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Abstract

In this paper we consider the problem of optimal control of the model for a rotating
body beam, which describes the dynamics of motion of a beam attached perpendicularly
to the center of a rigid cylinder and rotating with the cylinder. The control is applied on
the cylinder via a torque to suppress the vibrations of the beam. We prove that there
exists at least one optimal control and derive a necessary condition for the control.
Furthermore, on the basis of iteration method, we propose numerical approximation
scheme to calculate the optimal control and give numeric examples.
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1 Introduction

The purpose of this paper is to study the optimal control of the model for a rotating body
beam (see, e.g., [2, 3, 6, 15])

Ut (2, 1) + U (7, 1) = W (H)u(z, 1) in (0,1) x (0,7, (1.1)
%[w(t)(l—l— /0 u2(x,t)dx)] — (1) in (0,7), (1.2)
w(0,t) = ugp(0,t) = Upe(1,) = Ugee(1,8) =0 in (0,7, (1.3)
u(z,0) = u’(), u(z,0) = u'(x), w0) = ° in (0,1). (1.4)

In (1.1)-(1.4), the subscripts denote the derivatives with respect to the time variable ¢ or the
space variable z, w(t) = 6(t) is the angular velocity of the cylinder at time ¢, u(z,t) is the
beam’s displacement in the rotating plane at time ¢ and point x and ~y(¢) is the torque control
variable applied to the cylinder at time ¢. This model describes the dynamics of motion of a
beam attached perpendicularly to the center of a rigid cylinder and rotating with the cylinder
(see Figure 1.1). As explained in [2, 4], it has applications in aerospace engineering. Indeed,
we can imagine Figure 1.1 a satellite, the beam being its antenna.

Figure 1.1: A Rotating Body Beam.

As the cylinder rotates, the beam deviates from its equilibrium and becomes unstable. So
control mechanisms are needed to stabilize it. Indeed, extensive attention has been paid to the
problem of stabilization for (1.1)-(1.4). Applying the Lyapunov analysis and backstepping
method, feedback torque control laws were proposed (see, e.g., [5, 6, 9, 15]) to globally
asymptotically stabilize the equilibrium point (0, @) provided

W € (—We, We), (1.5)

where w, is an explicit critical angular velocity (see, e.g., [6, 15]). It was also proved in [15]
that there is no stabilizing control law if |w| > w.. This is physically reasonable because if the
cylinder spins too fast the beam shall be out of control and can not be stabilized by feedback
control laws. In the above problem of stabilization, it was required that the stabilizing
control laws drive the beam eventually to its equilibrium, that is, lim;_., u(t,z) = 0. Such
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a requirement is quite strict. So we relax it and we just require controls to drive the beam
to approach its equilibrium as closely as possible. Therefore, we consider the problem of
optimal control with the cost function defined by

wazz é[ﬁ@iﬁy+@@no—@ﬁ¢Mp+A 221t (1.6)

In this case, the angular velocity @ can be an arbitrary number. We might want to consider
a cost function over an infinite time interval

ngzlmlhﬂ%nw+w@w—QWMﬁ+Amf®ﬁ (1.7)

This cost function does make more sense than J(7) as the beam is needed to be controlled
over a long time, not a short time, in reality. However J () is difficult to be handled as it
is not clear whether J(7) is proper, that is, Jo(y) < oo for some 7.

Concerning the optimal control for large space structures, important results have been
established (see, e.g., [4, 7]). Indeed, Biswas and Ahmed [4] addressed the model for a
spacecraft consisting of a rigid bus and a flexible beam and developed necessary conditions
for determining the control torque and forces for optimal regulation of attitude maneuvers of
the spacecraft along with simultaneous suppression of elastic vibrations of the flexible beam.

Let — be a closed and convex subset of L?(0,7) (for the notation appearing in the
introduction, see the next section). The optimal control problem of (1.1)-(1.4) is to minimize

J()
inf J () (1.8)

This means that we want to find a torque control v of the least cost to drive the system to
approach the equilibrium point (0, &) as closely as possible. Any element 7, such that

I = int J(3) (19)

is called a solution of problem (1.8). The element 7, is termed an optimal control, the
corresponding state (u(7,),w(7)) termed an optimal state and the pair (7, u(7,),w (7))
termed an optimal pair. We call the subset — a set of admussible controls.

We are also interested in an optimal obstacle problem. We can imagine that any controls
are subject to certain circumstances such as physical locations and available resources, which
obstruct us to implement the controls arbitrarily. For instance, when we use a unidirectional
jet to implement the torque control, the control would be subject to certain constraint of

a limited range, e.g., v > 0. So we introduce the following obstacle problem. For any
6 € L*(0,T), we denote

() ={ye€ L*0,T) : v>0ae. on (0,T)}.

