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EXACT NEUMANN BOUNDARY CONTROLLABILITY
FOR SECOND ORDER HYPERBOLIC EQUATIONS

BY
Weijiu Liu and Graham H. Williams

ABSTRACT

Using HUM, we study the problem of exact controllability with Neumann
boundary conditions for second order hyperbolic equations. We prove that these
systems are exactly controllable for all initial states in L?(Q) x (H(2))" and we
derive estimates for the control time 7.
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0. Introduction and Main Result. Let Q2 be a bounded domain (open,
connected, and nonempty) in R"( n > 1) with suitably smooth boundary T' = 99.
For T'>0,set Q =Qx (0,7) and ¥ =T x (0,7).

The aim of this paper is to discuss the problem of exact controllability for
second order hyperbolic equations with Neumann boundary control

( n
0 dy )
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In (0.1), a;;(x,t) are suitably smooth real valued functions and a;;(z,t) = a;i(z,t),
i;j = 1,2,"',71,
0 0
A = e ( X 3 t ) ) 0‘2
5o (a5 0.2
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0
the co-normal derivative —2- with respect to A is equal to Z aij(x,t)ui—y,

6VA =1 Bacj
and v = (v1,v9, -, V,) is the unit normal on T' pointing towards the exterior of
0
0,y = —y, y(0) = y(x,0), ¥'(0) =y'(x,0), and ¢ is a boundary control function.
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More precisely, the problem of exact controllability can be stated as follows.

Given T > 0, for any initial state (y°,y') and any terminal state (2°,21)

in a suitable Hilbert space H, find a boundary control ¢ such that the solution
y =y(x,t; ) of (0.1) satisfies

y(z,T; ¢) = 2°, Y (x,T;¢) = 2" in Q. (0.3)
Since system (0.1) is linear, it is sufficient to look for controls driving the system

(0.1) to rest, i.e.,

y(x, T;¢) =0, v (z,T;¢) =0 in Q. (0.4)

Throughout this paper, we will adopt the following notation. Let z%(t) €
C1(]0,00); IR"), and set

m(z,t) =z —2°(t) = (x1 — 20(t), -,z — 22(1)) = (m1(z, 1), ,mp(x,t)), (0.5)

Y(x?) = {(x,t) €2 : m(z, 1) z”: (x,t)vg(x) > 0}, (0.6)
Yo (20) = 2 — 2(29), (0.7)

D(z%0) ={z el : m(z,0) v(z) >0}, (0.8)

5(°(0)) = I'(z°(0)) x (0,7), (0.9)

R(t) = max | m(z,1) |= max| Z zr — ah(t)? |2, (0.10)
Ra(t) = max | m'(z, ¢) |= max | ; ) () |7, (0.11)

Ry = Jmax R(t). (0.12)

Before stating the main results of this paper, we impose certain conditions on
aij. We suppose

aij(2,1), aj;(x,t), ajs(x,t) € C([0,00); L*(Q)),

Oaij(@,t) t)eLOO(QX(O,oo)), i, 5,k=1,2,---'n (0.13)
8$k
and there exists a constant « > 0 such that
aij(l‘,t)&gj > Oé|€|2, V§ - an, V(Jf,t) S Q (014)



Here and in the sequel, we use the summation convention for repeated indices, for

example,
n

aij(@, )& = Z aij(x,1)&&;.-

ij=1
Set n
= — "
a(t) = - max max|a;(z,1)], (0.15)
n da;j(x,t)
b0 = 3, anae ma] =500 (019
If
a(t), b(t), Ri(t) € L*(0,+00), (0.17)
we set R I Ry |
Ty = (R b 20 (1 4 e~llallon &) 2llallo,1 0.18
0 ol 0’1+\/5( te ) + Ja e (0.18)
where || - ||o,1 denotes the norm of L'(0,+0oc). Furthermore, if
ag;(x,t)&&; <0, V(z,t) € 2 x[0,00), &€ R, (0.19)
or
aj;(x, )€€ > 0, V(z,t) € Q x [0,00), &€ R", (0.20)
then Ty can be refined slightly to
2Ry | || R flox
T, = (R b : ) lallo.s. 0.21
0 ol HO’1+\/5+ —— Je (0.21)
or . IR
T — (R b 20 1 1 e llallon &) llallo,x 0.22
0 o |l HO’1+\/E( +e )+ Ja )¢ (0.22)
If
a(t), b(t), Ri(t) € L=(0,+00), (0.23)
we suppose
3Ry H a H0700 +R0\/& H b HO,oo + H Ry H0700< \/5, (0.24)
where || - [l0,00 denotes the norm of L*°(0,+00).
In the sequel, W*P(Q) denotes the usual Sobolev space and || - ||s, its norm

for any s € R and 1 < p < co. We write H*(Q2) for W*2(Q) and || - ||s for || - [|s.2-
We now state the main result as follows.

