(iv) the matrix (
∂li
∂xj

+
∂lj
∂xi

) is uniformly positive definite on Ω ;

(v) there exists a constant σ0 > 0 such that

σ ≥ σ0 on S2.

Then there are positive constants M, τ such that

E(u, t) ≤ Me−τtE(u, 0), for all t ≥ 0 (1.6)

for all solutious u of (1.1) with (u0, u1) ∈ H1
S1

(Ω)× L2(Ω, S1).

In the proof of Theorem 1.1 below, condition (iii) is crucial. Whether Theorem
1.1 still holds if condition (iii) fails is an open problem. The vector field l(x) was
first introduced in [4] and further improved in [11]. We here give an example of l(x)
which satisfies conditions (i)-(iv) of Theorem 1.1. Let Ω = {x ∈ lR2 : 1 < |x| < 3}
and S0 = {x ∈ lR2 : |x| = 2}. Then S1 = {x ∈ lR2 : |x| = 1} and S2 = {x ∈
lR2 : |x| = 3}. It is easy to see that l(x) = x is the vector field as required.

In comparison with existing results, Theorem 1.1 generalizes the result of
Lagnese [11] to the case of transmission with Robin boundary conditions. Also, it
generalizes Theorem 1 of [8] and Theorem 8.15 of [12, p.117] in three aspects: firstly,
the vector field m(x) = x− x0 = (x1−x0

1, · · · , xn− x0
n) in the previous theorems is

replaced by more general vector field l(x); secondly the condition min
S2

α(x) > 0 of
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Theorem 8.15 of [12] has been moved off; thirdly, we have considered the problem
of transmission. In addition, the most interesting part of this paper may be the
strategy for handling the case where α is not necessarily small.

The rest of this paper is divided into two sections. In Section 2, we briefly
discuss the well-posedness of problem (1.1) via the theory of semigroups of linear
bounded operators. In Section 3, we prove Theorem 1.1.

2. Well-posedness

The well-posedness of problem (1.1) is by now well known in the case where
a1 = a2 (see [2], [12], [13, p.137-139]), and can be similarly treated without any
difficulty in the case where a1 6= a2 . For completeness, we give an outline.

Set

u =
{

u1, x ∈ Ω1,
u2, x ∈ Ω2,

u0 =
{

u0
1, x ∈ Ω1,

u0
2, x ∈ Ω2,

u1 =
{

u1
1, x ∈ Ω1,

u1
2, x ∈ Ω2,

(2.1)

a(x) =
{

a1, x ∈ Ω1,
a2, x ∈ Ω2.

(2.2)

In the sequel, u, u0, u1 always means (2.1); an integral of u on a domain Ω means
the sum of two integrals of u1 and u2 on the subdomains Ω1 and Ω2 ; that an
equation related to u holds on a domain Ω means that the equation holds on the
subdomains Ω1 and Ω2 , respectively.

Problem (1.1) can be formulated as an abstract Cauchy problem:





(
u′

v′

)
=

(
0 I

a(x)∆− q 0

)(
u
v

)
= A

(
u
v

)
,

(
u(0)
v(0)

)
=

(
u0

u1

)
,

(2.3)

in the Hilbert space
H1 = H1(Ω, S1)× L2(Ω, S1)

for an initial condition (u0, u1) with

D(A) = {(u, v) : (u, v) ∈ H2(Ω1, Ω2, S1)×H1(Ω, S1),
∂u

∂ν
+ αu + σv = 0 on S2}.

The spaces used for these definition are given by (1.3)-(1.5). In addition,

H2
S1

(Ω1, Ω2) =
{
u ∈ H1(Ω) : ui ∈ H2(Ωi), i = 1, 2; u = 0 on S1,
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and a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0

}
;

H2(Ω1,Ω2, S1)

=





{
u ∈ H2

S1
(Ω1, Ω2) :

2∑

i=1

∫

Ωi

uidx = 0,

2∑

i=1

∫

Ωi

(ai∆ui − qui) dx = 0
}

, if S1 = ∅, q ≡ 0, and α ≡ 0,

H2
S1

(Ω1,Ω2), otherwise.

Note that H2(Ω1, Ω2, S1) ⊂ H1(Ω, S1) because u1 = u2 on S0 .

If S1 = ∅, q ≡ 0, and α ≡ 0, L2(Ω, S1) in H1 cannot be replaced by L2(Ω)
since H1(Ω, S1) is not dense in L2(Ω).

In the sequel, we always use the energy scalar product on H1 :

〈(
u
v

)
,

(
φ
ψ

)〉
=

∫

Ω

[a(x)∇u · ∇φ̄ + quφ̄ + vψ̄]dx +
∫

S2

a(x)α(x)uφ̄dΓ, (2.5)

which is equivalent to the scalar product on H1 induced by H1(Ω)× L2(Ω).

As done in [2] or [13, p.137-139], it is easy to verify that the operator A is the
infinitesimal generator of a strongly continuous semigroup of contractions on H1 .