We call 6 an obstacle. If & = 0, this means that the torque control is implemented by a
unidirectional jet. We can imagine that different jets would produce different obstacles 6.
The problem of optimal obstacle is to find a 6, (corresponding to an optimal jet) such that

inf J(y) < inf J(y) VO € L*0,T). (1.10)

el (6,) T yern(o)



If we define the cost function F(0) by

F(0) = inf J(v), (1.11)

el ()
then optimal obstacle problem (1.10) becomes the following minimization problem

inf  F(9). 1.12
sl F0) (1.12)

We note that the obstacle € is not taken into account in (1.12), that is, while we try to
minimize the pair (u,w,7), the obstacle § may be large. To ensure that the obstacle is not
too large, we introduce the following cost funtion G(0)

T
G0) = F(6)+/ 0% (t)dt (1.13)
0
and minimize it:
Gengl(g,T) G(0). (1.14)

To further minimize the corresponding state (u(f),w(f)), we can consider the cost function
H®) = F(0)+ J() (1.15)

and the minimization problem

inf H(O). 1.1
s, HO) (1.16)

Applying the theory of semigroups, we prove that problem (1.1)-(1.4) is well posed in Sec-
tion 2. We then solve optimal control problems (1.8), (1.12), (1.14) and (1.16) by employing
the theory of optimization in Section 3. On the basis of the iteration method, we propose a
numerical approximation scheme to calculate the optimal control in Section 4.

2 Global Strong Solutions

We now introduce notation used throughout the paper. For —oo < a < b < 0o, we denote
by H?*(a,b) the usual Sobolev space (see [1, 11]) for any s € R. For s > 0, Hj(a,b) denotes
the completion of C§°(a,b) in H*(a,b), where C§°(a,b) denotes the space of all infinitely
differentiable functions on (a, b) with compact support in (a,b). Set

1) = {peH*0,1) : ¢(0) = ¢.(0) =0},
1) = {peH0,1) : ©(0) = ¢,(0) = @uu(1) = uaa(1) = 0},

Hg (0,
0 :
H = HZ (0,1) x L*(0,1). (2.3)

Hy- (0,

We use the following H? norm of HZ (0,1)
o 1/2 2
ol = ([ ¢tean)” e o), (2.4)
0
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which are equivalent to the usual one. The norm on L?*(0,1) is denoted by || - ||. Let X be
a Banach space. We denote by C™([0,77]; X) the space of n times continuously differentiable
functions defined on [0, T'| with values in X, and write C([0,77]; X) for C°([0,T]; X).

Applying the theory of semigroups, we prove that problem (1.1)-(1.4) is well posed. For
the definitions of mild and strong solutions below, we refer to [12, p.106, Definition 2.3; p.109,
Definition 2.8]. The following theorem is a slight extension of Lemma 1 of [15] and its proof
is similar.

Theorem 2.1. (i) For the initial condition (u°,u',w®) € H x R, control v € L'(0,T) and
any T > 0, problem (1.1)-(1.4) has a unique mild solutwn satisfying
u=u(z,t,y) € C([0,T]Hg((0,1)) N C([0,T]; L*(0, 1)), (2.5
w=w(e,ty) € C(0.TLR)

[\]
D
~

Moreover, for two solutions (u1,w;) and (uz,ws) of (1.1)-(1.4) corresponding to (uf,ul,w?) €
HXR, v, € LY0,T) and (ud,ud,wd) € H xR, v € L'(0,T), respectively, there exists a pos-
itive constantC’ C(ludll, |31, Il e o,mys Hqu |3, |72l Loy, T), continuously depending
on its arguments, such that for 0 <t <T

w102 (8) = wawa () || 4 [lure(t) — uae(8)|| 4 |wi (t) — wa(?)]

(i) For the initial condition (u°,u',w°) € Hy_(0,1) x H3-(0,1) x R and v € C[0,T7,
problem (1.1)-(1.4) has a unique strong solution satisfying

u € LY(0,T); Hy-((0,1))) N C([0, T); Hy-((0, 1)), (2.8)
u € LY((0,7); Hy-((0,1))) N C([0,T]; £*(0,1)), (2.9)
uy € LY((0,7); L*(0,1)), (2.10)
w € CY[0,T);R). (2.11)
Proof. (i) Integrating (1.2) from 0 to ¢, we obtain
w(t) = fol - Hj? ;‘50, (2.12)
where
ao :w0(1+ |yu0\|2>. (2.13)
Substituting w into (1.1), we obtain
<f0t v(s)ds + ag 2u(:1:, t) .
Ut (T, 1) + Uz (T, 1) = 5 in (0,1) x (0,7, (2.14)
(1+ lu®)]?)
u(0,1) = uz(0,1) = Upe (1, 1) = Ugaw(1,2) =0 in (0,7), (2.15)
u(z,0) = u’(z), u(z,0) = u' () in (0,1). (2.16)



Set

(Jir(s)ds + ao) ol)

(14 lloll?)”

