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1 Introduction

Let Q be a bounded domain in R™ with smooth boundary I' = 99 of class C?, and consider
a n-dimensional linear, homogeneous, isotropic, and thermoelastic body occupying € in its
non-deformed state. For a material point with configuration z = (z1,---,z,) at time t,
let u(z,t) = (u1(z,t),---,us(z,t)) and O(x,t) denote the displacement and temperature
deviation, respectively, from the natural state of the reference configuration. Then, in the
absence of external forces and heat sources, u and 6 satisfy the system of equations of
thermoelasticity

u" — pAu — (A + p)Vdivu + VO =0 in Q x (0, 00),
¢’ — Af + Bdivu' =0 in Q x (0, 00), (1.1)
u(0) = u®, v/(0) = u', (0) =6° in ,

where o, 8 > 0 are the coupling parameters and A, p are Lamé’s constants satisfying
p>0, nA+(n+1)u>0. (1.2)

By ’ we denote the derivative with respect to the time variable. A, V, div denote the
Laplace, gradient, and divergence operators in the space variables, respectively. u(0), u'(0)
and 6(0) denote the functions z — u(z,0), x — v'(x,0) and = — 6(z,0), respectively. For
the derivation of (1.1), we refer to [24] and [44].
Note that condition (1.2) is weaker than the following usual condition on the Lamé coef-
ficients (see [44] and [13, p.414])
nA+2u > 0. (1.3)

Extensive work has been done on the problem of stabilization for system (1.1) (see [5, 9,
7,12, 17, 20, 27, 33, 37, 40, 42, 43, 45, 46, 47, 48]). We give here a brief description about
the existing literature. For a detailed survey, we refer to [37, 38].

The thermoelastic energy of (1.1) can be defined as

Bu,0,0) = 5 [ [0 + pl Ve, 1)

+ (O + p)|diva(z, )% + %\o(x, )] de. (1.4)
Here we have used the notation
au,
Vu(z,t)| 1.5
| Z 5 (15)

Under the Dirichlet-Dirichlet boundary conditions

u=0, =0 on I x(0,00), (1.6)

it is easy to verify that

E'(u,0,1) = —%/Q|V9(a:,t)|2da:. (1.7)



Therefore, the energy E(u,#,t) decreases on (0,00). Furthermore, in the case of one space
dimension, it has been shown (see [9, 17, 20, 40]) that the energy E(u,0,t) of system (1.1)
associated with various boundary conditions decays to zero exponentially. In the case of
multi-space dimension, Dafermos in his pioneering work [12] showed that, generically with
respect to the domain, the energy of every solution of (1.1) and (1.6) tends to zero as t — co.
However, he also pointed out that, when €2 is a ball, non-decaying solutions do exist. More
recently, Lebeau and Zuazua [33] proved that the decay rate is never uniform when  is
convex. Thus, in order to ensure the uniform decay rate for such convex domains, additional
damping mechanisms are necessary. In this aspect, the first author (see [37]) introduced
a linear boundary velocity feedback acting on the elastic component of the system and
established the uniform decay rate.

The purpose of this paper is to introduce a nonlinear boundary feedback which allows
to test the robustness of the damping mechanisms. Under the classical polynomial growth
assumption on the nonlinear boundary feedback near the origin, by using multipler tech-
niques and Lyapunov methods, we show that the energy in the multi-dimensional system of
thermoelasticity decays to zero at an exponential or polynomial rate.

Further, even if the nonlinearity does degenerate at the origin faster than any polynomial,
we show that the decay rate is governed by a dissipative ordinary differential equation.
This allows us to show, in particular, that if the nonlinearity degenerates at the origin
exponentially then we obtain a logarithmic decay rate. To do that, we proceed as in [41]
where the simpler case of the wave equation with internal damping is addressed. This type
of result was obtained earlier by Lasiecka et al [32] for the wave equation with nonlinear
boundary feedback. However, our approach, even if it uses some ingredients as in [32] (for
instance, Jensen’s inequality), relies essentially on the generalized Young’s inequality and it
is simpler. This allows us to get more explicit expressions for the nonlinearity entering in
the differential inequality governing the decay of the energy.

The rest of this paper is organized as follows. In Section 2, we present our main results. In
Section 3, we prove that the system of thermoelasticity with a nonlinear boundary feedback is
well-posed by using the theory of nonlinear semigroups. Then, borrowing Lyapunov methods
and multipler techniques, we prove our main results in Section 4. Finally, in Section 5, we
briefly discuss some special case and pose an open problem.