Theorem 0.1. Let ) be a bounded domain in R™ with the boundary T' of
class C?. Suppose (0.13) and (0.14) hold and % (z°(0)) C X(z°). If either (0.17)
holds and T > Ty or (0.23) and (0.24) hold and T is large enough so that

VaT — 2Ry

3Ro || a [lo,00 +RovV || b Jlo,co + || R1 [l0,00< T

(0.25)



then for all initial states
(1%, y') € L*(Q) x (H'()),
there exists a control
6= $o on N(zY),
| ¢1 on . (20),
with ¢ € (HY(X(2°))) and ¢ € (H'(Z«(2°)))" such that the solution y =
y(x,t; ¢) of (0.1) satisfies (0.4).

Corollary 0.2. Under the conditions of Theorem 0.1, if ¥, (x°) = 0, then for
all initial states
(v y') € L*(Q) x (H'(Q))',
there exists a control
¢ € (H'(0,T; L*(I)))',
such that the solution y = y(z,t;¢) of (0.1) satisfies (0.4).

Remark 0.3. ¥, (z°) = 0 if 2°(t) = ¢ and Q is star-shaped with respect to
29 (see [13]).

The method of proof of Theorem 0.1 uses multiplier techniques and the Hilbert
Uniqueness Method (HUM for short) introduced by Lions [9].

We now compare our result with the existing literature. The problem of exact
controllability for second order hyperbolic equations for both Dirichlet and Neu-
mann boundary controls has been extensively studied. The first work for Dirichlet
boundary controls was done probably by Komornik [5], who dealt with the wave
equation with variable coefficients but not depending on time by using HUM. Later
the time-dependent case was considered by Apolaya [1] and Miranda [11]. In addi-
tion, making use of the theory of pseudodifferential operators, Bardos, Lebeau and
Rauch [2] considered the Neumann boundary controllability with rather smooth
coefficients and domains €2. The control considered in this paper is of Neumann
type and the coefficients and domain {2 are required to be less smooth. Generally
speaking, Neumann control is more delicate than the Dirichlet one. We also allow
for the case that Y (x) is not a cylinder of a form X(2°) = I'(2?) x (0,7, where
2¥ is independent of ¢, and give delicate estimates for the control time 7Ty as given
in (0.18) and (0.25). Further, the condition (0.24) generalizes condition (3) of [5].

The rest of this paper is divided into four parts. Section 1 is devoted to a
discussion of the regularity of solutions of Neumann boundary value problems. We
then establish an identity for the solution in section 2. Using the identity, we obtain
an observability inequality in section 3. We prove Theorem 0.1 in section 4.

1. Regularity of Solutions. We first give some preliminary results on
solutions of the following Neumann boundary value problem

u' —Au=f in Q,
0)=u’, W(0)=u' inQ,
u(gu) 1:) w'(0) =u' in : (1.1)
— = n Y.
81/A ©



Throughout this paper, it is assumed that there is a > 0 such that

aij(x,t)&{'j >« | f |2, V€ € Rn, (l’,t) € Q) x [O,T] (1.2)

Let X be a Banach space. We denote by C*([0,T], X) the space of all k times
continuously differentiable functions defined on [0,7] with values in X, and write
C((0,T), X) for C°((0, T, X).

By example 3 of chapter XVIII of [3], we have

Theorem 1.1. Let © be a bounded domain in IR" with Lipschitz boundary
I'. Suppose that

aij(x,t), ai;(z,t) € C([0,T],L>(Q)), i,j=1,2,---,n. (1.3)
Then, for (u®,u, f) € HY(Q) x L*(Q) x L(0,T; L*(2)), problem (1.1) has a unique

solution with
u € C([0,T); H(Q)) N C([0,T]; L*(£2)). (1.4)

Moreover, there exists a constant ¢ = ¢(T') such that
He lleqomym @) + v lleqorizz@) (1.5)

<clllw® n+ It llo + 11 f o, 7sz2c0))]-

A solution to (1.1) which satisfies (1.4) is called a weak solution.

Set
WU, T LA(Q) = {f « f,f € L}0,T; L*(9))} (1.6)
with norm
%
I £ lwra= (I F s ozizecay + 1 F o rizey) (1.7)
and
u

D(A) = {u c H2(Q) : - o}. (1.8)

aVA N
We will need the following regularity result.

Theorem 1.2. Let 2 be a bounded domain in R"™ with boundary I" of class
C?. Suppose that

aij(x>t)’ a;j(x’t)v a;/j(xvt) € C([0,T]; L>(%2)),

Gaij(a:,t) ..
il At VAR g S —1.2.---.n.
61’k 6 (Q)? Z?J7k: Y ) 7”

(1.9)

Assume that {u®,u'} € D(A) x HY(Q).



(i) If f € WH1(0,T; L?(Q)), then problem (1.1) has a unique solution with
we C(0, T); D(A) N C([0, T)s H'() NC2(0, T L3(Q).  (1.10)
Moreover, there exists a constant ¢ = ¢(T') such that

" (8) llo + Il w'(2) [l

0 1 / (1.11)
<c|llu 2+ w v+ f o) | vt € [0,T].

(ii) If f € LY(0,T; H*(2)), then problem (1.1) has a unique solution with
u € C([0,T); D(A)) N C' ([0, T]; H' (). (1.12)
Moreover, there exists a constant ¢ = ¢(T) such that

(@) ll2 + 1 w'(2) [l

. X (1.13)
<clllu’llz+lu v+ fllerommiey [, VEE0,T].

A solution satisfying (1.12) is called a strong solution.

