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1 Introduction

It is well known that the flexible beam equation with a nonlinear boundary feedback
control

utt + uxxxx = 0 in (0, 1)× (0,∞), (1.1)

u(0, t) = ux(0, t) = uxx(1, t) = 0 in (0,∞), (1.2)

uxxx(1, t) = g1(ut(1, t)) in (0,∞), (1.3)

u(0) = u0, ut(0) = u1 in (0, 1) (1.4)

is asymptotically stable (see, e.g., [5, 7, 8, 9, 10, 11, 18, 21, 24, 25, 27, 33, 34, 35, 38, 39,
40, 42, 46]). In (1.1)-(1.4), u = u(x, t) denotes the transverse deflection of the beam, the
subscripts denote the derivatives, u(0), ut(0) denote the functions x → u(x, 0), x → ut(x, 0),
respectively, u0 = u0(x), u1 = u1(x) are intial data, and g1 = g1(s) is continuous and
increasing function on R with g1(0) = 0.

In reality, all sensors, processors and actuators introduce time delay and perturbation into
the controlled system. It has been proved that the feedback control is usually not robust with
respect to the time dealy (see, e.g., [3, 13, 14, 15, 16, 17, 28]). The objective of this paper
is to test the robustness with respect to the perturbation. Thus we introduce additional
dynamics of perturbation η = η(t) at the right end of the beam as follows

uxxx(1, t) = g1(ut(1, t)) + η(t). (1.5)

As long as the additional dynamics η is strictly passive, for instance, η satisfying

ηt = −g2(η) + ut(1, t), (1.6)

where g2 = g2(s) is continuous and increasing function on R with g2(0) = 0, we can show that
it will not destabilize system (1.1)-(1.4). Indeed, we shall show that the following closed-loop
system

utt + uxxxx = 0 in (0, 1)× (0,∞), (1.7)

u(0, t) = ux(0, t) = uxx(1, t) = 0 in (0,∞), (1.8)

uxxx(1, t) = g1(ut(1, t)) + η(t) in (0,∞), (1.9)

ηt = −g2(η) + ut(1, t) in (0,∞), (1.10)

u(0) = u0, ut(0) = u1 in (0, 1), (1.11)

η(0) = η0 (1.12)

is globally asymptotically stable.
Since the above system is composed of a partial differential equation and an ordinary

differential equation, it is often referred to as hybrid system in the literature (see, e.g., [35,
Section 4.6] and [42]).

From the point of view of control engineering, feedback controls (1.9)–(1.10) can be ex-
plained in various ways. Substituting (1.9) into (1.10), we obtain

uxxxt(1, t) = g′1(ut(1, t))utt(1, t)− g2[uxxx(1, t)− g1(ut(1, t))] + ut(1, t). (1.13)
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This feedback control is of actuator dynamics. Further, (1.13) can be written as

uxxx(1, t) = g1(ut(1, t)) + g−1
2 [g′1(ut(1, t))utt(1, t) + ut(1, t)− uxxxt(1, t)]. (1.14)

Hence we obtain the feedback control which uses higher order derivative information as in
[10, 34]. If g1(s) = αms and g2(s) = αs, where α, m > 0 are constants, (1.14) is reduced to

−uxxx(1, t) + mutt(1, t) =
1

α
uxxxt(1, t)− 1 + α2m

α
ut(1, t). (1.15)

This is the feedback control for a flexible beam with a tip mass m, which was proposed in
[10]. In addition, if g1(s) = g2(s) = ks for some k > 0, we solve (1.10) and obtain

η = η0e−kt + e−kt

∫ t

0

e−ksus(1, s)ds,

and then

uxxx(1, t) = kut(1, t) + η0e−kt + e−kt

∫ t

0

e−ksus(1, s)ds. (1.16)

Thus, we obtain a feedback control which not only depends on the current state at time t
but also takes into account the past memory

∫ t

0
e−ksus(1, s)ds.

There has been extensive work on this topic and we have made efforts to try to collect all
relevant references. We apologize to any we have accidentally missed to be enclosed.

We present our main results about the well-posedness, estimates of decay rate of energy
of system (1.7)-(1.12) and a nonlinear mean ergodic theorem in Section 2. Using the theory
of nonlinear semigroups and Lyapunov method, we prove them in Section 3.