2 Main Results

Let © be a bounded domain in R™ with smooth boundary I' = 09 of class C?. Set

I = {zel : m(z) v(z) <0},
Iy = {z€Tl : m(z) v(z) > 0},

where

m(x)=x—x0:(x1—x(1),---,xn—x2) (2.3)



for some z° € R", v = (vy,---,v,) denotes the unit normal on T' directed towards the

exterior of €2 and .

m-v=m(z) v(z) = (z; — z})v;. (2.4)

i=1
['; is assumed either to be empty or to have a nonempty interior relative to I'.

In what follows, H*(2) denotes the usual Sobolev space (see [1]) for any s € R. For s > 0,
H{(€2) denotes the completion of C§°(€2) in H*(2), where C§°(£2) denotes the space of all
infinitely differentiable functions on {2 with compact support in 2. Let X be a Banach space.
We denote by C*([0,T]; X) the space of all k times continuously differentiable functions
defined on [0, 7] with values in X, and write C([0,T]; X) for C°([0,T]; X).

We further introduce other function spaces as follows:

H. () = {ueH(Q) : u=0 onIy}, (2.5)
H = (Hr,(Q)" x (L(Q)" x L*(9).

We consider the thermoelastic system with a nonlinear boundary feedback

((u" — pAu — (A + p)Vdiv u +aV8 =0 in Q x (0, 00),

0 — Af + pdiv v’ =0 in Q x (0, 00),
=0 on I' X (0 00),
u=0 on Fl ( )a
Y _ (2.7)
ra, + (A + p)div(u)v
+am -vu+m-vg(u') =0 on I'y x (0, 00),
[ u(0) =u®, w'(0) =u', 6(0) = in ©,

where @ = a(x) is a given nonnegative function on I'y with
a(z) € C'(Ty), (2.8)

and g(u) = (g1(u1, -, Un), -, 9n(u1,---,u,)) € (C(R™)" is a given vector func-
tion. Similar nonlinear boundary feedbacks were introduced for the wave equation (see
[11, 31, 32, 50, 51]) and the equations of elasticity (see [28, 29]).

The elastic Lamé operator pAu — (A + p)Vdiv v may be written in divergence form
div[o;;(u)], where the stress tensor o;;(u) is given by

o13(1) = 2uss() + 05 3 exs(w), (2.9

and the linearized strain tensor ¢;;(u) is given by

1 8”, an
ii(u) = = ) 2.10
The boundary conditions describing the surface forces are given by
oij(w)v; + am - vu; = f;. (2.11)

4



Since
8’U,Z'

. ou; ou;
wy, T (A + p)div(w)y; = 0i5(u)v; + u(a—xjm — 8—$Zl/j), (2.12)
the boundary condition in (2.7)
8 + (A + p)div(u)y + am - vu +m -vg(u') =0 (2.13)
can be easily transferred into (2.11) with
O0u, ou;
= —m-vag(u e’} J
filu) = —m - vgi(u') — u( i e v;)- (2.14)

Therefore, system (2.7) may be viewed as the system of thermoelasticity subject to a bound-
ary feedback force of the form (2.14). This feedback mechanism is however non-optimal
since, due to the presence of the first order space derivates, its regularity is not sharp (one
can not guarantee that it belong to L?(09 x (0, 7)) for finite energy solutions). Therefore,
the question of analyzing the stabilization under the weaker feedback forces of the form

filu) = —m - vg;(u'), (2.15)

in which the last term in (2.14) has been dropped, is an interesting open problem. This

analysis has been performed in [3, 19] in the context of the system of elasticity but, to our

knowledge, this issue has not been addressed for the system of thermoelasticity.
Throughout this paper, we assume that

'y #0 or a(x) £0. (2.16)

We refer to Section 5 for a brief discussion of the case where I'y = () and a(z) = 0. Under
assumptions (1.2) and (2.16), one can easily show that the following norm on (H} (2))"

lullgms e = ([ VUl + O+ )i () Plda
+/ am - V|u|2dF)1/2 (2.17)
1)

is equivalent to the usual one induced by (H'(92))" (see [37]). Indeed, it suffices to note the
following fact:

p|Vul? + (A + p)|divu|® > p|Vul?, for A+ u >0, (2.18)
and for A + p < 0,
", Ou; Ou,
2 o2 i OUj
VAR + Okl = S ) 3
7.7 7]
au,
> uZI + (A +p)n ZI
,j=1
8uz auz
= n |5 P+ A+ (n+1) u]Z\
i#j 0z; z
> min{y, nA+ (n+ 1)p}Vul (2.19)
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In the sequel, we use the following energy norm on H
: !
(w0, 0)[le = (/Q[MIVU\2 + (A + p)ldiv(w) [ + o] + B\Olz]dﬂf
1/2
+/ am-z/\u\QdF) / (2.20)
s

for (u,v,0) € H, which is equivalent to the usual one induced by (H'(2))"x (L?(2))"x L*(2).
In Section 3, we will prove that system (2.7) generates a nonlinear continuous semigroup
S(t) on H. Thus, system (2.7) is well-posed.
In order to state our main results, we first introduce some constants. In what follows, we

denote by || - || the norm of L?(2) or (L*(Q2))™. Set

Ry, = max Im(x)| = max | Z )2M2, (2.21)
ay = gréelpzia(x) (2.22)