Proof. We first prove (1.11). To this end, we first suppose that f € D((0,7T);
L?(Q)) (the space of all infinitely differentiable functions with supports in (0,7)
and values in L%(£2)). Set

a(t;u(t),v(t)):/Qaij(:c,t)aua(zt) 608(;:;t)dac, (1.14)

a’(t;u(t),v(t)):/Qagj(:c,t)aua(;?t) 6U;z;t)dx, (1.15)
and

o (tu(t), v(t)) = /Q oz, 1) 8“;2 t) 8”8(;{’5) da. (1.16)

Let (-,-) denote the scalar product in L?(Q2). For any v € H'(), multiplying (1.1)
by v and integrating over €2, we obtain

(' (t),v) + a(t;u(t),v) = (f(t),v). (1.17)
Differentiating (1.17) with respect to ¢, we obtain
(W (t),v) + a (t;u(t),v) + a(t; ' (t),v) = (f(t),v). (1.18)
Replacing v by u”(t) in (1.18) gives

(" (1), u"(8) + a(t; o (£), w' ()] + 20 (t; u(t), u” (1)) — a' (£ (1), ' (1))

) / 7 (1.19)
=2(f7(1), u" (1))



But
a'(tu(t),w”(t) = [a'(tu(), u' ()] — a”(tu(t), u'(t) — o (tu' (1), u'(t).  (1.20)
Integrating (1.19) from 0 to ¢ and using (1.20), we have

[l () 115 +alt,u'(t),u'(t)
=|l u"(0) [I§ +a(0, %/ (0), v (0)) + 24’ (0, u(0), ' (0))

—2a/(t,u(t), v (t)) +3/ a'(s,u'(s),u'(s))ds (1.21)
0
+2/0 a”(s,u(s),u (s))ds-I-Q/O (f'(s),u"(s))ds.

It therefore follows from (1.2) and (1.9) and (1.21) that (the following ¢’s denoting
various constants depending on a, «, T)

[l () 115 4o || V' (2) 1[5
«
<5 V'@l +C[I| u’(0) 115 + 1wt 7+ 1w |17

+ [ u(t) |17 +/ (Fu(s) I+ [1u'(s) [7)ds

0
t
+ gm0 Lo [ 1 7(5) o s,

0<s<t
which, by adding || u/(¢) ||3 to both sides of the above inequality, implies

[l () 115 + [ ') 113

< C[H w’(0) 115 + [Fut 17+ 11 u” 1T + ) 15+ ] /() 115

(1.22)
t t
a4+ 0 (s) IBds + ga | w’(9) o [ £65) o ds].
0 5% 0
0 to / 1 ton : :
But u(t) = u® + [ u/(s)ds and u'(t) = u' + [; u”(s)ds yield respectively
¢
Fu(®) <[ u® llx +/0 I u'(s) [l ds, (1.23)
and .
I/ (t) llo<lIl w" llo +/ Iu”(s) llo ds. (1.24)
0
In addition, by (1.1) we have
u”(0) = Au® + £(0) = Au®. (1.25)

7



So we deduce from (1.22)-(1.25) that

I (8) 113 + 1 ' 8) 1
<clllu® I3+l u I3+ 1 F s o.rizecan (1.26)

[0 I+ o) 1B)ds] + 5 gnae 1) I,

from which, setting

— 2 ! 2
w(t) = max, || () I3+ | /() I (1.27)
we deduce
t
w(t) el w® I3+ 11w 12+ 1 S 1 orizey + / w(s)ds|.  (1.28)

Gronwall’s inequality (see [4, p.36]) shows

wlt) < e[ u 13+ I 15+ 1 £ oo mizeen) (1.2
This implies (1.11). By a density argument, we can show (1.11) still holds for
fewhi(0,T; L*(2)).
Now we prove (1.10). Using the proof of Theorem 8.2 of [10, Vol.I, p.275] and
(1.7) of [10, Vol.II, p.97], we can prove
u € CH[0,T]; H(Q2)) N C*([0,T]; L*(Q)). (1.30)

On the other hand, by inequality (6.7) of [7, p.66] and Remark 6.2 of [7, p.77|, we

have ) ) )
| u®) (|3 < | Au(?) [[g +e2 | u(?) (|5

1.31
< el (0 13 + 1 ) 13 + 1 £(0) 1) 0
It follows from (1.1) and (1.31) that
I uler) - ulta) I3 o
< cfl u”(tr) = u"(t2) 1§ + Il ults) = ult2) 1§ + | f(t) — f(t2) [I6]-
Thus, the continuity of v” and f implies
u € C([0,T]; D(A)). (1.33)

It remains to prove (1.13). Multiplying (1.1) by (Au)’ and integrating over £,

we obtain
(Au(t), (Au(t))') + alt;w'(t), u" (1)) + a’ (t; u(t), v (t))
— a(t (), (1)) + a (B u(t), F(2)).