We define the energy of system (1.1) by

E(u, t) =
1
2

∫

Ω

[
| u′(x, t) |2 +a(x) | ∇u(x, t) |2 +q(x)|u(x, t)|2

]
dx

+
1
2

∫

S2

a(x)α(x)|u|2dΓ.

(2.6)

Let X be a Banach space. We denote by Ck([0, T ], X) the space of all k times
continuously differentiable functions defined on [0, T ] with values in X , and write
C([0, T ], X)
for C0([0, T ], X).

Now an application of the theory of semigroups [19, Chapter 1] gives

Theorem 2.1. (i) For any initial condition (u0, u1) ∈ H1
S1

(Ω) × L2(Ω, S1),
problem (1.1) has a unique weak solution with

u ∈ C([0,∞); H1
S1

(Ω)) ∩ C1([0,∞); L2(Ω, S1)). (2.7)

and
∂u

∂ν
, u′ ∈ L2(Σ2). (2.8)
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Moreover,
E(u, t) ≤ E(u, 0), ∀t ≥ 0, (2.9)

and there exists a constant c = c(T ) > 0 such that

‖ ∂u

∂ν
‖2L2(Σ2)

+ ‖ u′ ‖2L2(Σ2)
≤ cE(u, 0). (2.10)

(ii) For any initial condition (u0, u1) ∈ D(A), problem (1.1) has a unique strong
solution with

u ∈ C([0,∞); H2(Ω1,Ω2, S1)) ∩ C1([0,∞); H1(Ω, S1)). (2.11)

Moreover, there exists a constant c = c(T ) > 0 such that for all t ∈ [0, T ]

‖ u′(t) ‖1,Ω + ‖ u(t) ‖1,Ω +
2∑

i=1

‖ ∆ui(t) ‖0,Ωi (2.12)

≤ c[‖ u1 ‖1,Ω + ‖ u0 ‖1,Ω +
2∑

i=1

‖ ∆u0
i ‖0,Ωi ].

Proof. If S1 6= ∅, or q 6≡ 0, or α 6≡ 0, then H1
S1

(Ω) = H1(Ω, S1). It therefore
follows from the semigroup theory that problem (1.1) has a unique weak solution u
with (2.7) for (u0, u1) ∈ H1

S1
(Ω)× L2(Ω, S1), and with (2.11) for (u0, u1) ∈ D(A).

On the other hand, multiplying the first equation of (1.1) by u′i and integrating
over Ω× (0, T ), we obtain

0 ≤
∫

Σ2

a(x)σ(x)|u′|2dΣ = E(u, 0)− E(u, T ) ≤ E(u, 0). (2.13)

This gives (2.9). In addition, by (1.1) we have
∫

Σ2

∣∣∣∂u

∂ν

∣∣∣
2

dΣ =
∫

Σ2

(αu + σu′)2dΣ, (2.14)

and by the trace theorem [15, p.39], we have
∫

Σ2

|u|2dΣ ≤ cE(u, 0). (2.15)

Thus, (2.8) and (2.10) follows from (2.13)-(2.15). To prove (2.12), let T (t) be the
semigroup generated by A. Then the solution u of (1.1) can be expressed as

(
u

u′

)
= T (t)

(
u0

u1

)
.
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If (u0, u1) ∈ D(A), by the property of semigroup [19, p.4] we have

A

(
u

u′

)
= T (t)A

(
u0

u1

)
,

that is, (
u′

a(x)∆u− qu

)
= T (t)

(
u1

a(x)∆u0 − qu0

)
.

This yields

‖ u′(t) ‖1,Ω +
2∑

i=1

‖ ∆ui(t) ‖0,Ωi
(2.16)

≤ c[‖ u1 ‖1,Ω + ‖ u0 ‖0,Ω +
2∑

i=1

‖ ∆u0
i ‖0,Ωi

+ ‖ u(t) ‖0,Ω].

Hence, (2.12) follows from (2.9) and (2.16).

Suppose S1 = ∅, q ≡ 0, and α ≡ 0. Let (u0, u1) ∈ H1
S1

(Ω) × L2(Ω, S1) =
H1(Ω)× L2

S1
(Ω), and set

w0 = u0 − 1
m(Ω)

∫

Ω

u0(x) dx, w1 = u1, (2.17)

then (w0, w1) ∈ H1 , where m(Ω) denotes the Lebesgue measure of Ω. Thus,
problem (1.1) has a weak solution w for the initial condition (w0, w1). Moreover it
satisfies

E(w, t) ≤ E(w, 0), ∀t ≥ 0,

and

‖ ∂w

∂ν
‖2L2(Σ2)

+ ‖ w′ ‖2L2(Σ2)
≤ cE(w, 0).

Set

u = w +
1

m(Ω)

∫

Ω

u0(x) dx. (2.18)

It is easy to verify that u is a solution of (1.1) with the initial condition (u0, u1)
(note that q ≡ 0 and α ≡ 0). Moreover,

E(u, t) = E(w, t) ≤ E(w, 0) = E(u, 0), ∀t ≥ 0,

∂u

∂ν
=

∂w

∂ν
, u′ = w′ ∈ L2(Σ2),

‖ ∂u

∂ν
‖2L2(Σ2)

+ ‖ u′ ‖2L2(Σ2)
≤ cE(u, 0).

