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1 Introduction

Consider the following thermoviscoelastic model





utt − µ∆u− (λ + µ)∇divu
+µg ∗∆u + (λ + µ)g ∗ ∇divu +∇θ = 0 in Ω× (0,∞),

θt −∆θ + div ut = 0 in Ω× (0,∞),
u = 0, θ = 0 on Γ× (0,∞),
u(x, 0) = u0(x), ut(x, 0) = u1(x), θ(x, 0) = θ0(x) in Ω,
u(x, 0)− u(x,−s) = w0(x, s) in Ω× (0,∞),

(1.1)

where the sign “∗” denotes the convolution product in time, which is defined by

g ∗ v(t) =

∫ t

−∞
g(t− s)v(x, s)ds. (1.2)

System (1.1) is a model for a linear viscoelastic body Ω of the Boltzmann type with thermal
damping. The body Ω is a bounded domain in Rn with smooth boundary Γ = ∂Ω (say C2) and
is assumed to be linear, homogeneous, and isotropic. u(x, t) = (u1(x, t), · · · , un(x, t)), θ(x, t)
represent displacement and temperature deviations, respectively, from the natural state of
the reference configuration at position x and time t. λ, µ > 0 are Lamé’s constants. g(t)
denotes the relaxation function, w0(x, s) is a specified “ history”, and u0(x), u1(x), θ0(x)
are initial data. The subscript t denotes the derivative with respect to the time variable.
∆, ∇, div denote the Laplace, gradient, and divergence operators in the space variables,
respectively. We refer to [12] for the derivation of model (1.1).

In [10, 11], we studied the problem of stabilization and controllability of system (1.1). In
this paper, we address the problem of compactness of the difference between the C0 ( i.e.,
strongly continuous) semigroup S(t) generated by system (1.1) and the C0 semigroup Sd(t)
generated by its decoupled system





ūtt − µ∆ū− (λ + µ)∇divū
+µg ∗∆ū + (λ + µ)g ∗ ∇divū +∇∆−1div ūt = 0 in Ω× (0,∞),

θ̄t −∆θ̄ + divūt = 0 in Ω× (0,∞),
ū = 0, θ̄ = 0 on Γ× (0,∞),
ū(x, 0) = u0(x), ūt(x, 0) = u1(x), θ̄(x, 0) = θ0(x) in Ω,
ū(x, 0)− ū(x,−s) = w0(x, s) in Ω× (0,∞).

(1.3)

This problem is motivated when we study the essential spectrum σe(S(t)) of S(t) (for the
definition of essential spectrum, we refer to [5, p.39]). Indeed, if we can prove that the
difference S(t)−Sd(t) is compact, then it follows from Theorem 4.1 of [5, p.40] that σe(S(t)) =
σe(Sd(t)). Moreover, σe(Sd(t)) is easier to be calculated as system (1.3) is decoupled, much
simpler than system (1.1). The reason why we use the term ∇∆−1div ūt to decouple system
(1.1) is because it is a dissipative term. Therefore, the main theme of this paper is to prove
that the difference S(t)− Sd(t) is compact. This result generalizes the similar result of [7].

The rest of this paper is organized as follows. We present our main results in Section 2.
Via the semigroup theory, we prove them in Section 3 and 4.
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2 Main Results

In what follows, Hs(Ω) denotes the usual Sobolev space (see, e.g., [1, 9]) for any s ∈ R.
For s ≥ 0, Hs

0(Ω) denotes the completion of C∞
0 (Ω) in Hs(Ω), where C∞

0 (Ω) denotes the
space of all infinitely differentiable functions on Ω with compact support in Ω. Let X be a
Banach space. We denote by Ck([0, T ]; X) the space of all k times continuously differentiable
functions defined on [0, T ] with values in X, and write C([0, T ]; X) for C0([0, T ]; X).