8

(1.34)



Combining this and (1.20) gives
S 1(Au(t), Au(t) + alt; o (0) /(1))
= Dt (), (1) + o (5 u(t), o (1) — o (), (1) (159)
Falti (8), £(2) + o' (6 u(), £ (1)
Integrating (1.35) from 0 to ¢, we have

I Au(t) [I5 +a(t, o' (t), /(1))
=|| Au® |[§ +a(0,u'(0),u'(0)) + 2a’(0,u(0), u'(0)) — 2a (¢, u(t), u'(t))

+3/0 a’(s,u’(s),u’(s))ds+2/0 a”(s,u(s),u'(s))ds (1.36)
+2 [ lals:a/(5),7(6) + o' (ssu(s) £(s)s

It therefore follows from (1.2), (1.5), and (1.36) that there exists a constant ¢ =
¢(T) > 0 such that

| Au(e) 3+ || V' (2) |3
t
e[l B+ 1+ 0 roranon + [ 190G Bas] a7

1 / 2
+ 5 oax, || Vel (s) [

from which, as in the proof of (1.29), we deduce
I Au(t) II§ + || Vo' (2) 5 (138
<c|llu® 12+ I a 1F + 11 f 1Zs 0,230 ) |- '

Thus (1.13) follows from (1.5), (1.31), and (1.38). Finally, (1.12) is a consequence
of (1.13) through a density argument. O

2. An Identity. We are now in a position to establish an identity, which is
indispensable for obtaining an observability inequality in the following section.

We define the energy of the solution u of (1.1) with f =0 by

B(t) = %/Q (1) |2 da + %a(t;u(t),u(t)), (2.1)

then, .
E'(t) = d(tu(t), u(t)), (2.2)

9



and

E(t)=FE(0) + —/O a'(s;u(s),u(s))ds, (2.3)

where a(t; u(t),u(t)) and o' (t;u(t), u(t)) are given by (1.14) and (1.15), respectively.
For the coming calculation, we introduce the notion of tangential differential

operators with respect to A which are similar to those introduced in [9, p.137].

Let Q be a bounded domain with a Lipschitz boundary I'. Since by (1.2) we

n

have a;;(z,t)v;v; > «, the vector vy = {Z aij(ac,t)l/i} is not tangential to T’

i=1 7=1
for almost all 2 € I'. Thus, we can define a tangential vector field {7%(z)}}Z] such
that {va(x),74(z), -+, 74" (z)} forms a basis in IR" for almost all x € T
For a smooth function u, there exist ﬁi‘, vﬁ’j (j=12,---n; k=1,2,--- ;n—

1) depending on {va(z),7i(z), -+, 7% ()} such that

3:13] _ﬁAa ZVA ﬂ, on I, j=12---,n. (2.4)
Set
n—1 - Ou
Ufu:ZVZ’Ja—k, j=1,2,---,n, (2.5)
k=1 TA
then,
L Ba o (26)
—— =[5 toju. .
Ox; 49
Evidently, o ( j =1,2,---,n) are independent of the choice of the tangential vector
field {7%(z ) . Therefore we obtain a family of first order tangential differential
operators 0 (] =1,2,---,n) on I' with respect to A. We can define the tangential
gradient of won I’ by
Vyau = {qu}?zl. (2.7)
For any subset ¥; of X, 034 (j =1,2,---,n) are linear and continuous from
Hl(Zl) — Lz(Zl) Set
A, =) (oo, (2.8)
j=1

where (03-4)* denotes the adjoint of 034. Then the operator —Ag s linear and
continuous from H(X;) — (H'(X1)) and satisfies

(—A% u,v) = | VoauVyavdE,  Vu,v e HY(E). (2.9)
¥

10



Lemma 2.1. Let Q be a bounded domain in IR" with boundary T' of class
C?. Let q = (qx) be a vector field in [C*(Q x [0,00))]". Suppose u is the weak
solution of (1.1). Then the following identity holds:

1
5/ qkyk( | |? —aij(x,t)afuafu>d2
2

T
:(u’(t),QkﬂN —|—/ a;j(z,t) =— Ou O 6?—ud dt
o Je

o0x . Ox; Ox; Oxy,
)2 210
2 Joox N1 T g b
1 Oa;j(z,t) Ou Ou / / ou
5 /qu dun Dz Oz, dxdt — qua kfda:dt u’ qka kdxdt
where 5 5
/ uy / _u
(W ages) = [ g
Remark 2.2. If n =1, then (2.10) becomes
%/ qu | v |* d%
Oun (T 2 9q
( ’q8x>‘o / ‘830 _d di (2.10)
1 dq '
§/Qa—x<' )| ga] e
1 da(x,t) ou , ,0u
2/ 5 ’ dxdt Qqamfdxdt /Quq amdavdt.