One can readily verify that, for any fixed v € L*(0,T) and aq, f : [0,T] x L*(0,1) — L?(0,1)
is continuous in ¢ on [0, 7] and uniformly Lipschitz continuous on L?(0,1). Moreover, it is
well known that the operator A defined by

Ao, ) = (¥, —Puzea) (2.18)

with domain D(A) = Hy_(0,1) x HZ (0,1) generates a Cyy semigroup S(t) on HZ_(0,1) X
L?(0,1). Therefore, by the classical theory of semigroups (see, e.g., [12, p.184, Theorem 1.2]),
problem (2.14)-(2.16) has a unique mild solution with

f(ta 9077>a0) = (217)

u € O([0,T); H-((0,1)) n C*([0, T); L*(0,1)). (2.19)
Since ft (5
0 V(8)ds +ag
<O = e (2:20)

problem (1.1)-(1.4) has a unique mild solution satisfing (2.5) and (2.6).
Let (uy,w;) and (ug,ws) be two solutions of (1.1)-(1.4) corresponding to (u?, ui,w?) €
H xR, v1 € L'0,T) and (u),us,wd) € H x R, 2 € L'(0,T), respectively. Set

Y =Uu; — Ua.

Then we have

Yt + Yzzzz = f(ta Ul(ll?, t)7717 (11) - f(t,UQ(l‘,t),")/g, aQ)’ (221)

where
- w$(1 n Hu?”z), (2.22)
g = wg(l + HugH2). (2.23)

Multiplying (2.21) by y; and integrating over (0, 1) by parts, we obtain

GO + 1) =2 [ 1700 2,0).50,00) = 0, va(o 090,00, ). (224)

In what follows, C' = C(||u}||, [w], |71 |01y, W3], |8, [[72]] 10,7y, T) denotes a generic pos-
itive constant which continuously depends on its arguments and may vary from line to line.



Since
(e, ). 1) — F(t s, ), 72, 02)]
B ‘ (fo (s ds—l—a1> uy(,t) (fo Y2 (s d8+a2> uQ(a:,t)‘
(14 Jen(t)2)” (14 Jua(t) )
(fo (s ds+a1> lur (2, 1) — (2, 1)
) (14 un(t)]2)”
<f071 ds—l—a1>2 (fow ds+a2>2
(14 () ) (1 + (1) )

< Clute )]+ ][ (14 1 OF) ([ ) = (6 + o — aa

/ |uf(z,t) — u3(x, t)|d:c> </ 1(s )ds—i—al)]

(1+Hu2 )(fofyl ds+a1>+<1—|—|\u1(t )(fofyz ds—l—a2>

—|—|u2xt|‘

X

(14 Jen()2) (1 + Jae) )
< Clyta. ) +C[(1+ @) ( () = (o)l -+l — s
ol (8) = wa () s (8) + w2 (D] Juaa, )
(14 lea@?) + (14 (0)1?)
(U @) (14 )’
CIy®) + Jy In(s) = 2(s)lds + [ar = azl ) ua(z, 1)
(14 ueol?) |

< Cly(z, )] +

we deduce that
L @I + e D)
dt
1
< 2/ |f(t,ui(z,t), 71, a1) — f(t,ualz, t), 72, a2)||ye(x, t)|dx
0

< C(Im®I + @1 + 91 = 22llFs o) + o = a2l

< (I + eI + 1 = 10y + o — ).

(2.25)

(2.26)



It therefore follows from Gronwall’s inequality (see, e.g., [14, p.90]) that for 0 <¢ < T

[4100(8) = Ugna (D] + [Juae () — uz ()]
< Ctgy — gl + luy — ual + [} — @] + 1 = 22l 0))- (2.27)

Furthermore, since

|wi(¢) —wz(t)|
‘f ds+a1_f072 s)ds + as
1A [lur (8| 1+ [lug(t)||?

< C(llua(t) = ua (Ol + l[thag — upell + llup — vl + ) — wil + 11 = 22ll101),  (2:28)

(2.7) follows from (2.27).

(ii) By Theorem 1.6 of [12, p.189], to prove that problem (1.1)-(1.4) has a unique strong
solution for the initial condition (u®,u',w®) € Hy_(0,1) x H3_(0,1) x R and v € C[0,T7, it
suffices to prove that, for any fixed v € C|0, T] and ag, f : [0,7] x L*(0,1) — L3(0,1) is
Lipschitz continuous in both variables ¢t and (. This is true since

1/ (t1; 01,7, a0) = f(t2, 02,7, ao) |
_Mf w+%)w@_(ﬁW@w+%fme

(14 llerl?) (14 lleal?)

<</b7@>“*“>2¢“@<1%¢232wx@(luwlﬂg

(1+lel) (1 leal)
o1 (@ 1 s)|ds ’ s)|ds ao
+—1+H¢H | [T ([ s [ hos +lal)

t2 2 _
s(/|w$wwu%o—ﬂﬂ—ﬁﬂ3
0 (14 lle1l12)

" 2 gallllgel — llor 212 + llgal® + o)
([ s + oo :

(14 leall2) (1 lsl?)
+L/ pis| ([ sl + [ sy + 2l

< O(lta = ta] + H% e2l1), (2.29)

where C' = C(||7]| 21 (0,1 [|7]l 0,775 [@o|) is & positive constant independent of ¢y and ¢,. O

Remark 2.1. Part (ii) of Theorem 2.1 will be used in the next section. When we prove a
result, we will first assume that the initial data are smooth and then the equations have a
strong solution so that computations are valid. We then apply a density argument in the
case that the initial data are in H.