2 2
K(a) = GZR (2 — n)a. (2.23)

Let v be the smallest positive constant such that

/F D < ol e Y € (HE (@) (2.24)
Let Ao and A; be the smallest positive constants, respectively, such that
lull < Xollullas @pns Yo € (Hp, ()", (2.25)
T
and
Jull < M|IVull, Yue Hy(Q). (2.26)

As the decay rates depend also on the constant appearing in the following technical
lemma, we present it before stating our main results. This lemma is helpful for dealing with
the case where the potential a is large.

Lemma 2.1 There exists a constant ki > 0, independent of u, such that the solution ¢ of

{ pAp + (A + p)Vdivp =0 in Q, (2.27)
p=u on I,
satisfies
ol < k2 [ Jufdr, (2.28)
r

and

/Q [1Vu - Vo + (A + p)div(u)div(e)]dz > 0, (2.29)
for all u € (H(2))", where

i=1



Proof. For any f € (L?(Q2))", we consider

{ ZA:¢O+ (A + p)Vdivy = f 101;512{ (2.31)

Multiplying (2.31) by ¢ and integrating over € by parts, we obtain

3¢
/Q - fdz = / (15 + (4 p)div(¥)v] - udr (2.32)
On the other hand, there exists a constant ¢ > 0 such that
8¢7 . 2 n
lnz, + A+ mdiv@)rligemye <clfll, V. fe (L))" (2.33)

To prove this inequality, we let h = (hy,-- -, h,) be a vector field in (C*(2))" satisfying
h=v onT. (2.34)
Multiplying (2.31) by h - Vi and integrating over € by parts, we obtain

/qu,hka% - 2/h 8% dr + - /dw )|V | 2dz
a¢z 3% 8hk

~ Ja 0z, 0z Oz, (2.35)
and
T g = > [ hevidiv@)Pdr + 5 [ divin)|divy) de

Here we have used the summation convention for repeated indices. It therefore follows that
there exists a constant ¢ > 0 such that

/Ma "+ O+ w)ldiv(y) ] dr

< ol [ (ulVl + O+ )l div() ) da + 11 1], (2:37)

In addition, multiplying (2.31) by ¢ and integrating over 2 by parts, we deduce that there
exists a constant ¢ > 0 such that

[ (56 + O+ ldiv)?)da < el 11 (2.39)
Hence, we have 5
[ [3E + 0+ wldiv)Plar < 17, (2:39)
r 14
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which implies (2.33). Consequently, (2.28) follows from (2.32) and (2.33).
To prove inequality (2.29), we multiply (2.27) by u and ¢, respectively, and integrate over
Q) by parts. This gives

/Q[,uVu -V + (A + p)div(u)div(e)]dz

/F[ug—f “u~+ (A + p)v - udiv(ep)]dl

= | 1Vl + A+ wldiv(e) Plda
> 0. (2.40)

O
The thermoelastic energy of (2.7) is defined by

1
E(t) = E(u,0,1) = ll(u(t), u'(t), 0(8))I7 (2.41)
By a straightforward calculation, we obtain

T

E'(t)=— [ m-vg((t)) u'(t)dl — %||V6’(t)||2. (2.42)

If g satisfies that g(u) - u > 0 for all u € R", then the energy E(t) decreases in (0, 00).
What is more, we have the following decay rates. These are our main results of this paper.

Theorem 2.2 Let I’y and Ty be given by (2.1) and (2.2), respectively, satisfying

Suppose that (2.16) holds. Let the function g € (C(R"))" satisfy the following conditions:

9(0) = 0, (2.44)

lg(u') — g(u®)| < kolu' —u?|?, Vu' u® € R™ with [u' —v?| < 1, (2.45)
lg(u') —g(u®)| < kolu' —v?|, VYu',u® € R with [u' —u?| > 1, (2.46)
gu)-u > kslulPtt, Yu € R™ with |u| < 1, (2.47)
g(u)-u > kslul®, VYu € R"with |u| > 1, (2.48)

0 < [g(u') —g@?)]- (u'—u?), Vu', u* € R", (2.49)

for some constants ks, ks > 0 and p, q¢ with 0 < g < 1. Suppose the function a(x) satisfies
2K (a)Ryy* < 1, forn <2, (2.50)

. (n—2)u

ST A

for n > 3. (2.51)