⊙
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Remark 2.2. If u1 ∈ L2(Ω) rather than L2
S1

(Ω), we don’t know if problem
(1.1) has a solution. Although

u = w +
1

m(Ω)

∫

Ω

u0(x) dx +
t

m(Ω)

∫

Ω

u1(x) dx (2.19)

satisfies equation (1.1) and the initial condition (u0, u1), it doesn’t satisfy the
boundary condition on S2 × (0,∞). In (2.19), w is the solution of (1.1) with
the initial condition (w0, w1) given by

w0 = u0 − 1
m(Ω)

∫

Ω

u0(x) dx, w1 = u1 − 1
m(Ω)

∫

Ω

u1(x) dx.

3. Proof of Theorem 1.1

In this section we prove Theorem 1.1. We first generalize an inequality of
Lagnese [11, Theorem 2] to the case of transmission. This inequality is the key to
proving Theorem 1.1.

In the sequel, all functions are assumed to be real-valued.

Theorem 3.1. For every ε > 0 there exists a constant c(ε) such that for
every δ > 0,

∫ ∞

0

∫

Ω

e−2δt(u− I(u0))2dxdt ≤ c(ε)E(u, 0) + ε

∫ ∞

0

∫

Ω

e−2δt|u′|2dxdt, (3.1)

for every solution of (1.1) with (u0, u1) ∈ H1
S1

(Ω)× L2(Ω, S1), where

I(u0) =

{ 1
m(Ω)

∫

Ω

u0dx, if S1 = ∅, q ≡ 0, and α ≡ 0,

0, otherwise.
(3.2)

Theorem 3.1 will be proven below. We show how it can be used to prove
Theorem 1.1.

For convenience, we adopt the following notation. For a vector field l(x) =
(l1(x), · · · , ln(x)) of class C2(Ω), the additional subscripts in lij and liij denote

derivatives of the vector field l , e.g., lij =
∂li
∂xj

.

Proof of Theorem 1.1. Case I: α0 = max
x∈S2

α(x) is small enough.

We begin with the case where (u0, u1) ∈ H1 . We may as well assume that
(u0, u1) ∈ D(A) since the general case (u0, u1) ∈ H1 can be handled by a simple
limiting process. Then u is a classical solution of (1.1). After a straightforward and
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tedious calculation, we have

∂

∂t

[
t(| u′ |2 +a(x) | ∇u |2 +q|u|2) + 2u′(l · ∇u) + (lii − 1)uu′

]

= div
[
2ta(x)u′∇u + 2a(x)(l · ∇u)∇u+ | u′ |2 l

+ a(x)(lii − 1)u∇u− a(x) | ∇u |2 l
]

+ 2a(x)(δij − lij)
∂u

∂xi

∂u

∂xj
− a(x)liiju

∂u

∂xj
+ (2− lii)q|u|2 − 2q(l · ∇u)u,

(3.3)

where δij denote the Kronecker symbol, i.e.,

δij =
{

1, i = j,
0, i 6= j,

and summation convention is assumed. Set

P (t) =
∫

Ω

[ t

2
(| u′ |2 +a(x) | ∇u |2 +q|u|2) + 2u′(l · ∇u) + (lii − 1)uu′

]
dx

+
∫

S2

t

2
a(x)α(x) | u |2 dΓ.

(3.4)

Since

∂

∂t

∫

Ω

t(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx

=
∫

Ω

(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx

+ 2t

∫

Ω

(u′u′′ + a(x)∇u · ∇u′ + quu′)dx

=
∫

Ω

(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx + 2t

∫

S2

a(x)u′
∂u

∂ν
dΓ,

and

∂

∂t

∫

S2

t

2
a(x)α(x) | u |2 dΓ =

∫

S2

1
2
a(x)α(x) | u |2 dΓ +

∫

S2

ta(x)α(x)uu′dΓ,
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it follows from (3.3) and the divergence theorem that

∂P

∂t
= −1

2
∂

∂t

∫

Ω

t(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx

+
∫

Ω

2a(x)(δij − lij)
∂u

∂xi

∂u

∂xj
dx (= I2)

+
∫

Ω

[
−a(x)liiju

∂u

∂xj
+ (2− lii)q|u|2 − 2q(l · ∇u)u

]
dx (= I3)

+
∫

S1

[
2a1(l · ∇u1)

∂u1

∂ν
− a1 | ∇u1 |2 l · ν

]
dΓ (= I4)

+
∫

S2

[
a2tu

′
2(2

∂u2

∂ν
+ α(x)u2) + 2a2(l · ∇u2)