3 Optimal Control

This section is devoted to optimal control problem (1.8). The difficulty in dealing with the
problem is that we can not prove whether the cost function J(7) is convex. It appears quite
possible that J(y) is not. Thus we have to show that J(7) is weakly lower semi-continuous
and then use a minimizing sequence to show the existence of an optimal control.

Theorem 3.1. For the initial condition (u°,u',w®) € H, problem (1.8) has at least one

solution v*. Moreover, v* can be characterized by

/0 T(v(s) —77(s)) [7*(3) + / b (jj dzf(f:) e %) dt} ds

! Jy o (r)dr 4 a0 = (1 + (1))
+ dtds
[oo=ron [ (14 lweoe)
>0 (3.1)

forally € T, where u* is a solution of (2.14)-(2.16) corresponding to v*, and p is the solution
of
ptt(l‘at) +p;va:acac(xat) = h(xat7’7*aU*7aO7p)a .
p<07t> :pz(0>t> :pmc(lat) :p:mx<17t> =0, (33)
p(l’,T) = 07 pt(x7T> = 07

with
h = h(:c,t,”y*,u* ag, p)

(fo ds—i—a0>2
0+mww)

(fo s)ds + CL()) <f0 v*(s)ds + ag B u‘))
(1 + Hu*(t)|\2> 1+ [Ju(t)[?

(fo s)ds + ao) fo (x,t)dz

= 2u*(x,t) —|—

- (3.5)
@+mww>
Furthermore, if T = L?(0,T), then v* satisfies
t d d7'+ 0
v*(s)+/ Lo - x<f07 a>dt
s @+mww)
[ B s, )

(14 e 0)R)



Remark 3.1. Whether the solution of (1.8) is unique or not is an open problem. However,
we guess that the solution is not unique since for w® = 0 (then ag = 0) and @ = 0 we have

J(=y) =J().
Remark 3.2. Equation (3.6) shows that the optimal control v* € C'[0, T]. This is a sort of
regularity property of the optimal control.

To prove this theorem, we first prove that the cost function J(7) is Gateaux-differentiable
and calculate its differential.

Lemma 3.1. The cost function J(7y) is Gateaux-differentiable. Furthermore, the differential
at v, in the direction 7y is given by

o) =2 ' / o, U )t + 2 / (bt
J ( 0o dS Qo _
Jo ()”2<f7 + _w>dt

o 1+ |uo(t 1+ Hu<o( )| )
T fol uo(x, t)n(z, t;v)dx fo Yo(s)ds + ag fot Yo(s)ds+ay
_4/0 (L+ a1 C war )

+2

(3.7)

where ug = ug(z,t) is the solution of (2.14)-(2.16) corresponding to 7o, and n = n(x,t;7y) is
the solution of

N (2, 1) + Negae(x, 1) = g(x,t, 70,7, A0, 7) in (0,1) x (0,7, (3.8)
n(0,t) = 0x(0,t) = Ner(1,8) = N (1,2) =0 in (0,7, (3.9)
n(xz,0) =0, n(x,0) =0 in (0,1), (3.10)

with
g= g(xat)’)/(]?’)/aao 77)

(fo Yo(s ds+a0>

2ug(z,t) <f070 d3+a0> fo
— +
(1 +luaft)2)’ (1+ lwo@l)
) dug(z ( I3 y0(s)ds + a0> I nugda

(1 + o))’

Proof. We may as well assume that the initial data and v are smooth since the general case
can be handled by a density argument. For the smooth data, Theorem 2.1 ensures that the
equations have a strong solution and then computations performed below are valid.

For A > 0 and v, v € C[0,T], let uy and wuy denote the solutions of (2.14)-(2.16)
corresponding to o + Ay and 7y, respectively, and set

(3.11)

Uy — Ug

no— B 3.12)
2 = yYr—1. (3.13)
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We are going to prove that (zy,2y) — (0,0) in C([0,T]; H*(0,1)) x C([0,T}; L*(0,1)) as

A — 07. It is clear that z, satisfies

f(t7 Ux, Yo + /\77 CL()) - f(t7U0,’}/0, (10) i

2 (2, 1) + Zpgaa (2, 1) = 3 g in(0,1) x(0,7)
2(0,t) = 2,(0,t) = 242 (1, ) = 24a(1,2) = 0 in (0,7,
2(x,0) =0, z(z,0)=0 in (0,1).