Then we have
(1) If p = q = 1, there exist some constants M > 1 and w > 0, independent of (u°, u', 8°),
such that
E(t) < ME(0)e ", Wt >0, (2.52)
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for all solutions of (2.7) with (u°,u',6°) € H.
(2) If p+ 1 > 2q, there exists T > 0, depending on (u°,u',6°), such that

1-2¢ \—=2,
E(t) <4E(0)(1+ p+27qq7't) PNy > ), (2.53)

for all solutions of (2.7) with (u® ut,0°) € H. Further, the constants M, w and T can be
explicitly given by

+1-2
gygp = p2iqq, (254)
| (1—-2K(a)Rv*)/8, n<2,
e = { 1/8, n>3 (2.55)
2R
C, = 7: + (n — 1)\, (2.56)
o?R2 A?(n—1)%2X  a)?
= 2.
Cy e T & T g (2.57)
2 2 _ 2 2
7 4de
Cy = 1+ Csk3, (2.59)
1
b = §Cf1E*‘T° (0), (2.60)
bg = (l//[EUO (0) (O'()O!Cl + ﬂCQ)], (261)
b3 = I{,‘g/[EUO (0) (04 + Uoclkg)], (262)
by = ks(p+ 1)(p+1)/(2q)/[0100E00 (0)ks(p + 1)(p+1)/(2q)
+q(2C,) P/ D[ Rymes(Ty) (p + 1 — 2¢)]°°], (2.63)
(51 = mln{l/QCl, CM/(BCQ), ]{/'3/04}, (264)
52 = min{bl, bg, b3, b4}, (265)
M = (1+6C)/(1-6C) <3, (2.66)
w = 51/(1 + 5101), (267)
T = 8/ [2Q2E(0) 1 + 6,CLE™(0)] ). (2.68)

If the potential a does not satisfy the smallness conditions (2.50) and (2.51), then we do
not know whether or not Theorem 2.2 still holds. However, we can deal with large potentials
a under an additional condition on I['s. Namely, we have

Theorem 2.3 Assume that Iy, T's and g satisfy the conditions of Theorem 2.2. We
further assume that
m-v>n>0 only. (2.69)

Suppose (2.16) holds. Then the decay properties (2.52) and (2.53) hold.



Furthermore, the explicit values of the constants M, w and T are as follows:

p+1—2¢q
op = ——*, 2.70
0 % (2.70)
e = 1/8, (2.71)
2 2
Cy = max{0, Gwlly o n}, (2.72)
, 2R
Cl = 7: + (n - 1))\0 + Cokl’)/, (273)
2 2 2 212 220242 2
, o’Ry  of(n—1)°N; Cia’kiy?  a)j
= 2.74
¢, UE + 4e + de + B’ (2.74)
2R} — 1+ Cy)’Ryv?
Cé — 0 + (TL + 0) 07 , (275)
7 de
! Cgk% 11.2
Cy, = Ro+ . + C5k3 Ry, (2.76)
1
b, = EC{_IE_”O(O), (2.77)
by = af[E”(0)(c0aC] + BCY)], (2.78)
bg = ]Cg’]’]/[EUO (O) (Ci + O'()C{kgRo)], (279)
b, = nks(p+1)PT/CD /[C! 60 E7(0)Ryks(p + 1)P+D/(20)
+q[2C3) 7V D [mes(Ty) (p + 1 — 2¢))7], (2.80)
6 = min{1/2C}, a/(BC3), nks/Ci}, (2.81)
0y = min{b], by, by, b}, (2.82)
M = (1+46C))/(1-06CY) <3, (2.83)
w = 01/(1+6C1), (2.84)
T = 8/[2Q2E(0)[1 + %CIE™(0)]]]. (2.85)
Example 2.4 It is easy to see that the following function
_ o et ud)u, i e <1,
g(u) = g(ur, ug, - -up) = { ", if Ju| > 1, (2.86)

satisfies the conditions of Theorem 2.2 with p = 3 and any 0 < ¢ < 1. In fact, (2.44), (2.46),
(2.47) and (2.48) are obvious. In addition, it is easy to verify that g is globally Lipschitz.
Thus, for any u!, u? € R™ with |u! — u?| < 1, we have

lg(ut) — g(u?)| < clut —v?| < clu' —u?| (2.87)

To show (2.49), it suffices to show that the Jacobian matrix

d91 .. 991

a ) ouq Ounp
(52)=1 : . (2.88)

Ou; gn ... Ogn

ouq O,
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is positive semi-definite. If |u| > 1, this is obvious. If |u| < 1, then