Let us introduce a general abstract system which includes system (1.1) as a particular
example. For this, let H1 and H2 be two Hilbert spaces. Let A1 : D(A1) ⊂ H1 → H1

and A2 : D(A2) ⊂ H2 → H2 be self adjoint positive operators with compact inverses and

B : D(B) ⊂ H2 → H1 a closed operator with adjoint B∗ such that D(A
1/2
2 ) ⊂ D(B) and

D(A
1/2
1 ) ⊂ D(B∗). We consider the following system of thermoviscoelasticity type





utt + kA1u +
∫∞
0

g(s)A1w(t, s)ds + Bθ = 0,
θt + A2θ −B∗ut = 0,
wt − ut + ws = 0,
u(0) = u0, ut(0) = u1, θ(0) = θ0, w(0, s) = w0(s),

(2.1)

where k is a positive constant and g(s) is a given function.
In order to see that abstract system (2.1) includes system (1.1) as a particular example,

we set

H1 = (L2(Ω))n, H2 = L2(Ω), (2.2)

w(x, t, s) = u(x, t)− u(x, t− s), (2.3)

and define the operators A1, A2 and B by

A1 = −µ∆− (λ + µ)∇div, (2.4)

A2 = −∆, (2.5)

B = ∇, (2.6)

with domains given by

D(A1) = (H2(Ω) ∩H1
0 (Ω))n, (2.7)

D(A2) = H2(Ω) ∩H1
0 (Ω), (2.8)

D(B) = H1
0 (Ω). (2.9)

It is easy to see that the adjoint B∗ of B is given by

B∗ = −div (2.10)

with the domain
D(B∗) = (H1

0 (Ω))n. (2.11)

It is also clear that

D(A
1/2
1 ) = (H1

0 (Ω))n, (2.12)

D(A
1/2
2 ) = H1

0 (Ω). (2.13)

3



Thus, the operators A1, A2 and B satisfy all above conditions. In order to transform the first
equation of (1.1) into the first equation of (2.1), we need to impose basic conditions on the
function g(t) as follows (see [2, 3]):

(H1) g ∈ C1[0,∞) ∩ L1(0,∞);
(H2) g(t) ≥ 0 and g′(t) ≤ 0 for t > 0;
(H3) k = 1− ∫∞

0
g(s)ds > 0.

Under these conditions, we have
∫ t

−∞
g(t− s)∆u(x, s)ds =

∫ ∞

0

g(s)∆u(x, t− s)ds

=

∫ ∞

0

g(s)∆(u(x, t− s)− u(x, t))ds +

∫ ∞

0

g(s)∆u(x, t)ds

= −
∫ ∞

0

g(s)∆w(x, t, s)ds + (1− k)∆u(x, t), (2.14)

and similar expression for g ∗ ∇divu. Thus, the first equation of (1.1) can be written in the
form of (2.1) and then system (1.1) can be transformed into (2.1).

Motivated by the decoupled system (1.3), we consider the decoupled system of (2.1)




ūtt + kA1ū +
∫∞
0

g(s)A1w̄(t, s)ds + BA−1
2 B∗ūt = 0,

θ̄t + A2θ̄ −B∗ūt = 0,
w̄t − ūt + w̄s = 0,
ū(0) = u0, ūt(0) = u1, θ̄(0) = θ0, w̄(0, s) = w0(s).

(2.15)

We are going to prove that systems (2.1) and (2.15) generate C0 semigroups and the difference
between them are compact. In doing so, we formulate systems (2.1) and (2.15) as first order

Cauchy problems. For this, we introduce the “history space” L2(g, (0,∞), D(A
1/2
1 )). Let

‖ · ‖ denote the norm of H1 or H2. The “history space” L2(g, (0,∞), D(A
1/2
1 )) consist of

D(A
1/2
1 )-valued functions w on (0,∞) for which

‖w‖2

L2(g,(0,∞),D(A
1/2
1 ))

=

∫ ∞

0

g(s)‖A1/2
1 w(s)‖2ds < ∞. (2.16)

Set
H = D(A

1/2
1 )×H1 ×H2 × L2(g, (0,∞), D(A

1/2
1 )) (2.17)

with the norm

‖(u, v, θ, w)‖H = [k‖A1/2
1 u‖2 + ‖v‖2 + ‖θ‖2 + ‖w‖2

L2(g,(0,∞),D(A
1/2
1 ))

]1/2. (2.18)

We define two linear unbounded operators A and Ad on H by

A(u, v, θ, w) = (v, −kA1u−
∫ ∞

0

g(s)A1w(s)ds−Bθ,

−A2θ + B∗v, v − ws), (2.19)