To estimate zy, we first estimate f(t’“*’VOH%CL&)*]E(’;’“O’WO’QO) —g. Set

I(0) =14 [l
Then we have
f(t Ux, Yo + A,Y aO) - f(tau()?’YOaaO)
2 2
(fo Yo(s) + Ay( ))ds+a0> Uy (fo Yo(s ds+a0>

I2(ux(t)) 2 I2(uo(t))
(fo ~0() + My(s))ds + a0> (s — )
I2(un(t))
( s) + \y(s ds—l—a0>2 <f0fyo cls~|—ag)2
+(3= P2(ux(t)) ETI0) )
(f + A\y(s))ds + a0>2
- IEONG)
u [1<uo<t>> ( / (05) + A9 (6))ds +0) = Har(0) ([ (s + ao)]
[ (fo (Yo(s) + Ay( ))d8+ao> + I(ux(t) (fo Yo(s ds—l—a())]

X

I2(ur (1)) 12 (uo(t))
(fo Yo($) + Ay(s))ds + CL0>

A (@)
+ Aol (uo(t)) / 2 (5)ds
[ (fo Yo(s) + Ay( ))ds+a0>+1( <f070 ds+ao)]

X

I2(un(8) 12 (uo(t))

— \ug /01 yx(uo + u,\)d:c</0t Yo(s)ds + ao)
(o) ( f; (0() + X9())ds + ao) + I(un(®) ( fy 20(s)ds +ao ) |
P2 (ux (1) P2 (w0 (1)) |

X

11
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(3.15)
(3.16)

(3.17)

(3.18)



Set

(Jyls) + x9)ds+a0) i firals)ds + o)
I2(ux(t)) I2(u(t)) ’

I = uol(uo(t)) | ~(s)ds

[ (fo Yo($) + Ay( ))ds—l—a())—l—fu,\ (fofyo ds+ao)]

L =y

X

V(UA(t))[Q(uo(t))
2u0(f0 Yo(s)ds + a0> fo

2(uo(t))

Is = —ug /Oly/\<u0+w)dm</t 0(s)d8+a0)
[ (fo Yo(s) + Ay( ))ds—i-ao) + T(uy(t (fo Yo(s ds+a0>]

X

I2(ux(8)) 2 (uo(t))
4y ( fo Yo(s)ds + a0> fol nuodx
13 (uo(t))
It then follows from (3.18) that

f(t7 Ux, Yo + )\77 CL()) - f<t7 Uo, Y0, aO)
A

—g:[1+[2+[3
We now want to estimate [, I, and I3. Firstly, by (2.7), we obtain

[lua(t) = uo (@) < ACNY =0/l 0.1y

and

lyA@1 < Clly =0l 207

For I;, we have

RSSO Y e

IZ(UA(t)) - P(Uo( )
(fo Yo(s)ds + ao)
I (uo(t))

and then
L @) < Cr(N)[Jua@)]] + Callza @),

12
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(3.20)

(3.21)

(3.22)

(3.23)

(3.24)



where
Ci(A) = Ci(A uo,ux, 7,7, a0, T)
2
<f0 Yo(s) + My( ))ds—l—a0> (fofy() ds—i—ao) ‘

S P2us 1) P2a(1) &2
Cy = Ca(uo,70,a0,T)
(i 1o(s)lds +laof)
= ogier 2(uo(t)) ' (3:26)
By (3.21), we deduce
lim C1(A) = 0. (3.27)
For I, it follows from (3.21) that
lim max || 12(¢, A)]| = 0. (3.28)
For I3, we have
1152, M| < Nluo(®)[[122 @) o (£) + ua@) ] / 170(s)ds + Iao\>
1 ®) (5 hols) + 29()1ds + laol) + Hua(e)) (i 1ofs)ds + Jao]) |
12 (ux(£)) 12 (uo(t ))
+ Huo/o n(uo + uﬂda:(/ Yo(s)ds + a0>
[I( <f0 Yo(s) + Ay(s))ds + a0> + I(uy(t (fo Yo(s)ds + aoﬂ
" Pl ()7 (uo(0))
4U0<f0 Yo(s)ds + ao) fol nuodx
Fan®) |
< Csllaa(B)] + Ca(A),
(3.29)
where
Cy = C3(A, ug, ux,v,%, a0, T)
- Olgltaggpﬂw( Mot + ur®I( [ ho(o)ids + rao|)
1000 (5 1ols) + 29 (5)lds + ol ) + 10un() (i ()l + ol .
12 (u(t ))IQ(Uo(t))
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Cy(N) = Ca(An,u0,ux, 7,7, a0,T)
t
= max

ma [Juo(t) /0 (o + ur ) /0 To(s)ds + ao

[ (o) (fy (o) + Ay ())ds + o) + 1(un(®)) (i 20(s)ds + o)
12 (ux (1)) P (uo (1))
Qg (t (fo Yo(s ds—l—ao) fol nuodx

X

_ ) H (3.31)
By (3.21), we deduce
}\iir(l) Cy(N) = 0. (3.32)

Multiplying (3.14) by z); and integrating over (0,1) by parts, it follows from (3.22), (3.24),
(3.27), (3.28), (3.29) and (3.32) that

GO + [ OF) =2 [ (1 + 12+ I
< O+ Colllen DI + o), (339

where C5(\) — 0 as A — 07. It therefore follows from Gronwall’s inequality that
IO + |22aa (D] < C5(N)Te™, ¥t € [0, T]. (3.34)