Notation. Throughout the paper, Hs(0, 1) denotes the usual Sobolev space (see [1, 29])
for any s ∈ R. For s ≥ 0, Hs

0(0, 1) denotes the completion of C∞
0 (0, 1) in Hs(0, 1), where

C∞
0 (0, 1) denotes the space of all infinitely differentiable functions on (0, 1) with compact

support in (0, 1). The norm of L2(0, 1) is denoted by ‖ · ‖.
Let X be a Banach space and T > 0. We denote by Cn([0, T ]; X) the space of n times

continuously differentiable functions defined on [0, T ] with values in X, and write C([0, T ]; X)
for C0([0, T ]; X).

We further introduce other function spaces as follows:

H2
0−(0, 1) = {u ∈ H2(0, 1) : u(0) = ux(0) = 0}, (1.17)

L = H2
0−(0, 1)× L2(0, 1)× R, (1.18)

H = {(ϕ1, ϕ2, r) ∈ (H2
0−(0, 1) ∩H4(0, 1))×H2

0−(0, 1)× R :

ϕ1xx(1) = 0, ϕ1xxx(1) = g1(ϕ2(1)) + r}. (1.19)

The norm of L is defined by

‖(ϕ1, ϕ2, r)‖L = (‖ϕ1xx‖2 + ‖ϕ2‖2 + |r|)1/2, ∀(ϕ1, ϕ2, r) ∈ L. (1.20)
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2 Main Results

We define the energy functions by

E =
1

2

∫ 1

0

(|ut|2 + |uxx|2) dx, (2.1)

and

V = E +
1

2
η2. (2.2)

The main results of this paper are as follows. First of all, we have the well-posedness theorem.

Theorem 2.1. Assume that g1, g2 ∈ C(R) are increasing (not necessarily strict) on R and
satisfy that g1(0) = g2(0) = 0.

1. For every initial condition (u0, u1, η0) ∈ L, problem (1.7)-(1.12) has a unique mild
solution with

(u, ut, η) ∈ C([0,∞);L).

Moreover, for any two solutions (u1, η1) and (u2, η2) corresponding to initial conditions
(u0

1, u
1
1, η

0
1) and (u0

2, u
1
2, η

0
2), respectively, we have

‖(u1, u1t, η1)− (u2, u2t, η2)‖L ≤ ‖(u0
1, u

1
1, η

0
1)− (u0

2, u
1
2, η

0
2)‖L, ∀t ≥ 0. (2.3)

2. For every initial condition (u0, u1, η0) ∈ H, problem (1.7)-(1.12) has a unique classical
solution with

(u, ut, η) ∈ C([0,∞);H).

We then have the nonlinear mean ergodic theorem.

Theorem 2.2. Assume that g1, g2 ∈ C(R) are increasing (not necessarily strict) on R and
satisfy that g1(0) = g2(0) = 0. Then, for every mild solution of problem (1.7)-(1.12) with
initial condition (u0, u1, η0) ∈ L, the mean

1

T

( ∫ T

0

u(x, t)dt,

∫ T

0

ut(x, t)dt,

∫ T

0

η(t)dt
)

(2.4)

converges to zero in L as T →∞.

Remark 2.1. The functions g1 and g2 are not required to be strictly increasing on R. In
fact, we can take g1 = g2 = 0. In this case, the above mean still converges to zero in L as
T →∞ although V (t) ≡ V (0), as we showed in [30] for the wave equation.

If g1, g2 satisfy additional conditions, then we can obtain stronger results than Theo-
rem 2.2.

Theorem 2.3. Assume that g1, g2 ∈ C(R) satisfies the following conditions:

1. g1(0) = g2(0) = 0;
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2. g1, g2 are increasing on R;

3. there are constants c1, c2 > 0 such that

c−1
1 |s| ≤ |gi(s)| ≤ c2|s|, for |s| ≥ 1 and i = 1, 2; (2.5)

4. there exists a strictly increasing positive function h(s) defined on [0,∞) and a constant
c3 > 0 such that

c−1
3 h(|s|) ≤ |gi(s)| ≤ c4h

−1(|s|), for |s| ≤ 1 and i = 1, 2, (2.6)

where h−1 denotes the inverse of h and c4 = max
|s|≤1

{|g1(s)|, |g2(s)|};

5. there exists an increasing, strictly positive and convex function G = G(s) defined on
[0,∞) and twice differentiable outside s = 0 such that G(s2) ≤ h(|s|)|s| on [−1, 1] and
G′′(s)s is increasing on [0,∞).