3u? Uity - 2uiug,
(Bgi) _ | 2wiu 3u’ cee Uy, (2.89)
au] .. e cee e :
2u Uy, 2UolU, - 3ui
is also positive semi-definite as we have
3u?  2ugug - 2uguy 3 2 .. 2
Quiug 3ui - 2uguy N . 2 3 -2
2uiug  2uguy -+ 3ui 2 2 ... 3
= wiui---ui[3+2(k—1)]
> 0. (2.90)
On the other hand, if we take g(u) = (h(uy),- - -, h(u,)), where
| slPts if)s] <1,
h(s) = { . i£]s]> 1 (2.91)

is a function on R, then g does not satisfy (2.47) and (2.48). But one can expect that this
kind of functions should produce good decay rates. Therefore, we amend the conditions on
¢ in Theorems 2.2 and 2.3 and obtain the following theorem. O

Theorem 2.5 Let h(s) be a continuous function on R satisfying the following conditions:

—_ ~—

h(0) = 0, (2.92)

|h(s1) — h(s2)] < ko|sy — s2|?, Vsi,s2 € Rwith |s; — so| <1, (2.93)
|h(s1) — h(s2)| < kalsi — sa|, Vsi,82 € Rwith|s; — so| > 1, (2.94)
h(s)s > ks|s|Pt!, Vs € Ruwith|s| <1, (2.95)

h(s)s > ks|s|?>, Vs € Rwith|s| > 1, (2.96)

0 < [h(s') —h(sD)](s" — s%), Vs', s* €R, (2.97)

for some constants ko, k3 > 0 and p, q with 0 < ¢ < 1. Suppose that
g(u) = (h(uy),- -, h(uy)). (2.98)

Assume that the conditions on g in Theorem 2.2 are replaced by the above conditions and
the other conditions in Theorems 2.2 and 2.3 are kept unchanged. Then Theorems 2.2 and
2.8 still hold with the same constants except that by is replaced by

ks(p 4+ 1)®+V/Q9 /10150 E70(0) ks (p + 1)@/ (29)
+q(2C,) P/ D [n Rymes(Ty) (p + 1 — 2¢)]°°], (2.99)
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and b} replaced by

nks(p 4+ 1)@/ /[C1 5 E7 (0) Roks(p + 1)P+D/(29)

+¢[2C;] P/ CD [nmes(T) (p + 1 — 24)]7°).

Furthermore, if p > 1 and q = 1/p, then the decay rate (2.53) can be refined to

1 2
E(t) < 4E(0)(1 + p?rt) )

with the same constants except the following changes:

gy =

by =
W, =
Cs =

=

Remark 2.6 Note that

p—1
2
(p+ 1) /[Cra0 B (0) (p + 1)1/

+(2C5) P2 [Rymes(Ts) (p — 1)]7°],
n(p+ 1)t /[ClayE(0)Ro(p + 1)@ +1/2

+2C5] P+ 2 [mes (T2) (p — 1)]7],
1+ Cskqks

ks ’
4e Ry + Cok? + 4eClkokz Ry
k3 )

condition (2.95) on h implies that

h(s)| > ks|s|’, Vs € R with |s| <1.

(2.100)

(2.101)

(2.102)

(2.103)

(2.104)
(2.105)

(2.106)

(2.107)

This means that h(s) can not degenerate at the origin faster than |s|P. The following theorem
provides a decay rate when the nonlinearity h degenerates faster than any polynomial. 0O

Theorem 2.7 Let h(s) be a continuous function on R satisfying the following conditions:
h(0) = 0, (2.108)
|h($1) — h(82)| < k2|81 — 82|q, VSl, so € R with |81 — 82| <1, (2109)
|h(81) — h(Sz)‘ S k2|81 — 82|, VSl, So € R with |81 — 52‘ Z ]., (2110)
h(s)s > ks|s|?, Vs € Rwith|s| > 1, (2.111)
0 < [h(s') = h(s?)](s* — 5%), Vs!, s? €R, (2.112)
or some constants ke, ks > 0 an < q <1. Suppose that
f ko, ks >0 and 0 1. § h
g(u) = (h(w1),- -+, h(un)). (2.113)

Assume that (2.16), (2.43) and (2.69) hold. Let p(s) denote a increasing and convex function
defined on [0,00) and twice differentiable outside s = 0 such that ¢(s*?) < h(s)s on [—1,1].
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Then the energy E(t) of solutions of (2.7) with (u°,u',0°) € H satisfies the following decay
rate:
E(t) <2V(t), fort>0, (2.114)

where V (t) is the solution of the following differential equation:

V'(t) =

V() (CLV(t)

5% 2 ) —nd(Ry + 2C3k3 + C’ékgRo)mes(Fg)go(aV(t)), (2.115)

b

where 0 is a sufficiently small positive constant and

1
= 2.116
¢ 2n(Ro + 2C¢k? + C4k3 Ro)mes(T'3)’ ( )
b = 1+40C¢'(aE(0)). (2.117)
Furthermore, we have
lim E(t) = lim V (¢) = 0. (2.118)
t—o0 t—00

Remark 2.8 The function ¢ which satisfies the conditions of Theorem 2.7 always exists.
For example, we set