Hence we have
Jin (| xe (DI + [l (8)]7) = 0 (3.35)

unformly for ¢ € [0,77]. Since

I+ 1) = I / / w(z,t) = wh(z,t) + fon(t) = & — fen() =&l
A
(Yo +M)? =3
+/0 ;) dt

= | [ Puota it ) + Motz

0
+/ (f Yo(8) + Av(s))ds + ag f070 ds+a0>
0 A

L+ [Jua(®)]? 1+ [Juo(?)[J?
Av(s))d s)d
(fo Yo(s) + Av(s) 2s+a0 fo Yo(s S+go B 2@>dt
L+ [[ua@)]] 1+ [Juo(2)]]

" / 270(s)7(s) + M2 (s)]dt

14



~ [ [ et oot + Mt Dldnat

T <1 + [luo(?) > fo
“ (1+ luae)2) (1 + nuo<t>||2)

(fo Yo(s) + Ay(s))ds + ag f070 s)ds + ag
L+ [Jun(t )H2 L+ [Juo(t)]]?

_/T fo yx (uy + ug da:(fo Yo(s d8+ao>
: (1 +ua@R) (1 + luo(0)]?)

Ay(s))d s)d
(fo 0(s) + 7(8))28 +ao  fyto(s)ds +2ao B 2@>dt
L+ [[ua@)]] L+ [[uo(t) ||

+ / 290(5)7(5) + M (s))dt, (3.36)
it follows from (3.21) and (3.35) that
J (70 + M) — J ()

_ 2@) dt

(/'(%),7) = lim

A—0t

= / / uo(x, t)n(x, t;v)drdt + 2 / 70(t)(t)dt
N 2/ (1 + ||uo(t) > fO v(s)ds — 2]0 uo(x, t)n(z, t;y dx(fo Yo(s)ds + a0>
0 (1+ uo(e)12)

fot Yo($)ds + ag 5
< L+ JJuo(t)]]2 >dt' (3.37)

]

We then show that the cost function J(v) is weakly lower semi-continuous on L*(0,T)
(for definition, see, e.g., [8, p.9-11]).

Lemma 3.2. The cost function J(vy) is weakly lower semi-continuous on L*(0,T).

Proof. Let {v,} weakly converges to 7y in L?(0,T). Let (u,,w,) and (u*,w*) denote the
solutions of (1.1)-(1.4) corresponding to v, and 7, respectively. By (2.7), the sequence
{Un, Upg, wn } is bounded in C([0,T];H x R). Therefore, there exists a subsequence, still
denoted by {u,, uns, wy}, converges to (i, 4y, w) star-weakly in C([0,7];H x R). Moreover,
it follows from the compact embedding theorem (see, e.g., [13, Theorem 3, p.80]) that there
exists a subsequence, still denoted by {u,}, strongly converges to @ in C'([0,T]; L*(0,1)). We
now prove that u* = u. We note that wu,, satisfies the following integral equation

fos Youl(T)dT + ag
L+ [Jun(s) |

(U, i) = S(8) (10, ul) + /O tS(t — ) (o, un(s)>ds. (3.39)

15



Taking

1, if0<t<s,
9(”{0, ifs<t<T,

we deduce that

since {7, } weakly converges to 7o in L*(0,7T). Letting n — oo in (3.38), we obtain

(@, ) = S(t)(u®, ub) + /Ot S(t — s) (O, Jo vo(r)dr + aoﬂ(s))ds,

1+ [laz(s)|*

which implies that u = u*. Moreover, we have
O(s) = lim w,(s)
. Jo n(T)dT 4 ag
nooo 1+ luz(s)]?
_ fos ’Y()(T)d’r + ago
1+ [Ju(s)[?

= w*(s).

It therefore follows that

J(70) = / / (2, t,70) + (w(t,70) — @) dedt + / ol (t)dt

n—oo

T 1 T
< lim / / [uZ(z,t) + (wn(t) — @)?]dxdt + lim inf/ V| ? (t)dt
0 Jo e Jo

< liminf J(7,).

Hence, J(7) is weakly lower semi-continuous on L*(0,T).
We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let v, € I be a minimizing sequence such that

lim J(v,) = inf J(v).

n—o00 ~yel’

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

Then the sequence {v,} is bounded in L?(0,T). Hence, there exists a subsequence, still

denoted by {v,}, weakly converges to v* in L?(0,T). By Lemma 3.2, we deduce that

16



J(v*) < liminf J(v,)

n—oo

= inf J (7). (3.45)

vyel

Hence, 7* is a solution of (1.8).
Since, by Lemma 3.1, J() is Gateaux-differentiable, it follows from Theorem 1.3 of [10,
p.10] (or Propositions 1.2 and 2.1 of [8, p.35-36]) that