Then, for any initial condition (u0, u1, η0) ∈ L, the solution of problem (1.7)-(1.12) satisfies
the following decay estimate

V (t) ≤ 2Vε(t) ∀t ≥ 0, (2.7)

where Vε is the solution of the following ordinary differential equation

V ′
ε = −εVε

3
G′

(2δVε

3

)
− εk1G

(2δVε

3

)
. (2.8)

Moreover, we have
lim
t→∞

V (t) = 0. (2.9)

Furthermore, the constants ε and δ can be estimated as follows:

k1 = 3 + c2
4, (2.10)

δ =
1

2k1

, (2.11)

k2 = max{2c3, 2c1G
′(δV (0))}, (2.12)

k3 = max{c3 + c4, (c1 + c2)G
′(δV (0))}, (2.13)

ε = min
{ 1

2G′(δV (0))
,

1

δV (0)G′′(δV (0)) + k2

,
1

δV (0)G′′(δV (0)) + k3

}
. (2.14)

Remark 2.2. The result of Theorem 2.3 is stronger than that of Theorem 2.2. In fact, if
lim
t→∞

V (t) = 0, then we have

lim
T→∞

∥∥∥ 1

T

( ∫ T

0

u(x, t)dt,

∫ T

0

ut(x, t)dt,

∫ T

0

η(t)dt
)∥∥∥

L

≤ lim
T→∞

( 2

T

∫ T

0

V (t)dt
)1/2

( We may as well assume that lim
T→∞

∫ T

0

V (t)dt = ∞)

=
(

lim
T→∞

2 d
dT

∫ T

0
V (t)dt

dT
dT

)1/2

= 0. (2.15)
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Remark 2.3. As explained in [31, 32], there always exists the function G that satisfies the
condition of Theorem 2.3 and the usual exponential, polynomial and logarithmic decay rates
can be recovered from (2.8). Indeed, we can take

G(s) = conv[s1/2h(s1/2)], (2.16)

where conv denotes the convex envelope of a function. Further, if g1(s) = g2(s) = ks, where
k is a positive constant, then h(s) = ks and G(s) = ks. Consequently, (2.8) becomes

V ′
ε = −ωVε, (2.17)

where ω is a positive constant independent of V (0). This gives exponential decay rate.
If g1(s) = g2(s) = k|s|p−1s for |s| ≤ 1 with p > 1 and k > 0, then h(s) = ksp and
G(s) = ks(p+1)/2. In this case, (2.8) becomes

V ′
ε = −ωV (p+1)/2

ε , (2.18)

where ω is a positive constant depending on V (0). As usual, this implies the polynomial
decay rate

Vε(t) ≤ C(V (0))(1 + t)−2/(p−1), ∀t > 0. (2.19)

If g1(s) = g2(s) = s3e−
1
s2 for |s| ≤ 1, then h(s) = s3e−

1
s2 and G(s) = s2e−

1
s . Consequently,

by droping out the first term in the right hand side of (2.8), (2.8) becomes

V ′
ε (t) ≤ −ω1V

2
ε e−

ω2
Vε , (2.20)

which is the same as (
e

ω2
Vε

)′
≥ ω1ω2, (2.21)

where ω1, ω2 are positive constants depending on V (0). Solving the inequality, we obtain the
logarithmic decay rate

Vε(t) ≤ σ1

log(σ2t + σ3)
, (2.22)

where σ1, σ2, σ3 are positive constants depending on V (0).

Remark 2.4. The dynamics η of perturbation has a significant impact on the original stabi-
lized beam system. For example, if g1(s) = ks and no perturbation is involved, we know that
the system is exponentially stable. However, if the dynamics η of perturbation is presented
with g2(s) = k|s|p−1s for |s| ≤ 1 with p > 1 and k > 0, then the perturbed system is no
longer exponentially stable, only polynomially stable.