@(s) = conv[min{s*/ 2D p(s¥/0) 1/ CDp(_sY/ ROV for0< s <1, (2.119)

and extend it to [0, 00). Here conv denotes the convex envelope of a function. Then we can
take an increasing, convex and twice differentiable function ¢(s) such that ¢(s) < ¢(s). O

In the special case where s'/(20h(s'/(29) is convex and h(s) is odd, we have:

Corollary 2.9 Assume that all the conditions of Theorem 2.7 hold. If, further, h is odd
in [-1,1] and s"/COh(s'/(D) is convex on [0,1], then the energy E(t) of (2.7) satisfies the
following decay rate:

E(t) <2V(t), fort>0, (2.120)

where, for t large enough, V (t) satisfies the following differential equation:

av

V'(t) = —K, VYD p(( ; aV’

)Ry — K,V ap!(( ; )M @)y, (2.121)

where K1, Ky are positive constants independent of V.

Corollary 2.10 Assume that all the conditions of Theorem 2.7 hold. If, further, h satisfies
(2.95), then the decay properties (2.52) and (2.53) hold.

Corollary 2.10 shows that Theorem 2.5 is covered by Theorem 2.7 when (2.69) holds.
Since Theorem 2.7 does not include the case where (2.69) does not hold, we separate it from
Theorem 2.7.

We now give an example of logarithmic decay rate which complements the example of
polynomial decay rate existing in the literature.
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Example 2.11 Logarithmic Decay Rate. Let h(s) satisfy

hs) = sPe7, |s| <1, (2.122)
cils| <h(s) < |s|, |s|>1. (2.123)

It is easy to see that h satisfies all the conditions of Corollary 2.9 with ¢ = 1. Consequently,
for t large enough, by (2.121), V satisfies

V() < —wV?eav, (2.124)
which is the same as b
b \/ w
) > — 2.125
(e V) - a ’ ( )

where w is a positive constant independent of V. Solving the inequality, we obtain the
logarithmic decay rate
b bw b -1
V(it) < —|log(—t+eav® . 2.126
() < 2[1og (1 4 e (2120

O

Remark 2.12 The decay rate of the form (2.101) has been established for the wave

equation [21, p.127] and the compactly coupled wave equations [22]. It can be seen from the

proof of Theorem 2.5 at the end of section 4 that the key point to obtain this decay rate
t=2/(0=1) ig to enlarge the following inequality

s% + |h(s)[2 < c(h(s)s)H®+D), (2.127)

This can be done as follows. We first deduce from (2.95) that

5% < c(h(s)s)?/ D), (2.128)
Next, we have
a(s)] < cls|"?, (2.129)
|h(s)|P/@H) < c|s2/@+D), (2.130)
|h(3)|(2p+2—2)/(p+1) < c|s|2/(p+1)’ (2.131)
[A(s)? < els[/PFV R(s)[P/TD = c[h(s)s [+ (2.132)

In the situation of Theorems 2.2 and 2.3, since, for the vector function g(u) and vector u,
we have

| D | g () |7 D > oy« g(w) [ PHD (2.133)

the analogous inequality of (2.127) for g no longer holds. Thus, the decay rate (2.53) of
Theorems 2.2 and 2.3 can not be refined to (2.101) in the case where p > 1 and ¢ = 1/p. O

Remark 2.13 Observe that (2.44), (2.45) and (2.47) imply that ¢ < p. Therefore, under
the assumption 0 < ¢ <1, we have 2g < p+1. If 2¢=p+1,then ¢g—1=p—¢q > 0. Hence
we have ¢ = p = 1. Therefore, we have only two cases: ¢ = p =1 and 2¢q < p+ 1, as stated
in Theorem 2.2. O
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Remark 2.14 Under condition (2.43), assumptions (2.1) and (2.2) imply that the domain
Q) is simply connected and star-shaped with respect to z° € Q (in which case I'; = () or
Q= —Qy, both © and €, being star-shaped with respect to 2°. If ['; N Ty # 0, it is well
known that the solution of (2.7) is not regular enough (see [14]) to perform the integrations
by parts we will do later. Thus, the obtention of decay rates in this case is an open problem.
The extension of the results of this paper to the case I'y N[y # () requires a careful analysis
of the singularities that the solution may develop on I'; N T’y as in [16]. a

Remark 2.15 The expressions of w and 7 in the decay rates may look complex. But
they are useful since they provide explicit estimates of the dependence of the decay rates
w and 7 on the various parameters «, 3,2, ko, k3 - - -, etc. For example, if we take a linear
boundary feedback g(s) = k3s and let k3 — 0, then it follows from (2.64) and (2.67) that
w — 0. In addition, by these expressions, we can analyze the limit of the polynomial decay