Proof. We first prove (2.10) in the case of strong solutions, that is, we assume
initial conditions (u°,u') € D(A) x HY(Q) andf € L*(0,T; H*(Q)). Multiplying

(1.1) by qka—u and integrating on @, we have
T

Ou 1 ou 0O ou
q’“a_m“ dxdt — Qk B Oz, (aw(x t)— oz, )dmdt / qk—fdzdt (2.11)

6:Uk

Integrating by parts, we obtain

ou 6’uT1/8qk /12
T dadt =(u (¢ | +5 [ o dudt
/Qq’“aa:k“ . ( ()qk(? k>0+2 ank,’“’ v
1
—/u'qk%dajdt——/qkyﬂu'ﬁdz,
0" 2

11
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and

ou 0 ou
/Q 8xk 8 (a” (z,1) 8$J>dmdt
ou 0 ou
= — /Q aij(z,1t) 9z, O, (CJk 8xk>d:z:dt (2.13)

B ou (0q, Ou 0%u
- /Q @i (%) g (5o e + @y, ) 2ot

But,

8u 0%u
/Qaij (x,t)=— o, 3xk8xZ dxdt

1 8 Ju Ou da;j(z,t) Ou Ou
2 /qu ((‘%k (a5(w,?) ox; (%cj) Tk Ox; Oz )dmdt (2.14)
1 ou Ou 1 Oa;j(z,t) Ou Ou '
- i@ t) —— —dY — I dxdt
2 /Eqkukaj(x )E):cz Ox; 2/QQk Oxy, Oz, Ox; v
0qy ou Ou
— = 6ajk aZj( )a—xla—xjdxdt
By (2.13) and (2.14), and noting that 8u. = ou on ¥, we have
ou 0 ou
/Q v (am(x t)a . >dxdt
1 N A A Ou Oqi, Ou
= 2/Eqk1/kam(.r,t)ai uo; ud /Qam( t)&fc] I, 8xkd xdt (2.15)
1 Oa;;(x,t) Ou Ou 1 0qx ou Ju
3 /Qq'f oy 0m 05, N3 ), 5, 0\ g, M

It follows from (2.11) , (2.12), and (2.15) that
L T Holuoctu)de
2 g qevk (U] — aij(z,t)o]uoiu

ou Ou O0qx Ou
(. ow
_< (), a 8:@)‘ +/Qa”(x Dow: Ox; Ox; axkd zdi

Oq /19 ou Ou
/Qa_m<’“’ ~ay (o ) g dadi

1
2
1 Ja;j(z,t) Ou Ou ou ou
- = dxdt — —— fdxdt — —d dt.
2 /qu Oz, Ox; Ox; x /Q%@mkf o / 3 T

This is (2.10).

We now consider the general case of weak solutions with (u®,u') € H'(Q) x
L?(Q) and f e LY0,T;L3(Q)). We take (u2,ul) € D(A) x HY(Q) andf, €
LY(0,T; H*(S2)) such that

12



(up, up) — (u®,ul) in H'(Q) x L*(),
fa— f in L'(0,T; L*()).

Now for strong solutions u, with initial conditions (u’,ul), and right hand

side fy,, the identity (2.10) holds. Due to Theorem 1.1, we have
un, — u in C([0,T], HY(Q)),
u!, — v’ in C([0,T], L3(Q)).

Thus, as in the proof of Lemma 1.3 of chapter 3 of [9, p.139], taking the limit
in (2.10) we deduce that (2.10) still holds in this case. O

3. Observability Inequality. To establish an observability inequality, we
need the following lemma.

Lemma 3.1. Let Q be a bounded domain in IR" with boundary T of class
C?. Then for all weak solutions u of (1.1) with f =0 the following hold:

(i) If n > 1, then

1
5/ mkyk<|u'|2 —aij(x,t)afuafu>d2
2

:(u’(t),mka% + 2 ; lu(t)> ‘: + /OT E(t)dt (3.1)

1 VAGD)
- —/ my, Jaij(2,1) Ou Ou dzdt —/ u'm;ﬁdxdt.
2 Jg Oz Ox; Ox; 0 ory,

If n =1, then

1 12 ’ du\ (T /T
— Y= — E
2/Eml/\u s =(u'(5),mE" )|+ [ B

(
(3.2)
2
—1/ mM a—u‘ dwdt—/ u’m’%dmdt.
2 Jo or |0z o ox

(ii) If n > 1, then

’(u’(t),mkg—;k + n ; 1u(t))‘

< b+ Y2 [ P e (33)

va(n —1)
T 4R,

/mkuk | u(t) |? dr, vt € [0, 7.
r

13



If n =1, then for v € (0,1)

‘(u’(t),m% 41 3 7u(t)))

< %E(t) + \/a(;To_l)/Q | u(t) [ da

(3.4)

7>/muyu(t) 2dr,  vte[o,T).
T

Proof. We prove the lemma only in the case of n > 1. It is similar in the case
of n=1.

(i) Taking gx = my in (2.10), we have

1
5/ mkl/k(lu’\Z —aij(x,t)afuafu>d2
2

(o ou \|T / ou Ou
_(u (t), mkamk)’ + Qa”(:z: ) —— — dadt

Ox; Ox;
n , Ju Ou
+2/Q<|u ? —a;j(z, 15)a 8x]>dxdt
1 Ja;j(z,t) Ou Ou , , Ou
- — dxdt — ——dxdt
2 /ka Oxy Oz Ox;j v /Qumké?:nk . (3.5)