Ad(u, v, θ, w) = (v, −kA1u−
∫ ∞

0

g(s)A1w(s)ds−BA−1
2 B∗v,

−A2θ + B∗v, v − ws), (2.20)
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with the domain

D(A) = D(Ad)

= {(u, v, θ, w) ∈ H : θ ∈ D(A2), v ∈ D(A
1/2
1 ),

ku +

∫ ∞

0

g(s)w(s)ds ∈ D(A1),

w(s) ∈ H1(g, (0,∞), D(A
1/2
1 ), w(0) = 0} (2.21)

where

H1(g, (0,∞), D(A
1/2
1 ))

= {w : w, ws ∈ L2(g, (0,∞), D(A
1/2
1 ))}. (2.22)

Setting
v = ut, (2.23)

we then transform (2.1) and (2.15) into
{

d

dt
(u, v, θ, w) = A(u, v, θ, w),

(u(0), v(0), θ(0), w(0)) = (u0, u1, θ0, w0),
(2.24)

and {
d

dt
(ū, v̄, θ̄, w̄) = Ad(ū, v̄, θ̄, w̄),

(ū(0), v̄(0), θ̄(0), w̄(0)) = (u0, u1, θ0, w0),
(2.25)

respectively.

Theorem 2.1. Suppose that the function g satisfies (H1) and (H2). Then A and Ad are
infinitesimal generators of C0 semigroups eAt and eAdt of contractions on H, respectively.

We now consider the difference eAt − eAdt. Let

(u, v, θ, w) = eAt(u0, u1, θ0, w0), (ū, v̄, θ̄, w̄) = eAdt(u0, u1, θ0, w0). (2.26)

Then by (2.1) and (2.15) we have



u(t)− ū(t)
v(t)− v̄(t)
θ(t)− θ̄(t)
w(t)− w̄(t)


 =

∫ t

0

eA(t−s)




0
BA−1

2 B∗v̄(s)−Bθ̄(s)
0
0


 ds. (2.27)

Due to the smoothness effect of temperature component θ̄, we can expect certain compact
properties of the difference eAt − eAdt. Indeed, we have

Theorem 2.2. Suppose that the function g satisfies (H1) and (H2). Suppose that

A−1
2 B∗A1/2

1 : H1 → H2 and BA
−1/2
2 : H2 → H1 are bounded and BA−γ

2 : H2 → H1 is
compact for some γ < 1. Then, for any T > 0, eAt − eAdt : H → C([0, T ];H) is a compact
operator.

Remark 2.1. The operators A1, A2 and B defined by (2.4), (2.5) and (2.6) satisfy conditions
of Theorem 2.2 with γ = 3/4.
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3 Proof of Theorem 2.1

In this section we use the Lumer-Phillips theorem from the theory of semigroups (see [13,
p.14]) to prove Theorem 2.1. We first present two technical lemmas.

Lemma 3.1. [8, p.491] If the function f : [0,∞) → R is uniformly continuous and is in
L1(0,∞), then

lim
t→∞

f(t) = 0. (3.1)

Lemma 3.2. Suppose that the function g satisfies (H1) and (H2). If w ∈
H1(g, (0,∞), D(A

1/2
1 )), then

g′(s)‖A1/2
1 w(s)‖2 ∈ L1(0,∞), (3.2)

and
lim
s→∞

g(s)‖A1/2
1 w(s)‖2 = 0. (3.3)

Proof. Since for w ∈ H1(g, (0,∞), D(A
1/2
1 ))

2

∫ t

0

g(s)(ws(s), w(s))
D(A

1/2
1 )

ds

=

∫ t

0

g(s)
∂

∂s
[‖A1/2

1 w(s)‖2]ds

= g(t)‖A1/2
1 w(t)‖2 − g(0)‖A1/2

1 w(0)‖2 −
∫ t

0

g′(s)‖A1/2
1 w(s)‖2ds, (3.4)

we have for all t ≥ 0
∫ t

0

|g′(s)|‖A1/2
1 w(s)‖2ds

≤ 2
( ∫ ∞

0

g(s)‖A1/2
1 ws(s)‖2ds

)1/2( ∫ ∞

0

g(s)‖A1/2
1 w(s)‖2ds

)1/2

+g(0)‖A1/2
1 w(0)‖2. (3.5)