(') =)
/ dt+2/ / “(z, t)n(x, t;y —v")dxdt
(14 <t )fo ()ds , [*y(s)ds +ap
/ 1+I|u() )2 < 1+ [lus(t)[J? _w>dt
u(z, tn(z,t;y =" dw(fm d8+ao> [i v (s)ds +ag
/ (1+\|u*(t)”z> < L+ [lus @) _w>dt
>0 (3.46)

for all v € T'. Multiplying (3.2) by 1 and integrating over (0,1) x (0,7") by parts, we obtain

*(s)d5+a0>2 (fo d5+a0> fgv*(s)ds—i-ao__
AT 1+Hu*()l!2)2 (1+ e l?)” SETEI

<f0 v*(s)ds + a0> fol pu*dz
(14w l2)’

T 1
2
1 pn fO ’y dS + G())
/ / dxdt

L e (0)]2)

) ndxdt

dxdt

T 2pu fO v*(s)ds + ao) [5(v(s) — v*(s))ds
oy

(14 e @)R)

2
/ /1 dpu* fo (s)ds + a0> fol nu*dx

. dzdt. (3.47)
(1+ Il

17



Hence we have

[ [ /0 o) o,

(1 + Hu*(t)||2) L+ [lu (@)1
/ /1 pu* fo s)ds + a0> fo —v*(s))ds
(1+ ||u*<t>|r2)

- / T(V(S) —7(s)) / ' f01 & dw(fo sz . ao) dids. (3.48)
: : (1 + (1))

dxdt

It therefore follows from (3.46) that

R e T

T T U M(T—dﬂ;ao — W
fonrm e,
>0 (3.49)

for all v € T'. Hence, if I' = L?(0,T), we deduce that

)+ /T fol p(z, t)u*(x,t) da:(fo T)dT + a0> dt
: (14 @)
+/T (1+ [lue (1)) (B e —

7> dt = 0. (3.50)
(14w ]2)

We now turn to obstacle problems (1.12), (1.14) and (1.16).

Theorem 3.2. Suppose the initial condition (u°,u',w®) € H and let v* be the solution of
(1.8) with T' = L*(0,T). Then v* is also a solution of problems (1.12) and (1.16).

Proof. Since

J(y)= inf J) <FH)= inf J(v) < J(H), (3.51)

veL2(0,T) vEL (v*)

we have
J(v*) = F(v). (3.52)



It therefore follows that

F(y)=J0r) < inf J() = F(6) Vo€ L0.7T) (3.53)

and
Hy)=F)+J) < F@O)+JO)=H®) Ve L*0,7). (3.54)
O

Theorem 3.3. For the initial condition (u°,u',w°) € H, problem (1.14) has at least one
solution.

Proof. Let 0,, € L*(0,T) be a minimizing sequence such that
lim G(6,) = inf G(8). (3.55)

n—00 0€L2(0,T)
By Theorem 3.1, there exists a v, € L*(0,T) such that
J(om) = F(0n). (3.56)

Since
QMZF@$R/%@%:NW+/9%M&

the sequences {6, } and {v,} are bounded in L*(0,T). Therefore there exist subsequences
{6,,} and {v,,} such that 6,,, and ~,, converge to 6 and v* weakly in L?(0,T), respectively.
It therefore follows from Lemma 3.2 that
J(v) + ||9_||%2(0,T) < ligi?f () + h{gg}f HHmH%?(O,T)
< liminf G(6,,)
= inf G(0). 3.57
veit¥oir) 1) (397

Since
Yn; = On, a.e. on (0,7,

we deduce that for every ¢ € L?*(0,7T) with ¢ > 0 a.e. on (0,7
T - T
/ (v — B)odt = lim | (v — 60 )bdlt > 0. (3.58)
0 e Jo

This shows that v* > @ a.e. on (0,7) and then v* € T'(d). It therefore follows from (3.57)
that

G(0) = F(0) + 10lIZ20.7)

< J(*) + 10117201

< inf 0). .

- 9eL1£1(0,T) G( ) (3 59)
]
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4  Numerical Simulations

On the basis of iteration method, we propose a numerical approximation scheme to calculate
the optimal control. For a given control 7, we first solve equations (2.14)-(2.16), which, by
the difference method, can be discretized as follows

uig = u'(i/m), i=0,---,m, (4.1)

wy = u’(i/m)+d6ut(i/m), i=0,---,m, (4.2)

wy; = 0. j=0,--.n, (4.3)

u; = 0, =0, ,n, (4.4)
Ui = —(Uimay — Qi1 j + Oty — Qi j 4 tigo )07 /B 4 2u; 5 — w55

totug ([ s+ an) 10+ GG

Z.:27”'7777‘_27 jzlv'”7n_17
Um—1,j41 = 2um—2,j+l — Um—3,j+1, j = 17 e, — 17
Umjt1 = BlUm—gj41 = 2Um-3j41, J =1, ,n—1, (4.7

where m and n are positive integers and

h = 1/m, (4.8)
b = T/n, 4.9)
Uij = u(Zh7](5)v Z:Oa , M, ]:07 , 1. (410)