∂u2

∂ν
+ | u′2 |2 l · ν

+ a2(lii − 1)u2
∂u2

∂ν
− a2 | ∇u2 |2 l · ν +

1
2
a2α(x)|u2|2

]
dΓ

+
∫

S0

[
2a1(l · ∇u1)

∂u1

∂ν
− 2a2(l · ∇u2)

∂u2

∂ν

+ (a2 | ∇u2 |2 −a1 | ∇u1 |2)l · ν
]
dΓ (= I6)

= −1
2

∫

Ω

(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx− 1
2

∫

S2

aα | u |2 dΓ (= I1)

+ I2 + I3 + I4

+
∫

S2

[
a2tu

′
2(

∂u2

∂ν
+ α(x)u2) + 2a2(l · ∇u2)

∂u2

∂ν
+ | u′2 |2 l · ν

+ a2(lii − 1)u2
∂u2

∂ν
− a2 | ∇u2 |2 l · ν + a2α(x)|u2|2

]
dΓ (= I5)

+ I6

= I1 + I2 + I3 + I4 + I5 + I6.

Since, for any positive constant c, cl still satisfies the conditions (i) − (iv) of
Theorem 1.1, we may assume that (2δij − lij − lji) is negative definite in Ω by
multiplying l by an enough large positive constant. Thus we have I2 ≤ 0. From

condition (i) of Theorem 1.1 and the fact ∇u =
∂u

∂ν
ν on S1 it follows that

I4 =
∫

S1

a1 | ∂u1

∂ν
|2 l · νdΓ ≤ 0. (3.5)

Concerning I5 , it follows from the fourth equation of (1.1) and the condition (ii) of
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Theorem 1.1 that

I5 =
∫

S2

[
−a2σt|u′2|2 − 2a2(l · ∇u2)(αu2 + σu′2)+ | u′2 |2 l · ν

− a2(lii − 1)u2(αu2 + σu′2)− a2 | ∇u2 |2 l · ν + a2α(x)|u2|2
]
dΓ

≤
∫

S2

[
−a2σt|u′2|2 +

a2η

4
|∇u2|2 + c(a, l, η)α2|u2|2

+
a2η

4
|∇u2|2 + c(a, l, η, σ)|u′2|2+ | u′2 |2 l · ν

− a2(lii − 1)α|u2|2 + ε|u2|2 + c(ε, a, l, σ)|u′2|2 − a2η | ∇u2 |2 +a2α(x)|u2|2
]
dΓ

≤
∫

S2

[
(−a2tσ0 + l · ν + c(ε, a, l, σ, η))|u′2|2 −

a2η

2
|∇u2|2

]
dΓ

+
∫

S2

(ε + c(a, l, η)(α0 + α2
0))|u2|2dΓ

= I51 + I52.

By the trace theorem, we have

I52 ≤ c1(ε + c(a, l, η)(α0 + α2
0))‖u‖2H1(Ω,S1)

. (3.6)

Concerning I3 , we have

I3 ≤ ε

∫

Ω

|∇u|2dx + c(ε, a, l, q)
∫

Ω

|u|2dx. (3.7)

If ε and α0 are small enough, then by (3.6)-(3.7) we have

I3 + I52 ≤ 1
4

∫

Ω

(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx +
1
4

∫

S2

aα | u |2 dΓ

+ c(ε, a, l, q)
∫

Ω

|u|2dx.

It therefore follows that

I1 + I3 + I52 ≤ −1
4

∫

Ω

(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx

− 1
4

∫

S2

aα | u |2 dΓ + c(ε, a, l, q)
∫

Ω

|u|2dx,

if ε and α0 are small enough. Fix ε and α0 , then I51 < 0 if t is large enough. We
also prove that I6 ≤ 0. Since u1 = u2 on S0 , we have

∇(u2 − u1) =
∂(u2 − u1)

∂ν
ν, on S0,
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then,

| ∇u2 |2 =| ∇u1 |2 +2
(∂u2

∂ν
− ∂u1

∂ν

)∂u1

∂ν
+

(∂u2

∂ν
− ∂u1

∂ν

)2

=| ∇u1 |2 +
(∂u2

∂ν

)2

−
(∂u1

∂ν

)2

.

So,

2a1(l · ∇u1)
∂u1

∂ν
− 2a2(l · ∇u2)

∂u2

∂ν
+ (a2 | ∇u2 |2 −a1 | ∇u1 |2)l · ν

= 2a1(l · ∇u1)
∂u1

∂ν
− 2a2

[
l · ∇u1 +

(∂u2

∂ν
− ∂u1

∂ν

)
l · ν

]∂u2

∂ν

+
[
a2

(
| ∇u1 |2 +

(∂u2

∂ν

)2

−
(∂u1

∂ν

)2)
− a1 | ∇u1 |2

]
l · ν

= 2a1(l · ∇u1)
∂u1

∂ν
− 2a1

[
l · ∇u1 +

(a1

a2

∂u1

∂ν
− ∂u1

∂ν

)
l · ν

]∂u1

∂ν

+
[
a2

(
| ∇u1 |2 +

a2
1

a2
2

(∂u1

∂ν

)2

−
(∂u1

∂ν

)2)
− a1 | ∇u1 |2

]
l · ν

= (a2 − a1) | ∇u1 |2 l · ν − (a2 − a1)2

a2

(∂u1

∂ν

)2

l · ν.