Thus
g′(s)‖A1/2

1 w(s)‖2 ∈ L1(0,∞). (3.6)

On the other hand, for any 0 ≤ s1 < s2 < ∞, we have

g(s2)‖A1/2
1 w(s2)‖2 − g(s1)‖A1/2

1 w(s1)‖2

=

∫ s2

s1

d

ds
[g(s)‖A1/2

1 w(s)‖2]ds

=

∫ s2

s1

g′(s)‖A1/2
1 w(s)‖2ds + 2

∫ s2

s1

g(s)(ws(s), w(s))
D(A

1/2
1 )

ds, (3.7)

which, combining (3.6), implies that g(s)‖A1/2
1 w(s)‖2 is uniformly continuous on [0,∞).

Hence Lemma 3.1 gives
lim
s→∞

g(s)‖A1/2
1 w(s)‖2 = 0. (3.8)
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We are now in the position to prove Theorem 2.1.

Proof of Theorem 2.1. By the Lumer-Phillips theorem from the theory of semigroups (see
[13, p.14]), it suffices to prove that A is dissipative and I −A is surjective.

In what follows, we denote by (·, ·) the inner product of H1 or H2.
For any (u, v, θ, w) ∈ D(A), we have

(A(u, v, θ, w), (u, v, θ, w))H

= k(A
1/2
1 v,A

1/2
1 u)− (kA1u +

∫ ∞

0

g(s)A1w(s)ds + Bθ, v)

+(−A2θ + B∗v, θ) + (v − ws, w)
L2(g,(0,∞),D(A

1/2
1 ))

= −
∫ ∞

0

g(s)(A
1/2
1 w(s), A

1/2
1 v)ds− ‖A1/2

2 θ‖2

+

∫ ∞

0

g(s)(A
1/2
1 w(s), A

1/2
1 v)ds−

∫ ∞

0

g(s)(A
1/2
1 ws(s), A

1/2
1 w)ds

= −‖A1/2
2 θ‖2 − 1

2
g(s)‖A1/2

1 w(s)‖2
∣∣∣
∞

0
+

1

2

∫ ∞

0

g′(s)‖A1/2
1 w(s)‖2ds

= −‖A1/2
2 θ‖2 +

1

2

∫ ∞

0

g′(s)‖A1/2
1 w(s)‖2ds (use Lemma 3.2)

≤ 0. (3.9)

Thus, A is dissipative.
To prove that I − A is surjective, we first prove that A is closed. Let (un, vn, θn, wn) ∈

D(A) be such that
(un, vn, θn, wn) → (u, v, θ, w) in H, (3.10)

and
A(un, vn, θn, wn) → (ϕ, ψ, ξ, z) in H. (3.11)

We want to show that

A(u, v, θ, w) = (ϕ, ψ, ξ, z), (u, v, θ, w) ∈ D(A). (3.12)

By (3.10) and (3.11), we have

un → u in D(A
1/2
1 ), (3.13)

vn → v in H1, (3.14)

θn → θ in H2, (3.15)

wn → w in L2(g, (0,∞), D(A
1/2
1 )), (3.16)

and

vn → ϕ in D(A
1/2
1 ), (3.17)

−kA1un −
∫ ∞

0

g(s)A1wn(s)ds−Bθn → ψ in H1, (3.18)

−A2θn −B∗vn → ξ in H2, (3.19)
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vn − wns → z in L2(g, (0,∞), D(A
1/2
1 )). (3.20)

By (3.14) and (3.17), we deduce

vn → v in D(A
1/2
1 ), (3.21)

and
v = ϕ ∈ D(A

1/2
1 ). (3.22)

By (3.19) and (3.21), we deduce

−A2θn → B∗v + ξ in H2, (3.23)

and consequently, it follows from (3.15) that

θn → θ in D(A2). (3.24)

It therefore follows from (3.19) and (3.24) that

ξ = −A2θ −B∗v, θ ∈ D(A2). (3.25)

By (3.16), (3.20) and (3.21), we deduce

wn → w in H1(g, (0,∞), D(A
1/2
1 )), (3.26)

and
z = v − ws, w ∈ H1(g, (0,∞), D(A

1/2
1 )), w(0) = 0. (3.27)