The integrals fojé v(s)ds and ||u(jd)||* can be numerically calculated. In analogy, we then
discretize the adjoint equations (3.2)-(3.4) and solve them by using the solution of (2.14)-
(2.16). Finally, we solve control equation (3.6). For this, we set

Then (3.6) can be equivalently tranformed to

- fol plz, yu(z,t)de +1  ag fol plx, t)u*(z, t)dr + ag — 0(1 + |Ju*(t)]]?)
At Te@PE Y~ 0+ TP (4.11)

with y(0) = 0 and y/(7) = 0. This equation can be numerically solved by the difference
method. With this new control, we repeat the above procedure. The following numeric
examples show that this scheme works very well. We take the initial data as follows

uw’ = 100x[(z — 1)* — 1],
ut = —100z[(z — 1)* - 1],
W = 100.0,
w = 1000.0,
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u’ =100z[(z — 1) — 1], u'=—u’, w°=100.0, ©=1000.0
Initial controls vy of iterations

~o = 10000(3 — ) Y =0 Yo = —10000 sin(107(3 —t))
9.057124937905327E8 | 5168797.134532931 | 1.551708593258652E8
5518012.550900402 5199774.96504609) | 5200304.111160588
5198119.7475106 5199744.2495877575 | 5199752.349029758
5199730.987997696 5199745.147392863 | 5199745.2070749495
5199745.03486864 5199745.152405544 | 5199745.152939232
5199745.151464502 5199745.152431915 | 5199745.152484191
5199745.152485731 5199745.152409619 | 5199745.152427603
5199745.152470749 5199745.152436701 | 5199745.1523675015
5199745.152435771 5199745.152431848 | 5199745.152398524
5199745.152435782 5199745.1523830015 | 5199745.15244074
5199745.152427421 5199745.152397803 | 5199745.15244536
5199745.152365553 5199745.152396315 | 5199745.152459322
5199745.15240079 5199745.152411937 | 5199745.152441221
5199745.152441801 5199745.152458425 | 5199745.152410811
5199745.15244327 5199745.152439428 | 5199745.152403285
5199745.15244552 5199745.152435335 | 5199745.152392513
5199745.152474231 5199745.152455318 | 5199745.152425697
5199745.152458648 5199745.152434166 | 5199745.15244514
5199745.152442513 5199745.152427262 | 5199745.152393454
5199745.152466581 5199745.152467447 | 5199745.152394731

]
n
-+

o~
NN [ | [ — | T

5

=

%)
(&)

%)
w

)
at

)
(=2}

)
5

%)
oo

O
=
(e

O
=
2

O
=
no

=
w

] Pl ] P B o] Bl i B B o] ] | B ] ] Bl B ] Bl K
)
Ne)

—
o
=
©

—
~
N e e

Table 4.1: Iteration procedures start with three quite different initial controls ~y = 10000(3 —
t), 0, —10000sin(107(3 —t)), respectively. Costs J(;) (defined by (1.6)) starting from each
initial control tend to 5199745.1524 approximately and the iteration procedures are quite
stable, where ~; is the control obtained at the ¢th iteration.

and start iterations with three quite different initial controls
Y = 10000(3 —¢), 0, —10000sin(107(3 — 1)),

respectively. In this case, the critical angular velocity w. = /1 = 2.47 according to Theorem
3 of [15], where ju; is the smallest eigenvalue of the self-adjoint operator d*/dz* with the
domain Hj (0,1). Thus @ = 1000.0 is quite away from w..

It can be seen from Table 4.1 that the costs J(;) (defined by (1.6)) starting from each
initial control tend to 5199745.1524 approximately and the iteration procedures are quite
stable, where ~; is the control obtained at the ith iteration. Moreover, Figures 4.1, 4.2 and
4.3 show that all optimal controls and optimal solutions obtained from the iterations starting
at these initial controls are almost same. In these figures, gamma denotes the control ~(t),
E' is defined by

E(t) = /0 (),
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Figure 4.1: Approximate optimal control and solution obtained via 19 iterations starting at
7o = 10000(3 — t).

and omega the solution w(t). The Java program for the simulations is available at
http://www.mscs.dal.ca/~ weiliu/beam/beamSimCtrl.java .

5 Conclusions

In this paper we have proved the existence of an optimal control for the model of a rotating
body beam, which is attached perpendicularly to the center of a rigid cylinder and rotates
with the cylinder. The control is applied on the cylinder via a torque to suppress the vibra-
tions of the beam. We have also derived a necessary condition for the control. Furthermore,
on the basis of iteration method, we propose numerical approximation scheme to calculate
the optimal control and give numeric examples to show that the scheme works well. Hence
the control is implementable in real problems such as the control of a spacecraft.

In the study of stabilization for the beam via a feedback torque control, it is required that
@ of the equilibrium point (0,) be less than a critical angular velocity w.. In our discussion
of optimal control, this requirement is not needed. However, what we can achieve is less
satisfactory, just driving the beam to approach its equilibrium 0 as closely as possible rather
than exactly to its equilibrium as in the case of stabilization.

Acknowledgment. I thank the referees for their valuable criticisms and comments.
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