Remark 2.5. There have been already extensive studies on the problem of describing the
decay rate of energy when the nonlinear damping decays near the origin faster than any
polynomial and many important results have been obtained, notably [26, 36, 37, 44], to
mention a few. Indeed, to our knowledge, the original work in this aspect might be due to
[26] and some ideas here are motivated by [26].
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3 Proofs

We apply the theory of nonlinear semigroups to prove that problem (1.7)-(1.12) is well posed.
Therefore, we formulate problem (1.7)-(1.12) as an abstract Cauchy problem. For this, we
define the nonlinear operator A

A(ϕ1, ϕ2, r) = (ϕ2,−ϕ1xxxx,−g2(r) + ϕ2(1)) (3.1)

with domain D(A) = H. Set

y = (u, ut, η), y0 = (u0, u1, η0).

Then problem (1.7)-(1.12) can be written as an abstract Cauchy problem

yt = Ay, (3.2)

y(0) = y0. (3.3)

Hence, to prove Theorem 2.1, by Theorems 1 and 2 of [6] (see also, e.g., [4, Chap.3], [45,
p.121-122, Theorems 5.1 and 5.2]), it suffices to prove that A is m-dissipative. For the
definition of m-dissipativeness, we refer to [4, p.71]. To achieve this, we need to consider the
following nonlinear elliptic boundary value problem

ϕ + ϕxxxx = f, 0 < x < 1, (3.4)

ϕ(0) = ϕx(0) = 0, ϕxx(1) = a, (3.5)

ϕxxx(1) = g1(ϕ(1)) + (I + g2)
−1(b + ϕ(1)), (3.6)

where g1 and g2 are the functions given in Theorem 2.1, (I +g2)
−1 denote the inverse function

of I + g2 and I denotes the function I(x) = x; f is a given function and a, b are arbitrary
real numbers. Although it seems that the following Lemma 3.1 should be well known in the
literature, we could not find it in the references we know. Therefore, for completeness, we
present it here.

In what follows, we denote by 〈·, ·〉 the duality pairing between H2
0− and (H2

0−)∗.

Lemma 3.1. Suppose that g1(s), g2(s) are increasing and continuous functions and satisfy
that g1(0) = g2(0) = 0. Then for every f ∈ (H2

0−(0, 1))∗ and a, b ∈ R, problem (3.4)-(3.6)
has a unique weak solution ϕ ∈ H2

0−(0, 1) in the sense of distribution

∫ 1

0

ϕξ dx +

∫ 1

0

ϕxxξxx dx + g1(ϕ(1))ξ(1) + (I + g2)
−1(b + ϕ(1))ξ(1) = aξx(1) + 〈f, ξ〉 (3.7)

for any ξ ∈ H2
0−(0, 1). Moreover, if f ∈ L2(0, 1), then ϕ ∈ H2

0−(0, 1) ∩H4(0, 1).

Proof. Define the nonlinear operator A and the functional fa on H2
0− by

〈Aϕ, ξ〉 =

∫ 1

0

ϕξ dx +

∫ 1

0

ϕxxξxx dx + g1(ϕ(1))ξ(1) + (I + g2)
−1(b + ϕ(1))ξ(1), (3.8)

〈fa, ξ〉 = aξx(1) (3.9)
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for any ξ ∈ H2
0−(0, 1). By the Sobolev embedding theorem (see, e.g., [1, p.97]), we can readily

show that A : H2
0− → (H2

0−)∗ and fa ∈ (H2
0−)∗. Then (3.7) is equivalent to

Aϕ = fa + f in (H2
0−)∗. (3.10)

Therefore, to prove that problem (3.4)-(3.6) has a unique weak solution ϕ ∈ H2
0−(0, 1) for

every f ∈ (H2
0−(0, 1))∗ and a, b ∈ R, it suffices to prove that A is onto and one-to-one. By

Theorem 1.3 of [4, p.40], it suffices to show A is monotone, coercive and hemicontinuous.
For any ϕ1, ϕ2 ∈ H2