In addition, it follows from (3.13), (3.16) and (3.24) that

−kA1un −
∫ ∞

0

g(s)A1wn(s)ds−Bθn (3.28)

→ −kA1u−
∫ ∞

0

g(s)A1w(s)ds−Bθ, in (D(A
1/2
1 ))′. (3.29)

It therefore follows from (3.18) and (3.29) that

ψ = −kA1u−
∫ ∞

0

g(s)A1w(s)ds−Bθ, (3.30)

and consequently,

κu +

∫ ∞

0

g(s)w(s)ds ∈ D(A1), (3.31)

since A1 has an inverse A−1
1 : H1 → D(A1). Thus, by (3.22), (3.25), (3.27), (3.30) and (3.31),

we deduce (3.12) and then A is closed. Therefore, to show that I − A is surjective, it is
sufficient to show that the range of I −A is dense in H. Thus, let us look at the problem

(I −A)(u, v, θ, w) = (ϕ, ψ, ξ, η), (3.32)
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that is,

u− v = ϕ, (3.33)

v + kA1u +

∫ ∞

0

g(s)A1w(s)ds + Bθ = ψ, (3.34)

θ + A2θ −B∗v = ξ, (3.35)

w − v + ws = η. (3.36)

We may assume that η(s) has compact support in (0,∞) and we seek a solution (u, v, θ, w) ∈
D(A). The solution of (3.36) is readily written down as

w(s) = (1− e−s)v + e−s

∫ s

0

etη(t)dt. (3.37)

By substituting u and w into (3.34), we obtain

v + [k +

∫ ∞

0

g(s)(1− e−s)ds]A1v + Bθ

= Ψ, (3.38)

where

Ψ = ψ − kA1ϕ−
∫ ∞

0

g(s)

∫ s

0

etA1η(t)dtds. (3.39)

Since we have assumed that η(s) has compact support in (0,∞), it is easy to see that

Ψ ∈ (D(A
1/2
1 ))′.

Define a linear operator B by

B(v, θ) = (v + [k +

∫ ∞

0

g(s)(1− e−s)ds]A1v + Bθ, θ + A2θ −B∗v). (3.40)

Obviously, to solve (3.33)-(3.36), it suffices to show that B maps D(A
1/2
1 ) × D(A

1/2
2 ) onto

[D(A
1/2
1 )]′ × [D(A

1/2
2 )]′. By Lax-Milgram theorem (see, e.g., [4, p.368]), it suffices to show B

is coercive. This is true since, for (v, θ) ∈ D(A
1/2
1 )×D(A

1/2
2 ), we have

〈B(v, θ), (v, θ)〉 = 〈v, v〉+ [k +

∫ ∞

0

g(s)(1− e−s)ds]〈A1v, v〉
+〈θ, θ〉+ 〈A2θ, θ〉

≥ α(‖v‖2

D(A
1/2
1 )

+ ‖θ‖2

D(A
1/2
2 )

), (3.41)

where

α = min{1, k +

∫ ∞

0

g(s)(1− e−s)ds}. (3.42)

In the similar way, we can prove that Ad is an infinitesimal generator of a strongly
continuous semigroup of contractions on H. We give here only a brief outline.
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For any (u, v, θ, w) ∈ D(Ad), we have

(Ad(u, v, θ, w), (u, v, θ, w))H

= k(A
1/2
1 v,A

1/2
1 u)− (kA1u +

∫ ∞

0

g(s)A1w(s)ds + BA−1
2 B∗v, v)

+(−A2θ + B∗v, θ) + (v − ws, w)
L2(g,(0,∞),D(A

1/2
1 ))

= −
∫ ∞

0

g(s)(A
1/2
1 w(s), A

1/2
1 v)ds− ‖A−1/2

2 B∗v‖2 − ‖A1/2
2 θ‖2 + (B∗v, θ)

+

∫ ∞

0

g(s)(A
1/2
1 w(s), A

1/2
1 v)ds−

∫ ∞

0

g(s)(A
1/2
1 ws(s), A

1/2
1 w)ds

≤ −1

2
‖A1/2

2 θ‖2 − 1

2
‖A−1/2

2 B∗v‖2 − 1

2
g(s)‖A1/2

1 w(s)‖2
∣∣∣
∞

0
+

1

2

∫ ∞

0

g′(s)‖A1/2
1 w(s)‖2ds

= −1

2
‖A1/2

2 θ‖2 − 1

2
‖A−1/2

2 B∗v‖2 +
1

2

∫ ∞

0

g′(s)‖A1/2
1 w(s)‖2ds (use Lemma 3.2)