This show that I6 ≤ 0 because of (iii) of Theorem 1.1. It therefore follows that

dP

dt
≤ −1

4

∫

Ω

(| u′ |2 +a(x) | ∇u |2 +q|u|2)dx

− 1
4

∫

S2

aα | u |2 dΓ + c(ε)
∫

Ω

|u|2dx, t ≥ T1,

(3.8)

if T1 is large enough.

On the other hand, there exist T2 sufficiently large such that

0 ≤ P (t) ≤ c(t + 1)E(u, t), t ≥ T2, (3.9)

where c is a constant independent of t, u.

Let δ > 0 be fixed. Set T = max{T1, T2}. Multiplying (3.8) by e−2δt and
integrating from T to +∞ we get

2δ

∫ ∞

T

e−2δtP (t)dt +
1
8

∫ ∞

T

e−2δtE(u, t)dt ≤ c1E(u, 0) + c2

∫ ∞

T

∫

Ω

e−2δtu2dxdt,

(3.10)
where c1, c2 are independent of δ . It therefore follows from (3.9) and (3.10) that

∫ ∞

0

e−2δtE(u, t)dt ≤ c1E(u, 0) + c2

∫ ∞

0

∫

Ω

e−2δtu2dxdt.
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Applying Theorem 3.1, we conclude that
∫ ∞

0

e−2δtE(u, t)dt ≤ cE(u, 0).

Letting δ → 0, we obtain
∫ ∞

0

E(u, t)dt ≤ cE(u, 0).

By Theorem 4.1 of [19, p.116], there are positive constants M, τ such that

E(u, t) ≤ Me−τtE(u, 0), t ≥ 0. (3.11)

If S1 = ∅, q ≡ 0, α ≡ 0, and (u0, u1) ∈ H1
S1

(Ω) × L2
S1

(Ω) rather than H1 ,
then we take (w0, w1) as in (2.17). Let w be the solution of (1.1) with the initial
condition (w0, w1), then

u = w +
1

m(Ω)

∫

Ω

u0(x) dx

is the solution of (1.1) with the initial condition (u0, u1) and (3.11) holds for w .
Therefore,

E(u, t) = E(w, t) ≤ Me−τtE(w, 0) = Me−τtE(u, 0).

We will use the control-theoretic method given in [2] and [16] to prove The-
orem 1.1 in the case that α0 is arbitrary. Therefore we now employ Russell’s “
controllability via stabilizability ” principle (see [21]) to solve the following exact
controllability problem:

For (y0
i , y1

i ) in a suitable Hilbert space and T large enough, find a control
function φ(x, t) such that the solution of





y′′i − ai∆yi + qyi = 0 in Qi,
yi(0) = y0

i , y′i(0) = y1
i in Ωi, i = 1, 2,

y1 = 0 on Σ1,
∂y2

∂ν
+ αy2 = φ on Σ2,

y1 = y2, a1
∂y1

∂ν
= a2

∂y2

∂ν
on Σ0,

(3.12)

satisfies
yi(x, T ;φ) = y′i(x, T ;φ) = 0 in Ωi, i = 1, 2. (3.13)

Because the problem is linear, this is equivalent to steering any initial state to
any terminal state. This controllability problem was discussed in [1] in the general
case of second order hyperbolic equations, but the coefficients of the equations are
required to be smooth enough. Thus, the problem (3.12) (3.13) here is not covered
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by [1]. With the help of the Hilbert Uniqueness Method, the problem (3.12) (3.13)
was also considered in [18] but with α = 0.

Theorem 3.2. Suppose all assumptions of Theorem 1.1 are satisfied. Suppose
α0 is small enough and T is given large enough. Then for any (y0, y1) ∈ H1 , there
exists a boundary control function

φ(x, t) ∈ L2(Σ2)

such that the solution of (3.12) satisfies (3.13). Moreover, there exist positive con-
stants c1(T ), c2(T ) such that

c1E(y, 0) ≤‖ φ ‖2L2(Σ2)
≤ c2E(y, 0). (3.14)

Proof. We first consider the problem:




u′′i − ai∆ui + qui = 0 in Ωi × (0,∞),
ui(0) = u0

i , u′i(0) = u1
i in Ωi, i = 1, 2,

u1 = 0 on S1 × (0,∞),
∂u2

∂ν
+ αu2 + σu′2 = 0 on S2 × (0,∞),

u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0 × (0,∞),

(3.15)

which has a unique weak solution with

u(t) ∈ C([0,∞); H1(Ω, S1)) ∩ C1([0,∞); L2(Ω, S1))

and
u′ ∈ L2(Σ2)

for any (u0, u1) ∈ H1 thanks to Theorem 2.1.