0−(0, 1), we have

〈Aϕ1 − Aϕ2, ϕ1 − ϕ2〉 =

∫ 1

0

(ϕ1 − ϕ2)
2 dx +

∫ 1

0

(ϕ1xx − ϕ2xx)
2 dx

+ [g1(ϕ1(1))− g1(ϕ2(1))](ϕ1(1)− ϕ2(1)) + [(I + g2)
−1(b + ϕ1(1))

− (I + g2)
−1(b + ϕ2(1))](ϕ1(1)− ϕ2(1))

=

∫ 1

0

(ϕ1 − ϕ2)
2 dx +

∫ 1

0

(ϕ1xx − ϕ2xx)
2 dx

+ [g1(ϕ1(1))− g1(ϕ2(1))](ϕ1(1)− ϕ2(1)) + [(I + g2)
−1(b + ϕ1(1))

− (I + g2)
−1(b + ϕ2(1))][(b + ϕ1(1))− (b + ϕ2(1))]

≥ 0,
(3.11)

since g1, g2 are increasing and g1(0) = g2(0) = 0. Therefore, A is monotone. On the other
hand, by the continuity of g1, g2, we have for any ϕ, ϕ1, ϕ2 ∈ H2

0−(0, 1)

lim
t→0
〈A(ϕ1 + tϕ2), ϕ〉 = lim

t→0

[ ∫ 1

0

(ϕ1 + tϕ2)ϕdx +

∫ 1

0

(ϕ1xx + tϕ2xx)ϕxx dx

+ g1(ϕ1(1) + tϕ2(1))ϕ(1) + (I + g2)
−1(b + (ϕ1(1) + tϕ2(1)))

]

=

∫ 1

0

ϕ1ϕdx +

∫ 1

0

ϕ1xxϕxx dx

+ g1(ϕ1(1))ϕ(1) + (I + g2)
−1(b + ϕ1(1))

= 〈Aϕ1, ϕ〉, (3.12)

which shows that A is hemicontinuous. Moreover, since g2 is increasing, we have (see, e.g.,
[20, p.40])

|(I + g2)
−1(s)− (I + g2)

−1(r)| ≤ |s− r| ∀s, r ∈ R.
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It therefore follows that for any ϕ ∈ H2
0−(0, 1)

〈Aϕ,ϕ〉 =

∫ 1

0

ϕ2 dx +

∫ 1

0

ϕ2
xx dx + g1(ϕ(1))ϕ(1) + (I + g2)

−1(b + ϕ(1))ϕ(1)

=

∫ 1

0

ϕ2 dx +

∫ 1

0

ϕ2
xx dx + g1(ϕ(1))ϕ(1)

+ (I + g2)
−1(b + ϕ(1))(b + ϕ(1))− b(I + g2)

−1(b + ϕ(1))

≥
∫ 1

0

ϕ2 dx +

∫ 1

0

ϕ2
xx dx− |b(I + g2)

−1(b + ϕ(1))|

≥
∫ 1

0

ϕ2 dx +

∫ 1

0

ϕ2
xx dx− |b(b + ϕ(1))|, (3.13)

which shows that A is coercive.
Furthermore, if f ∈ L2(0, 1), then ϕxxxx = ϕ − f ∈ L2(0, 1). Hence ϕ ∈ H2

0−(0, 1) ∩
H4(0, 1).

We now prove that A is m-dissipative on L.

Lemma 3.2. Suppose that g1(s), g2(s) are increasing and continuous functions and satisfy
that g1(0) = g2(0) = 0. Then the operator A defined by (3.1) is m-dissipative on L, that is,
A is dissipative and (I −A)(D(A)) = L. Moreover, (I −A)−1 is compact.

Proof. For any (ϕ1, ϕ2, r), (ψ1, ψ2, s) ∈ D(A), we have

〈A(ϕ1, ϕ2, r)−A(ψ1, ψ2, s), (ϕ1, ϕ2, r)− (ψ1, ψ2, s)〉

=

∫ 1

0

(ϕ2xx − ψ2xx)(ϕ1xx − ψ1xx)− (ϕ1xxxx − ψ1xxxx)(ϕ2 − ψ2)) dx

− (r − s)(g2(r)− g2(s)− ϕ2(1) + ψ2(1))