:(u’(t) mk((f;c)’ —|—n;1/Q<|u’| —a;;(x,t)=— Ou 8u)dxdzﬁ

Ox; Oz
1 ou Ou
+§/Q<|u ? +ai;(z, t)aa: 6%>dwdt

B 1/ mkaaij(a:,t) ou Ou
Q

ou
5 dun 0w Oz, dxdt /Qumk Dy dxdt.
But 5y 8 T
/ U U /
i dxdt = . .
(1 et g 5 Yt = ), (3.
Therefore,
1 / A, A
E/Emkyk<|u > — ai;(z,t)0; uo; u)dZ
ou n-—1 T T
:(u'(t),mka—xk + 5 u(t))‘o + /0 E(t)dt (3.7)
= 1/ mkaaij(m’t) Ou Ou dacdt—/ u’mgfﬂdacdt.
2 Jg Oxy, Oz, Ox; 0 oxy

This shows (3.1)
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(ii) From the Cauchy-Schwarz inequality we have

’( mk——i—n_lu(t))’

t) |? dx +

ST oy

As shown in [6] by Komornik, we have

ou n-—1 9
/Q|mk_6xk+ 5 u(t) |* dzx
B ou o (n—1)2 9 ou
_/Q|mka—m| dr + /Q|u(t)| dz + (n 1)(mka—xk,u(t)>.

However,

u(t) | da.

(mk mk 896
k

- /Q i (| u(t) P (3.10)

1
:—2/ | u(t) [? d:c+—/mk1/k:|u(t) [ dr.
2 Q 2 r

Combining (3.9) and (3.10), we obtain

/ |mkﬂ+n_1u(t) 1% dx

/‘mk ‘dm+1_n /]u ) |? dz
axk

< Rg/ | Vu(t) |2 dx —|— / | u(t) |2 dx
Q Q

(t) [* dr

(3.11)

n—1

/mkvk | u(t) |* dT.
r

Thus, by (1.2 ) and (3.8) we have

< JZB(0) + ‘/a(ng_on)/Q | u(t) 2 do (3.12)

—1
+ valn 1) / mivg | u(t) |2 dT, vt € [0,T).
4R0 T

15



Lemma 3.2. Let ) be a bounded domain in R™ with boundary I' of class
C?. Suppose (0.13) and (0.14) hold. If either (0.17) holds and T > Ty or (0.23)
and (0.24) hold and T is large enough so that

T —-2R
u’ (3.13)

3Ro || a [lo,00 +RovV || b Jlo,co + || R1 [lo,00< T

then for all weak solutions u of (1.1) with f = 0 there exists ¢ = ¢(T') > 0 such
that

/ mpve(|u']? — aij(a:,t)afuafu)dz + / mive (] w(0) |2 + | w(T) |*)dT
5 r (3.14)

>o( a3+t ), forn>1,

and

/ my|u'|?dY + / mv(| w(0) |* + | w(T) |*)dT
. r (3.15)
ZC(HUO 17+ || u! ||3>, for n =1.

Furthermore, if condition (0.19) or (0.20) is satisfied, then Ty can be refined slightly
to (0.21) or (0.22), respectively.

Proof. (i) Suppose (0.17) holds and 7' > Tj.
Case I: n > 1. It follows from (0.14) and (1.15) that

—a(t)E(t) < E'(t) < a(t)E(t), vt > 0, (3.16)

where a(t) is given by (0.15). Let

t
h(t) :/ a(s) ds, (3.17)
0
then .
<ehE> — B 4 WehE
> —e"aF + ae"E (3.18)
= 0.
Thus,
E(t) > E0)e " > B0)elleloa v > 0. (3.19)

On the other hand, it follows from Gronwall’s inequality and (3.16) that

E(t) < E(0)ellallor i > 0. (3.20)
Set 5 . .
’ u n —
Z :(u (0)mig + u(t)) ‘O . (3.21)

16



It follows from (3.3) and (3.20) that
| Z 1< Z(0) [+ [ 2(T) |

Ry

< TE(O)(l +€|\a|\o,1) + Va(l

Pl [ P+ fu) Pre g
n — 1

2
Vo= [ u() P+ u(r) )ar
In addition, by (0.14) and (3.20), we have

‘1/ mk@aij(x,t) Ju Ou dxdt‘ < @/ b(t)aij(a:,t)%%dwdt
2Jq 2 Jo

o0x . ox; 8xj Ox; Ox
T
2
<Ry / b(t)E(t)dt (3:23)
0
< RoE(0) [| b [lo,1 el“lo,
where b(t) is given by (0.16). Also,
‘/ u’mza_udwdt‘ < / W' Ry(t) | Vu | dzdt
Q@ Ok Q
1
< /12 2
< —2\/_/ Ri(t)(| v |* +a | Vu |*)dzdt
(3.24)
< — / Ry (t
) || Ry ||01 || I
< allo,1
f— \/a
It therefore follows from (3.1), (3.19), (3.22), (3.23), and (3.24) that
1
§/Emkl/k<|u'|2 - aij(ac,t)afuafu>d2
~llallo. lallo, _ Ho lallo.
> TE(0)e "1t — RoE(0) [| b [lo,1 e — \/—E(O)(l +ellon)
(3.25)
Va(l —n?)
- W ) [+ u(r) Py
Vea(n —1) E(0) || B
o [l ) P + () Pyar - 2O
Thus,
1 12 A A
5 mkyk<|u 1© —aij(z,t)o; uo; u)dZ
2
Va(n —1)
Vol [ u(@) P+ u(r) )ar
0 (3.26)

Ry
Z(TG*H(IHI — Ry || b ||071 6HaHo,l _ ﬁ(l + 6||a||071)

B %ellam)l@(o) + %/ | u(0) ‘2 dz.
0 Q

Ja
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This implies (3.14).
Case II: n =1. By (3.2), we have

1 12 e (o Ouy (T /T
2/Emuyu 2 ds =(u (t),max)‘o + [ B

2
— l/ m@a(x,t) @‘ dacdt—/ u’m’@dxdt.