Using the solution u of (3.15), we then consider the backwards problem:




w′′i − ai∆wi + qwi = 0 in Ωi × (0,∞),
wi(T ) = ui(T ), w′i(T ) = u′i(T ) in Ωi, i = 1, 2,
w1 = 0 on S1 × (0,∞),
∂w2

∂ν
+ αw2 − σw′2 = 0 on S2 × (0,∞),

w1 = w2, a1
∂w1

∂ν
= a2

∂w2

∂ν
on S0 × (0,∞).

which has a unique weak solution with

w ∈ C([0, T ];H1(Ω, S1)) ∩ C1([0, T ];L2(Ω, S1))

and
w′ ∈ L2(Σ2)
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since (u(x, T ), u′(x, T )) ∈ H1 .

Set
y = u− w,

and
φ = −σ(x)(w′ + u′) ∈ L2(Σ2),

then y satisfies





y′′i − ai∆yi + qyi = 0 in Ωi × (0,∞),
yi(0) = u0

i − wi(0), y′i(0) = u1
i − w′i(0) in Ωi,

yi(T ) = 0, y′i(T ) = 0 in Ωi, i = 1, 2,
y1 = 0 on S1 × (0,∞),
∂y2

∂ν
+ αy2 = φ(x) on S2 × (0,∞),

y1 = y2, a1
∂y1

∂ν
= a2

∂y2

∂ν
on S0 × (0,∞).

We define an operator Λ by

Λ(u0, u1) = (w(x, 0), w′(x, 0)).

Then it is clear that Λ is a linear operator from H1 into H1 . Moreover, by Theorem
1.1 (in the case where α0 is small enough) we have

‖ Λ(u0, u1) ‖2H1
= E(w, 0)

≤ Me−τT E(w, T )

≤ M2e−2τT ‖ (u0, u1) ‖H1 .

(3.16)

Therefore,
‖ Λ ‖≤ Me−τT .

Taking T large enough so that Me−τT < 1, then I − Λ is an isomorphism from
H1 onto H1 . Thus, for any (y0, y1) ∈ H1 , there exists a unique (u0, u1) ∈ H1 such
that

(y0, y1) = (u0, u1)− Λ(u0, u1) = (u0, u1)− (w(x, 0), w′(x, 0)). (3.17)

Consequently, we have constructed a control function φ = −σ(x)(w′ + u′) solving
the exact controllability problem (3.12)-(3.13).

On the other hand, multiplying the first equation of (3.15) by u′ and integrating
over Q, we obtain

∫

Σ2

a(x)σ(x)|u′|2dΣ = E(u, 0)− E(u, T ).
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Likewise, we have

∫

Σ2

a(x)σ(x)|w′|2dΣ = E(w, T )− E(w, 0).

It therefore follows from Theorem 1.1 that there exist positive constants c1, c2 such
that

c1(1−Me−τT )
1
2 E

1
2 (u, 0) ≤‖ u′ ‖L2(Σ2)≤ c2E

1
2 (u, 0),

and
c1(1−Me−τT )

1
2 E

1
2 (w, T ) ≤‖ w′ ‖L2(Σ2)≤ c2E

1
2 (w, T ).

Noting E(u, T ) = E(w, T ), we deduce from the triangle inequality and Theorem
1.1 that

c1[1−Me−τT ]
1
2 [1− (Me−τT )

1
2 ]E

1
2 (u, 0) ≤‖ u′ + w′ ‖L2(Σ2)

≤ c2[1 + (Me−τT )
1
2 ]E

1
2 (u, 0).

(3.18)

Since I − Λ is an isomorphism, (3.14) follows from (3.17) and (3.18).

Proof of Theorem 1.1. Case II: α0 is arbitrary.

Let ε > 0 be small enough and T large enough. It then follows from Theorem
3.2 that there exists a control φ such that





y′′i − ai∆yi + qyi = 0 in Qi,
yi(0) = 0, y′i(0) = 0 in Ωi,
yi(T ) = ui(T ), y′i(T ) = u′i(T ) in Ωi, i = 1, 2,
y1 = 0 on Σ1,
∂y2

∂ν
+ εy2 = φ(x) on Σ2,

y1 = y2, a1
∂y1

∂ν
= a2

∂y2

∂ν
on Σ0.

(3.19)

According to the proof of Theorem 3.2, y and φ can be written as

y = v − w, φ = σ(v′ + w′), (3.20)

where v and w are respectively the solutions of





v′′i − ai∆vi + qvi = 0 in Qi,
vi(T ) = v0

i , v′i(T ) = v1
i in Ωi, i = 1, 2,

v1 = 0 on Σ1,
∂v2

∂ν
+ εv2 − σv′2 = 0 on Σ2,

v1 = v2, a1
∂v1

∂ν
= a2

∂v2

∂ν
on Σ0,

(3.21)
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w′′i − ai∆wi + qwi = 0 in Qi,
wi(0) = vi(0), w′i(0) = v′i(0) in Ωi, i = 1, 2,
w1 = 0 on Σ1,
∂w2

∂ν
+ εw2 + σw′2 = 0 on Σ2,

w1 = w2, a1
∂w1

∂ν
= a2

∂w2

∂ν
on Σ0.