= −(ϕ1xxx(1)− ψ1xxx(1))(ϕ2(1)− ψ2(1))− (r − s)(g2(r)− g2(s)− ϕ2(1) + ψ2(1))

= −(g1(ϕ2(1))− g1(ψ2(1)) + r − s)(ϕ2(1)− ψ2(1))

− (r − s)(g2(r)− g2(s)− ϕ2(1) + ψ2(1))

= −(g1(ϕ2(1))− g1(ψ2(1)))(ϕ2(1)− ψ2(1))− (r − s)(g2(r)− g2(s))

≤ 0, (3.14)

since g1 and g2 are increasing and g1(0) = g2(0) = 0. Therefore, A is dissipative. On the
other hand, for any (f1, f2, s) ∈ L, let us consider the equation

(ϕ1, ϕ2, r)−A(ϕ1, ϕ2, r) = (f1, f2, s),

that is,

ϕ1 − ϕ2 = f1, (3.15)

ϕ2 + ϕ1xxxx = f2, (3.16)

r + g2(r)− ϕ2(1) = s, (3.17)

ϕ1(0) = ϕ1x(0) = ϕ1xx(1) = 0, (3.18)

ϕ1xxx(1) = g1(ϕ2(1)) + r. (3.19)
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Substituting the first equation into the second and fifth equations and the third equation
into the fifth equation gives

ϕ1 + ϕ1xxxx = f1 + f2, (3.20)

ϕ1(0) = ϕ1x(0) = ϕ1xx(1) = 0, (3.21)

ϕ1xxx(1) = g1(ϕ1(1)− f1(1)) + (I + g2)
−1(s + (ϕ1(1)− f1(1))). (3.22)

Set
ξ(x) = ϕ1(x)− f1(1)x2.

Then (3.20)-(3.22) is transformed into

ξ + ξxxxx = f1 + f2 − f1(1)x2, (3.23)

ξ(0) = ξx(0) = 0, ξxx(1) = −2f1(1), (3.24)

ξxxx(1) = g1(ξ(1)) + (I + g2)
−1(s + ξ(1)). (3.25)

Lemma 3.1 shows that problem (3.23)-(3.25) has a solution ξ ∈ H2
0−(0, 1)∩H4(0, 1) and then

problem (3.15)-(3.19) has a solution

ϕ1 = ξ + f1(1)x2, (3.26)

ϕ2 = ξ + f1(1)x2 − f1, (3.27)

r = (I + g2)
−1(s + ξ(1)). (3.28)

Obviously, we have (ϕ1, ϕ2, r) ∈ D(A). Therefore, we have (I − A)(D(A)) = L. Moreover,
(I −A)−1 is compact since the embedding of D(A) into L is compact.

Lemma 3.3. Suppose that g1(s) is an increasing and continuous function and g1(0) = 0.
Then D(A) is dense in L.

Proof. Set

D0 = {(ϕ1, ϕ2, r) ∈ (H2
0−(0, 1)∩H4(0, 1))×H2

0 (0, 1)×R : ϕ1xx(1) = 0, ϕ1xxx(1) = r}. (3.29)

Since g1(0) = 0, it is clear that D0 ⊂ D(A). Therefore, to prove that D(A) is dense in L, it
suffices to prove that D0 is dense in L and then it suffices to prove that

W = {(ϕ, r) ∈ (H2
0−(0, 1) ∩H4(0, 1))× R : ϕxx(1) = 0, ϕxxx(1) = r} (3.30)

is dense in H2
0−(0, 1)×R. For any fixed (ϕ, r) ∈ H2

0−(0, 1)×R, there exists ϕn ∈ H2
0−(0, 1)∩

H4(0, 1) with ϕnxx(1) = ϕnxxx(1) = 0 such that ϕn converges to ϕ− 1
6
rx3 + 1

2
rx2 in H2

0−(0, 1).
Set

ψn = ϕn +
1

6
rx3 − 1

2
rx2.

It is clear that (ψn, r) ∈ W and (ψn, r) converges to (ϕ, r) in H2
0−(0, 1)× R.

We are now ready to prove Theorems 2.1 and 2.2.