2
rate (1 + ZE=207t) "7 a5 p ¢ tend to 1 and recover the exponential decay of the case
p = q = 1. Indeed, it is easy to see that

pl(izrl)llég(p, q) = min{1/2C}, a/(8Cs), k3/Cs} = 01, (2.134)
lim 7(p,q) = 01/[2(1+6:C1)] = w/2, (2.135)
p,q—1

. p+1—2q \—jitsm —wt/2
Jim, (1+ 27{1715) = e W2, (2.136)
O

Remark 2.16 For the linear elastodynamic system, the uniform stabilization with the
boundary feedback of the form
oij(u)v; = u; (2.137)

was established by Horn [18] by developing microlocal estimates (see [19]) for tangential
derivatives of the solutions of the elastodynamic system. However, this remains to be done
for the system of thermoelasticity.

3 Well-posedness

In this section, we use the theory of nonlinear semigroups to treat the problem of well-
posedness of (2.7). Therefore, we formulate (2.7) as an abstract Cauchy problem.
Let (-,-) denote the duality pairing between (Hf (Q))" and [(Hf, ()" or H}(2) and
H'(Q). We define the duality operator A : (H} ()" — [(HE, (Q))"] by
(Au,v) = (4, 0) 1 @ Y, vE (Hr, ()", (3.1)
and the duality operator Ag : H}(Q) — H1(Q2) by
(Ao, v) = (u, U)Hé(Q), Y u, v € Hy(Q). (3.2)

The Riesz representation theorem ensures that A and Ay are isometric isomorphisms of
(H{, ()™ onto [(HE,(R2))"]" and Hy () onto H (), respectively.
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Also, we define a nonlinear operator B by
(Bu,v) = / m - vg(u) -vdl, Y u, ve (Hp (Q)". (3.3)
I's
Lemma 3.1 Suppose that the function g € (C(R™))™. If there exist constants ¢ > 0 and
o > 0 such that for u € R™

l9(w)] < { 1+ [u" 2], >3,

o1+ |u]7), n=2 (3-4)

then B maps (Ht ()" into [(HE, (Q))"]'. Furthermore, B is hemicontinuous, that is, we
have
%i_I)I&(B(Ul + tu?),v) = (Bu',v) (3.5)

for any u', v?, v e (Hp ()"

Proof. If n > 3, then, by the trace theorem (see [36, Chap.1]) and the imbedding theorem
(see [1, p.217]), we have

HE (Q) — HY*(T) ¢ LE=2/=2(). (3.6)
Thus, we have

|(Bu,v)| = |/F2m-1/g(u)-'udF|

n/(2n—2 n—2)/(2n—2
c(/F Jg(u)| - 2/mar) /( ) / ([ @2 (- 2dr) )/(2n-2)
2

IN

n—2)/(n— n/(2n—2)
< e[t ([ ful®2em2ar) T ol o
n/(n— 2
< c[1+||u||({}1 o Il - (3.7)

This shows that Bu € [(H} (22))"]'.
If n = 2, then, by the trace theorem (see [36, Chap.1]) and the imbedding theorem (see
[1, p.217]), we have
HE (Q) — HY*(T') c L"(T) (3.8)
for any 2 < r < co. In addition, we may as well assume that o > 1 since, by condition (3.4),
we have

lg(u)| < 2¢ < 2¢(1 4+ |ult), for |u| <1, (3.9)
and
lg(u)| < e(1 4 |ul™™) < 2¢(1 + |u|7th), for jul > 1. (3.10)
It therefore follows that
(Bu,w)l = | [ m-vg(w)- vl
Iy
< o [ lg(u)fdr)( [ fof?ar)?
F2 FZ
< el ([ ufdD) vl g, oy
2
< 1+ ||,U’||((TH11,1(Q))"]||U||(H1£1(Q))n' (3.11)
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This shows that Bu € [(H}, (Q2))"]'.
If n =1, this is just the consequence of the following embedding

H; (Q) <= C(Q). (3.12)

It remains to prove that B is hemicontinuous. By the continuity of g, we deduce that for
any u', u?, v € (HE ()"

g(u' +tu?) — g(u') ast— 0 a.e. onT. (3.13)

It therefore follows from Lebesgue’s dominated convergence theorem and (3.4) that

lim(B(u' + tu?®),v) = m - vg(u' + tu?) - vdl
t—0 Ty
= m - vg(u') - vdl
I
= (Bu',v). (3.14)
This shows that B is hemicontinuous. O

Note that if g satisfies (2.45) and (2.46) of Theorem 2.2 (or (2.93) and (2.94) of Theorem
2.5), then g satisfies (3.4). Thus B maps (Hf (Q))" into [(Hf (€2))"]'.