Choose v € (0,1) such that

(3.27)

_ R | B1 [loa
lallo,n _ lallon _ 240 lallo.ry — W24 1I0,L Jllallo
yTe Ro || b0 e \/5(1 +e ) Ja e > 0. (3.28)
We write
T T
1— 2
/ E(t)dt:y/ E(t)dt+—7/ \u' k —a(x,t)‘@) )d:cdt
0 0 ox
), (3.29)
+ 7/ ( ‘ dudt.
Then,
1
—/ my | v |* dX
2 Js
T T
~(w(t).m Luw)], +7 [ B0
1 2—-2 2
——/ ’ddt—/uma—d dt + 7/a(g;,t)’a—“‘dazdt
2 ox ox 2 o ox
ou 1-—
> (o — E(t
_(u(t),max+ 5 u —l—’y/
—l/ m@a(x,t —‘ da:dt—/ u’m'a—dmdt,
(3.30)
from which, as in the case n > 1, we can deduce (3.15).
Furthermore, if (0.19) is satisfied, then E’(¢) < 0. Consequently,
E(t) < E(0),  fort>0. (3.31)
Then (3.26) becomes
1
5/ mkyk(|u'\2 —aij(x,t)a,f‘uafu)dﬁ
b
a(n—1
# S ZD [ oy 0) P+ () P)ar
° T 2Ry | R (3.32)
>(TeNalox — Ry | bl — 0 — 11 0’1>E 0
_( e o llblloa Ja Ja (0)

+\/a(8”TO_1>/Q | u(0) |2 da.
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So Ty can be refined to (0.21).
If (0.20) is satisfied, then E’(t) > 0. Consequently,

E(t) > B(0),  fort>0. (3.33)
Then (3.26) becomes

1
5/ Mk Vk <|u’|2 — a;j(z, t)af‘ucrfu) dx
>

+ \/aflnTo_l)/rmkukﬂ u(0) * + [ u(T) [*)dr

R R
> (T = Ro || b [ ellor - \/_3(1 4 ellalory @enano,l)ﬂo)

\/&
+“5;”To‘”/ﬂ|u<o> 2 d.

So Ty can be refined to (0.22).
(ii) Suppose (0.23) and (0.24) hold and 7' is large enough so that (3.13) holds.
By (2.3) we deduce

(3.34)

E(T) < E(0)+ |

/ " B (3.35)
0

and - -
/ E(t)dt > TE(0) — / B(t)dt. (3.36)
0 0

It therefore follows from (3.1), (3.19), (3.22), (3.23), and (3.24) that

1
2/mka<\U! —a;j(z,t)o; uo*j‘u)dZ
)

Ro |l allo.co Rillosoy [T 2Ry
> (1 —Ro || b 0,00 —— H\/aHO’ | \1/|a0 )/0 E(t)dt — ﬁE(O)

(6] —n2
- f(slTo) /Q(I w(0) > + | w(T) |*)dx
~ 47;%0—1 /mkyk [ u(0) 2+ | u(T) |*)dT
> (1 — Ro || b 0,00 Lo Ja - R\l/go,oo) 1 +§ﬁ(2)||0,oo - %E(O)
- ﬂ(slT_on) /Q(I w(0) [* + | w(T) |*)dx
- 4?%0_1 /mlec | w(0) |* + | u(T) [*)dr.
(3.37)
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Thus,

1

5/ mkyk<|u'|2 —aij(x,t)afuafu>d2
b

a(n—1
+ \/_iTO)/mkaﬂ u(0) [ + | u(T) [*)dl
r
3.38
L VAT = 2Ro = 3RT | @ oo ~RoTVa bl =T B e gy )
- Va(l+T | a o)
Va(n? —1) / 2
— 0) | dz.
P [0 P o
Taking into account (3.13), this implies (3.14). O

Remark 3.3.  If 2%(¢) is independent of ¢, then Ri(¢t) = 0. If a;; are
independent of x, then b(t) = 0. If a;; are independent of ¢, then a(t) = 0.

Let I'y be any subset of I" and X9 =Ty x (0,7"). Then
2(I'+1
[ u© P+ ey prar < 25D [ e jupis. @)
To T 3o
As a matter of fact, by calculation we have

T T
/Tyu(T) |2 dF:/ / uzdtdf+/ / tdu?dl
To T'o JO I'g JO

<@+1) [ (' P+ |uP)as,
Yo

T T
/Tyu(O) 2 dF:/ / u2dtdF+/ / (t — T)du?dl
o Ty JO Ty JO

g(T+1)/Z (o 2+ | ul?)ds.

and

Therefore (3.39) follows from the above.
By Lemma 3.2, we obtain the following observability inequality.