Proof of Theorem 2.1. Theorem 2.1 follows simply from Lemmas 3.2 and 3.3 and Theorems
5.1 and 5.2 of [45, p.121-122].
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Proof of Theorem 2.2. By Lemmas 3.2 and 3.3 and Theorems 5.1 and 5.2 of [45, p.121-122],
we deduce that A generates a contraction semigroups S(t). It is clear that the fixed point
of S(t) is 0. Further, it follows from Theorem 3 of [12] and Lemma 3.2 that the orbit
γ(u0, u1, η0) = {S(t)(u0, u1, η0) : t ≥ 0} is precompact. Therefore Theorem 2.2 readily
follows from Theorem 3.1 of [43] (or Theorem 7 of [41]).

We now turn to the proof of Theorem 2.3. The proof is based on the construction of an
appropriate Lyapunov function and the generalized Young’s inequality (see, e.g., [2, p. 64])
as in [31, 32], which were originally suggested by Zuazua.

Proof of Theorem 2.3. Let V be the energy function defined by (2.2). Then we have

V ′ =
∫ 1

0

(−utuxxxx + uxxuxxt) dx + ηηt

= −ut(1, t)(g1(ut(1, t)) + η) + η(−g2(η) + ut(1, t))

= −ut(1, t)g(ut(1, t))− ηg2(η). (3.31)

If V (t0) = 0 for some t0 ≥ 0, we have V (t) ≡ 0 for t ≥ t0 and then the theorem holds.
Therefore, we may assume that V (t) > 0 for t ≥ 0. This assumption ensures that, in the
following proof, G′′(δV (t)) makes sense as we have assumed that G(s) is twice differentiable
outside s = 0.

For any ε > 0, we define the Lyapunov function Vε by

Vε = V + εψ(V )F, (3.32)

where F is defined by

F =

∫ 1

0

xuxut dx +
1

2
η2,

and ψ(s) will be determined in the proof, satisfying that ψ(s) and ψ′(s)s are positive and
increasing functions on (0, +∞). It is clear that

[1− εψ(V (0))]V ≤ Vε ≤ [1 + εψ(V (0))]V. (3.33)

Since

F ′ =
∫ 1

0

x(uxtut − uxuxxxx) dx + ηη′

=
1

2
u2

t (1, t)−
1

2

∫ 1

0

u2
t dx− ux(1, t)uxxx(1, t)− 3

2

∫ 1

0

u2
xx dx + ηη′

= −V +
1

2
u2

t (1, t)− ux(1, t)(η + g1(ut(1, t))) +
η2

2
− ηg2(η) + ηut(1, t)−

∫ 1

0

u2
xx dx

( note that u2
x(1, t) ≤

∫ 1

0
u2

xx dx)

≤ −V + u2
t (1, t) + g2

1(ut(1, t)) + 2η2 − ηg2(η),
(3.34)
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we deduce

V ′
ε = V ′ + εψ′(V )V ′F + εψ(V )F ′

≤ −εV ψ(V ) + [1− εV (0)ψ′(V (0))]V ′ + εψ(V )[u2
t (1, t) + g2

1(ut(1, t)) + 2η2]

= −εV ψ(V )− [1− εV (0)ψ′(V (0))][ut(1, t)g1(ut(1, t)) + ηg2(η)]

+ εψ(V )[u2
t (1, t) + g2

1(ut(1, t)) + 2η2]. (3.35)

We now estimate the third term. If |ut(1, t)| ≥ 1, then by (2.5), we have

ψ(V )u2
t (1, t) ≤ c1ψ(V (0))ut(1, t)g1(ut(1, t)), (3.36)

ψ(V )g2
1(ut(1, t)) ≤ c2ψ(V (0))ut(1, t)g1(ut(1, t)). (3.37)

Let G∗ denote the dual of G in the sense of Young (see [2, p. 64] for the definition). Then,
by (2.6) and Young’s inequality [2, p. 64], we deduce for |ut(1, t)| ≤ 1

ψ(V )u2
t (1, t) ≤ G∗(ψ(V )) + G(u2

t (1, t))

≤ G∗(ψ(V )) + h(|ut(1, t)|)|ut(1, t)|
≤ G∗(ψ(V )) + c3ut(1, t)g1(ut(1, t)), (3.38)

and

ψ(V )g2
1(ut(1, t)) = c2

4ψ(V )c−2
4 g2

1(ut(1, t))