(3.22)

In (3.21), (v0, v1) are chosen to be such that

(v0, v1)− (w(T ), w′(T )) = (v0, v1)− Λ(v0, v1) = (u(T ), u′(T )). (3.23)

Integrating by parts, we obtain

0 =
∫

Q

[
y′(u′′ − a∆u + qu) + u′(y′′ − a∆y + qy)

]
dxdt

=
∫

Q

∂

∂t
(u′y′ + a∇u · ∇y + quy)dxdt−

∫

Σ2

a(y′
∂u

∂ν
+ u′

∂y

∂ν
)dΣ

=
∫

Ω

(|u′(T )|2 + a|∇u(T )|2 + q|u(T )|2)dx +
∫

Σ2

a[y′(αu + σu′) + u′(εy − φ)]dΣ

= 2E(u, T ) +
∫

Σ2

au′(σy′ − αy + εy − φ)dΣ

(3.24)
The following constants c = c(T ) denote various positive constans depending on
T . By the trace theorem and (3.20) and (3.23), we have

‖y‖2L2(Σ2)
≤ c

∫ T

0

‖y(t)‖2H1(Ω,S1)
dt

≤ c

∫ T

0

(‖v(t)‖2H1(Ω,S1)
+ ‖w(t)‖2H1(Ω,S1)

)dt

≤ c(E(v, T ) + E(w, 0))

≤ cE(v, T )

≤ cE(u, T ).

(3.25)

Moreover, since ∫

Σ2

aσ|v′|2dΣ = E(v, T )− E(v, 0), (3.26)

and ∫

Σ2

aσ|w′|2dΣ = E(w, 0)− E(w, T ). (3.27)

It follows from (3.20) and (3.23) that

‖y′‖2L2(Σ2)
≤ cE(u, T ). (3.28)
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By (3.14) we have
‖φ‖2L2(Σ2)

≤ cE(u, T ). (3.29)

By Cauchy-Schwartz inequality we deduce from (3.24) that

(E(u, T ))2 ≤ c

∫

Σ2

|u′|2dΣ
∫

Σ2

|σy′ − αy + εy − φ|2dΣ, (3.30)

which, combining (3.25), (3.28), and (3.29), yields
∫

Σ2

|u′|2dΣ ≥ cE(u, T ). (3.31)

On the other hand, we have
∫

Σ2

aσ|u′|2dΣ = E(u, 0)− E(u, T ). (3.32)

We then conclude
E(u, 0)− E(u, T ) ≥ cE(u, T ),

so that
E(u, T ) ≤ 1

1 + c
E(u, 0).

Repeating the above reasoning, we get

E(u, (k + 1)T ) ≤ 1
1 + c

E(u, kT )

≤ 1
(1 + c)k+1

E(u, 0), k = 0, 1, 2, · · ·

This implies (1.6) with

M = 1 + c, τ =
1
T

ln(1 + c).

The proof of Theorem 1.1 is complete.
⊙

Remark 3.3. From Theorem 1.1 and the proof of Theorem 3.2 we can conclude
that Theorem 3.2 still holds true for arbitrary α0 .

If S1 = φ, q ≡ 0, and α ≡ 0, then H1 in Theorem 3.2 cannot be replaced by
H1

S1
(Ω)×L2(Ω, S1) because (E(u, 0))

1
2 is no longer a norm on H1(Ω)×L2(Ω, S1).

Nevertheless, (3.16) still holds on the quotient space
(
H1(Ω) × L2(Ω, S1)

)/
N ,

where N = {(c, 0) : c ∈ lR}. Therefore, Theorem 3.2 still holds when H1 is
replaced by

(
H1(Ω) × L2(Ω, S1)

)/
N . Because the zero element in

(
H1(Ω) ×

L2(Ω, S1)
)/

N is N , we can only drive any initial state (y0, y1) ∈ H1(Ω)×L2(Ω, S1)
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to a constant function (c, 0). In fact, We can explain this in the following way. For
any (y0, y1) ∈ H1(Ω)× L2(Ω), set

w0 = y0 − 1
m(Ω)

∫

Ω

y0(x) dx, w1 = y1 − 1
m(Ω)

∫

Ω

y1(x) dx.

Then (w0, w1) ∈ H1 . By Theorem 3.2, there exists a control function φ(x, t) such
that the solution w of (3.12) with the initial state (w0, w1) satisfies (3.13). It is
easy to check that

y = w +
1

m(Ω)

∫

Ω

y0(x) dx +
t

m(Ω)

∫

Ω

y1(x) dx

is the solution of (3.12) with the initial state (y0, y1), but

y(x, T ; φ) =
1

m(Ω)

∫

Ω

y0(x) dx +
T

m(Ω)

∫

Ω

y1(x) dx, (a constant),

y′(x, T ; φ) =
1

m(Ω)

∫

Ω

y1(x) dx, (a constant).