Lemma 3.4. (Observability inequality) Suppose X(x°(0)) C ¥(z°), and
suppose the conditions of Lemma 3.2 are satisfied. Then there exists a constant
¢ = ¢(T) > 0 such that for all strong solutions u of (1.1) with f =0

/ (' P+ | w [2)ds + / | Voau P dS > el o 2+ |« 2. (3.40)
S (20) s, (20)
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4. Proof of Theorem 0.1. We apply HUM. To do so, we consider the
problem:

u” — Au =0, in Q,
0) =u’ 4/ (0) =ul, inQ,
ua(u) 1:) W' (0) =u', in . (4.1)
—_— = on .
8144 ’

For any (u,u') € (C>°(Q) N D(A)) x C>(Q2), problem (4.1) has a unique strong
solution due to Theorem 1.2. Define

L) = ([ QP faPias+ [ VouPaz) @)
3 (x9) 3. (x9)

which is a norm on (C*(2) N D(A)) x C*(€Q) due to Lemma 3.4. Let H be the

completion of (C*°(Q2) N D(A)) x C*°(£2) with respect to the norm || - ||. Then
Lemma 3.4 implies that
H C HY(Q) x L*(Q). (4.3)

Consequently
(HY(Q)) x L*(Q) c H'. (4.4)

According to the definition of H, we have for any (u®,u') € H,

Ulszoy,  Wls@Eo) € LA(2(2Y)),  Veauls, z0) € (L*(S4(2")))™ (4.5)

To apply the HUM, we need to consider the backward problem:

v — Av =0, in Q,

v(T) =0,v"(T) =0, in €,

v [ —u+ 2w, onX(zY), (4.6)
ova | As,@oyu, on X (20).

The solution of (4.6) can be defined by the transposition method (see [9, 10])
as follows. Let (-,-) denote the duality pairing between H and H’.

Definition 4.1. v is said to be an ultraweak solution of (4.6) if there exist
(pt, —p") € H' such that v satisfies

/ fodzdt + ((—p', o), (6°,61))

? (4.7)

= —/ (Ou + 0'u')d> — / Va0V jaud,
3 (x9)

3. (29)

for any (6°,0') € H, f € L*0,T; H'(Q)), and where 0 is the solution of the
following problem

0" — A0 = f, in Q,

0(0) = 6°,0'(0) = 0, in Q,

g; (0) - (4.8)
— =0, on ..

6I/A
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We define
v(0)=p",  V(0)=)p". (4.9)

Lemma 4.2. Problem (4.6) has a unique ultraweak solution in the sense of
Definition 4.1 satisfying
v e L=(0,T; (H'(Q))), (4.10)

(v'(0), —v(0)) € H'. (4.11)

Moreover, there exists ¢ > 0 such that

I (v'(0), =v(0)) llr< | (u”, ') [l - (4.12)

We assume Lemma 4.2 for the moment. We then define a linear operator A by
A(u’,ut) = (v'(0), —v(0)). (4.13)

Taking f =0 in (4.7), we find
(A0, ), (a0, ) = / (' P+ | u )ds + / (Voaul?dS.  (4.14)
>(z9) 3, (29)

It therefore follows from Lemma 3.4, Lemma 4.2, and the Lax-Milgram Theorem
that A is an isomorphism from H onto H’. This means that for all (y*, —y°) € H',
the equation

A(UO, ul) = (y17 _yO) (415)

has a unique solution (u°,u!'). With this initial condition we solve problem (4.1),
and then solve problem (4.6). Then set

_ ) ut %ulv on E(:z;o)7
= {Az*(xow, on 3. (z0), (4.16)
and
yletio) = ol t0) (4.17)

Then we have constructed a control function ¢ such that the solution y(zx,t;¢)
of (0.1) satisfies (0.4). Thus, we have proved Theorem 0.1 provided we can prove
Lemma 4.2.

Proof of Lemma 4.2. The solution 6 of problem (4.8) can be written as 6 =
1+ w, where  and w are solutions of the following problems:

n' — An =0, in Q,
_n0 / _pl :
no_
— =0. on X,
GVA
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and

w” — Aw = f, in Q,
0) = w'(0) =0, in Q,
%gu)_;”( )=0, in . (4.19)
ayA = U. on .
Since {6°,0'} € H, we have
166" o= ([ (wP+lnPrz [ |VanlPaz)’. @20
(x9) s (29)

On the other hand, by Theorems 1.1-1.2 and the trace theorem (see [10, Chap. 1]),
we have

([ (wreiwpdss [ 190w Pdg)’ <ell £ lnomm - (420
3 (x9) 3. (x9)
Therefore,

[ udsdt + (=" ). (6°,61)
Q

= ‘ / (B + 0"u')dX + / Voa evUAudz‘
(z9) 3, (29)

< ‘ / (nu+n'u")d% + / ngnngudz‘ (4.22)
5() S (29)

+ ‘/ (wu + w'u’)dY + / VUA/LUVUAUdE‘
5(x9) 2. (20)

< (11 {86}l + 11 £ o omsamncan) I 4wt} e

Thus, there exist v € L>(0,T; (H*(2))") and {p, —p} € H’ such that (4.7) holds,
that is, v is an ultraweak solution of (4.6) and {v(0),—v'(0)} € H'. Taking f =0,
(4.22) gives (4.12).
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