≤ 0. (3.43)

Thus, Ad is dissipative.
Replacing Bθ by BA−1

2 B∗v and repeating the above procedure for A, we can prove that
Ad is closed.

To prove that I −Ad is surjective, we define a linear operator Bd by

Bd(v, θ) = (v + [k +

∫ ∞

0

g(s)(1− e−s)ds]A1v + BA−1
2 B∗v, θ + A2θ −B∗v). (3.44)

The operator Bd is coercive since, for (v, θ) ∈ D(A
1/2
1 )×D(A

1/2
2 ), we have

〈B(v, θ), (v, θ)〉 = 〈v, v〉+ [k +

∫ ∞

0

g(s)(1− e−s)ds]〈A1v, v〉
+〈BA−1

2 B∗v, v〉+ 〈θ, θ〉+ 〈A2θ, θ〉 − 〈B∗v, θ〉
≥ 〈v, v〉+ [k +

∫ ∞

0

g(s)(1− e−s)ds]〈A1v, v〉

+
1

2
‖A−1/2

2 B∗v‖2 +
1

2
‖θ‖2 +

1

2
‖A1/2

2 θ‖2

≥ α1(‖v‖2

D(A
1/2
1 )

+ ‖θ‖2

D(A
1/2
2 )

), (3.45)

where

α1 = min{1/2, k +

∫ ∞

0

g(s)(1− e−s)ds}. (3.46)

4 Proof of Theorem 2.2

The proof of Theorem 2.2 is based on the following technical lemma of [7, Lemma 6].
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Lemma 4.1. ([7, Lemma 6]) Let S(t) be a C0 semigroup in a Banach space X and M be a
subset of L1([0, T ]; X). Then the set

{
∫ t

0

S(t− s)f(s) : f(s) ∈ M} (4.1)

is precompact in C([0, T ]; X) if one of the following conditions holds:
(i) {f(s) : f ∈ M, 0 ≤ s ≤ T} is precompact in X;
(ii) for any ε > 0 there exists δ(ε) > 0 and a compact set K(ε) of X such that∫ δ

0
‖f(s)‖ds < ε and f(s) belongs to K(ε) for δ ≤ s ≤ T and f ∈ M .

Proof of Theorem 2.2. By the definition of compactness, we need to prove that

M = {(eAt − eAdt)(u0, u1, θ0, w0) : (u0, u1, θ0, w0) ∈ B(0, 1)} (4.2)

is precompact in C([0, T ];H), where B(0, 1) is the unit ball of H. Let

(u, v, θ, w) = eAt(u0, u1, θ0, w0), (ū, v̄, θ̄, w̄) = eAdt(u0, u1, θ0, w0). (4.3)

Then by (2.1) and (2.15) we have




u(t)− ū(t)
v(t)− v̄(t)
θ(t)− θ̄(t)
w(t)− w̄(t)


 =

∫ t

0

eA(t−s)




0
BA−1

2 B∗v̄(s)−Bθ̄(s)
0
0


 ds. (4.4)

By Lemma 4.1, it is sufficient to check that the set

M0 = {Bθ̄(s)−BA−1
2 B∗v̄(s) : (u0, u1, θ0, w0) ∈ B(0, 1)} (4.5)

satisfies one of the conditions of Lemma 4.1. To this end, by (2.15), we have

Bθ̄(s)−BA−1
2 B∗v̄(s)

= Be−A2sθ0 + B

∫ s

0

e−A2(s−τ)B∗v̄(τ)dτ −BA−1
2 B∗v̄(s)

= Be−A2sθ0 + BA−1
2

∫ s

0

A2e
−A2(s−τ)B∗v̄(τ)dτ −BA−1

2 B∗v̄(s)

= Be−A2sθ0 + BA−1
2 e−A2(s−τ)B∗v̄(τ)

∣∣∣
s

0

−BA−1
2

∫ s

0

e−A2(s−τ)B∗v̄′(τ)dτ −BA−1
2 B∗v̄(s)