At last, we want to prove Theorem 3.1. For this, we need the following lemma.

Lemma 3.4. Let φ ∈ H
1
2 (Γ). Then there exists u ∈ H2(Ω1, Ω2) such that

u = 0,
∂u

∂ν
= φ, on Γ, (3.33)

and
‖u1‖2,Ω1 + ‖u2‖2,Ω2 ≤ c‖φ‖

H
1
2 (Γ)

, (3.34)

where c is a positive constant and

H2(Ω1, Ω2) =
{

u : ui = u|Ωi ∈ H2(Ωi), i = 1, 2; u1 = u2, a1
∂u1

∂ν
= a2

∂u2

∂ν
on S0

}
.

Proof. By the trace theorem, it follows that there exists w ∈ H2(Ω) such that

w = 0,
∂w

∂ν
= φ, on Γ,

and
‖w‖2,Ω ≤ c‖φ‖

H
1
2 (Γ)

.

Since w ∈ H2(Ω2), again by the trace theorem, we have

w ∈ H
3
2 (S0),

∂w

∂ν
∈ H

1
2 (S0).
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Also by the trace theorem, it follows that there exists v ∈ H2(Ω1) such that

v = 0,
∂v

∂ν
= φ on Γ ∩ Γ1,

v = w,
∂v

∂ν
=

a2

a1

∂w

∂ν
on S0,

and
‖v‖2,Ω1 ≤ c[‖φ‖

H
1
2 (Γ∩Γ1)

+ ‖w‖
H

3
2 (S0)

+ ‖∂w

∂ν
‖

H
1
2 (S0)

]

≤ c[‖φ‖
H

1
2 (Γ∩Γ1)

+ ‖w‖2,Ω2 ]

≤ c[‖φ‖
H

1
2 (Γ∩Γ1)

+ ‖w‖2,Ω]

≤ c‖φ‖
H

1
2 (Γ)

.

Then, u defined by

u =
{

v, x ∈ Ω1,
w, x ∈ Ω2,

belongs to H2(Ω1, Ω2) and satisfies (3.33) and (3.34)

We also need the following unique continuation theorem for elliptic operators
given in [7].

Let A(x) = (aij(x)) be a real symmetric matrix-valued function on Ω satisfying
the assumptions:

(i) there exists a ρ ∈ (0, 1) such that, for every x ∈ Ω and ξ ∈ lRn ,

ρ|ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ ρ−1|ξ|2; (3.35)

(ii) there exists a K > 0 such that, for every x, y ∈ Ω,

|aij(x)− aij(y)| ≤ K|x− y|, i, j = 1, 2, · · · , n. (3.36)

Let the potential V satisfy the assumption: for every x0 ∈ Ω there exist r0 > 0
and two constants C1, C2 > 0 such that if V (x) = V +(x)− V −(x), then

0 ≤ V +(x) ≤ C1

|x− x0|2 , (3.37)

0 ≤ V −(x) ≤ C2

|x− x0|2 , (3.38)

for any x ∈ Br0(x0) ∩ Ω, where Br0(x0) = {x ∈ lRn : |x− x0| < r0}.
Theorem 3.5. [7, Corollary 1.1] Assume that A(x) and V (x) satisfy the

above assumptions (3.35)-(3.38). Then the operator L = −div(A(x)∇) + V (x) has
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the unique continuation property in Ω, that is, the only H1
loc(Ω) solution of Lu = 0

which can vanish in an open subset of Ω is u ≡ 0.

Proof of Theorem 3.1. Case I: S1 6= ∅, or q 6= 0, or α 6= 0. The proof is the
same as the one of Theorem 2 of [11] except for the following two pionts:

i) In the proof of Theorem 2 of [11], Lagnese used the analyticity of the solution
of

∆W − ω2W = 0 in Ω, ω real

to conclude that W = 0 in Ω if W = 0 in an open subset of Ω. For the present
case of transmission, we use Theorem 3.5 since we now can no longer appeal to the
analyticity of solutions.

ii) The usual trace theorem used in the proof of Theorem 2 of [11] is replaced
by Lemma 3.4.

Case II: S1 = ∅, q ≡ 0, α ≡ 0. If (u0, u1) ∈ H1
S1

(Ω) × L2(Ω, S1) rather than
H1 , then we take (w0, w1) as in (2.17). Let w be the solution of (1.1) with the
initial condition (w0, w1), then

u = w +
1

m(Ω)

∫

Ω

u0(x) dx

is the solution of (1.1) with the initial condition (u0, u1) and (3.1) holds for w .
Therefore,

∫ ∞

0

∫

Ω

e−2δt(u− I(u0))2dxdt =
∫ ∞

0

∫

Ω

e−2δtw2dxdt

≤ c(ε)E(w, 0) + ε

∫ ∞

0

∫

Ω

e−2δt|w′|2dxdt

= c(ε)E(u, 0) + ε

∫ ∞

0

∫

Ω

e−2δt|u′|2dxdt.

⊙
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