≤ c2
4G

∗(ψ(V )) + c2
4G(c−2

4 g2
1(ut(1, t)))

≤ c2
4G

∗(ψ(V )) + c2
4h(|c−1

4 g1(ut(1, t))|)|c−1
4 g1(ut(1, t))|

≤ c2
4G

∗(ψ(V )) + c2
4|ut(1, t)||c−1

4 g1(ut(1, t))|
= c2

4G
∗(ψ(V )) + c4ut(1, t)g1(ut(1, t)). (3.39)

Similarly, we have

ψ(V )η2 ≤ c1ψ(V (0))ηg2(η) for |η| ≥ 1, (3.40)

ψ(V )η2 ≤ G∗(ψ(V )) + c3ηg2(η) for |η| ≤ 1. (3.41)

Set

k1 = 3 + c2
4, (3.42)

k2 = max{2c3, 2c1ψ(V (0))}, (3.43)

k3 = max{c3 + c4, (c1 + c2)ψ(V (0))}. (3.44)

It therefore follows from (3.35)-(3.44) that

V ′
ε ≤ −εV ψ(V ) + k1G

∗(ψ(V )) + [εV (0)ψ′(V (0)) + εk2 − 1]ηg2(η)

+ [εV (0)ψ′(V (0)) + εk3 − 1]ut(1, t)g1(ut(1, t))

≤ −εV ψ(V ) + εk1G
∗(ψ(V )), (3.45)

if

ε ≤ min
{ 1

V (0)ψ′(V (0)) + k2

,
1

V (0)ψ′(V (0)) + k3

}
. (3.46)
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By the definition of the dual function in the sense of Young G∗(s) of the convex function
G(s), G∗(t) is the Legendre transform of G(s), which is given by (see [2, p. 61-62])

G∗(t) = tG′−1
(t)−G[G′−1

(t)]. (3.47)

Thus, we have
G∗(ψ(V )) = ψ(V )G′−1

(ψ(V ))−G[G′−1
(ψ(V ))]. (3.48)

This motivates us to make the choice

ψ(s) = G′(δs) (3.49)

so that
G∗(ψ(V )) = δG′(δV )V −G(δV ), (3.50)

where the constant δ will be determined later. By condition (5), ψ(s) satisfies the requirement
we set at the beginning of the proof, that is, ψ and ψ′(s)s are positive and increasing on
(0, +∞). Therefore, we deduce from (3.45) and (3.50) that

V ′
ε ≤ −εk1G(δV ) + ε(δk1 − 1)V G′(δV )

= −εk1G(δV )− ε

2
V G′(δV ) (3.51)

with

δ =
1

2k1

. (3.52)

Since G(s) and G′(s) are positive and increasing on (0,∞), it follows from (3.33) that

V ′
ε ≤ − εVε

2[1 + εG′(δV (0))]
G′

( δVε

1 + εG′(δV (0))

)
− εk1G

( δVε

1 + εG′(δV (0))

)

≤ −εVε

3
G′

(2δVε

3

)
− εk1G

(2δVε

3

)
, (3.53)

if

ε = min
{ 1

2G′(δV (0))
,

1

δV (0)G′′(δV (0)) + k2

,
1

δV (0)G′′(δV (0)) + k3

}
. (3.54)

Since the solution of differential inequality (3.53) is less than the solution of differential
equation (2.8) (see, e.g., [19, p.31]), decay estimate (2.7) holds.

It remains to prove (2.9). We argue by contradiction. Suppose that V (t) doesn’t tend to
zero as t →∞. Since V (t) is decreasing on [0,∞), we have

V (0) ≥ V (t) ≥ σ, ∀t ≥ 0 (3.55)

for some σ > 0 and then, by (3.33), we have

2V (0) ≥ Vε(t) ≥ β, ∀t ≥ 0 (3.56)

for some β > 0. Thus there exists γ > 0 such that

G′
(2δVε

3

)
≥ γ, ∀t ≥ 0. (3.57)
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It therefore follows from (3.53) that

V ′
ε (t) ≤ −γεVε

3
, ∀t ≥ 0, (3.58)

which is in contradiction with (3.56).
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