= Be−A2sθ0 −BA−1
2 e−A2sB∗u1 + kBA−1

2

∫ s

0

e−A2(s−τ)B∗A1ū(τ)dτ

+BA−1
2

∫ s

0

e−A2(s−τ)B∗[
∫ ∞

0

g(s)A1w̄(s)ds + BA−1
2 B∗v̄(τ)]dτ. (4.6)

We claim that the first two terms of the right hand side of (4.6) satisfy condition (ii) of
Lemma 4.1 and the other terms satisfy condition (i) of Lemma 4.1. In fact, by Theorem 1.4.3
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of [6, p.26], we have (the following c’s denoting generic positive constants that may vary from
line to line and that are independent of (u, v, θ, w))

‖Aδ
2e
−A2t‖ ≤ ct−δ, δ > 0. (4.7)

Thus we have
‖Aγ

2e
−A2sθ0‖ ≤ c‖θ0‖s−γ. (4.8)

Using the boundedness of A
−1/2
2 B∗ and (4.7), we deduce that

‖Aγ−1
2 e−A2sB∗u1‖ = ‖Aγ− 1

2
2 e−A2sA

−1/2
2 B∗u1‖ ≤ c‖u1‖s 1

2
−γ. (4.9)

Since BA−γ
2 is compact and Be−A2sθ0 − BA−1

2 e−A2sB∗u1 = BA−γ
2 [Aγ

2e
−A2sθ0 −

Aγ
2A

−1
2 e−A2sB∗u1], it follows from (4.8) and (4.9) that Be−A2sθ0 − BA−1

2 e−A2sB∗u1 satis-

fies condition (ii) of Lemma 4.1. Furthermore, using (4.7), the boundedness of A−1
2 B∗A1/2

1

and the inequality
‖(ū(t), v̄(t), θ̄(t), w̄(t))‖H ≤ ‖(u0, u1, θ0, w0)‖H, (4.10)

we deduce

‖Aγ
2A

−1
2

∫ s

0

e−A2(s−τ)B∗A1ū(τ)dτ‖

= ‖
∫ s

0

Aγ
2e
−A2(s−τ)A−1

2 B∗A1/2
1 A

1/2
1 ū(τ)dτ‖

≤ c

∫ s

0

(s− τ)−γ‖A1/2
1 ū(τ)‖dτ

≤ c‖(u0, u1, θ0, w0)‖H
∫ s

0

(s− τ)−γdτ

≤ cs1−γ‖(u0, u1, θ0, w0)‖H
1− γ

, (4.11)

‖Aγ
2A

−1
2

∫ s

0

e−A2(s−τ)

∫ ∞

0

g(s)B∗A1w̄(τ, s)dsdτ‖

= ‖
∫ s

0

Aγ
2e
−A2(s−τ)

∫ ∞

0

g(s)A−1
2 B∗A1w̄(τ, s)dsdτ‖

≤ c

∫ s

0

(s− τ)−γ

∫ ∞

0

g(s)‖A1/2
1 w̄(τ, s)‖dsdτ

≤ c

∫ s

0

(s− τ)−γ(

∫ ∞

0

g(s)ds)1/2(

∫ ∞

0

g(s)‖A1/2
1 w̄(τ, s)‖2ds)1/2dτ

≤ c‖(u0, u1, θ0, w0)‖H
∫ s

0

(s− τ)−γdτ

≤ cs1−γ‖(u0, u1, θ0, w0)‖H
1− γ

, (4.12)
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and

‖Aγ
2A

−1
2

∫ s

0

e−A2(s−τ)B∗BA−1
2 B∗v̄(τ)dτ‖

= ‖
∫ s

0

A
γ− 1

2
2 e−A2(s−τ)A

−1/2
2 B∗BA−1

2 B∗v̄(τ)dτ‖

≤ c

∫ s

0

(s− τ)
1
2
−γ‖v̄(τ)‖dτ

≤ cs1+ 1
2
−γ‖(u0, u1, θ0, w0)‖H

1 + 1
2
− γ

. (4.13)

By the compactness of BA−γ
2 , it follows from (4.11), (4.12) and (4.13) that the last three

terms of the right hand side of (4.6) satisfy condition (i) of Lemma 4.1. This completes the
proof of Theorem 2.2.
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