Using the operators A, Ay and B, we can formally transform problem (2.7) into an ab-
stract Cauchy problem. In doing so, we multiply the first equation of (2.7) by v € (Hp (92))"
and integrate over () by parts. This gives

0 = /(u" — pAu — (A + p)Vdiv u + aVe) - vdz
Q
" Ou .
= /u -vdx—,u/ —-vdP—(/\—i—,u)/v-lev(u)dF
Q r Ov r
+/ (uVu - Vo + (A + p)div udiv v)dz +/ aVe - vdx
o Q
= /u"-vdx—i—/am-uu-vdP—i—/m-ug(u') - vdl
Q T T

+/ (uVu - Vo + (A + p)div udiv v)dx +/ aVe - vdz
Q Q
= (u",v) 4+ (Au,v) + (Bu/,v) + (aV8,v), (3.15)
and therefore,
u" 4+ Au+ Bu' + aV6 = 0. (3.16)

Similarly, multiplying the second equation of (2.7) by v € Hj(f2) and integrating over {2 by
parts, we obtain

0+ Aof + Bdiv o' = 0. (3.17)

Setting
o = (u,u,0), (3.18)
A® = (—u', Au+ Bu' + oV, Ayf + Bdiv u'), (3.19)
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we transform (2.7) into

! —
{¢+A¢_o, t>0, (3.20)

®(0) = (u, ul, 6°).
This leads us to define the solution of (2.7) as that of (3.20).
Consider the nonlinear operator A on H = (Ht (Q2))" x (L*(2))" x L*(Q) with the domain

D(A) ={(u,v,0) e : ve (H(Q)", Au+ Bv € (L*(Q))"

0 c HX(Q) N H(Q)}. (3:21)

We are going to prove that —A is m-dissipative. For the definition of m-dissipativeness, we
refer to [6, p.71].
In what follows, we denote by (-, ) the inner product in L?(Q) or (L?(Q))".

Lemma 3.2 Suppose that g satisfies (2.44), (2.49) (or (2.92), (2.97)) and (3.4). Then the
operator —A is m-dissipative on H.

Proof. By (2.49) (or (2.97)), we obtain that for any (u',v',0'), (u? v 6%) € D(A)
(A(u', v, 0") — A(u?, 0%, 0%), (u', 0", 0Y) — (u?, 0%, 0°))%
= (v =0 u' - uZ)(H%l @ + %(AO(Q1 — 6?) + Bdiv(vt — v?), 0" — 6?)
+(A(ut — u?) + Bvt — Bv* +aV (0 — 6%),v' —v?)
= L v[g(v') = g(v?)] - (v" = v*)dl + %HV(H1 — )|
0.

> (3.22)
Thus, —A is dissipative.
It remains to show that
(I+A)(D(A)) =H. (3.23)
Namely, we want to prove that
u—v =g,
v+ Au+ Bv 4+ oVl =1, (3.24)
0 + Apf + Bdive =&,

has a solution (u,v,0) € D(A) for every (¢,,€&) € H. For this, it suffices to prove that the
following problem
v+ Av+ Bv+aVl =y — Ap,
0+ Ay + Bdive = &,

has a solution v € (H{ (Q))" and 6 € H?*() N Hy(Q) for every (p,,&) € H. In fact, if
this has been done, then, by setting u = v + ¢, it is easy to see that (u,v,#) satifies (3.24).
Further, we have

(3.25)

Au+ Bv =1 —v—aVl e (L*(Q))" (3.26)
Thus, we have (u,v,6) € D(A).
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To prove that (3.25) has a required solution, it suffices to show that the nonlinear operator
A defined by

A(v,0) = (v+ Av + Bv + oV, %0 + %AOO + adivo) (3.27)

maps (Hp (Q))" x Hy(S2) onto [(H}, (2))"]' x H~'(£), that is
A((Hr, (Q))" x Hy(Q)) = [(Hr, ()" x H Q). (3.28)

In fact, if this has been done, then, since ¥ — Ap € [(Ht, (©2))"]" and %5 € L*(9), there exist

(v,0) € (HE, ()" x Hy(2) such that (3.25) holds. Further, since Agf = & — 0 — fdive €
L*(Q), we have § € H*(Q) N Hy ().

To prove (3.28), by Theorem 1.3 of [6, p.40], it suffices to show A is monotone, coercive
and hemicontinuous. For any (v',8'), (v?,6%) € (H}, ()" x Hy(S2), we have

(A(v', 91) A0, 6%), (vl,ﬁl) (v 6%))
= (v'— — %) + (A(v! v2), —v?) + (Bv' — Bo?, vt —v?)
+<aV(01 0%),v" —v?) + — <01 6%, 0" — 6%)

+5<A0(0 —6%),0" — 0% + a(dlv(v —v?), 0" — 6%
0.

> (3.29)
So A is monotone. Similarly, we have
(A(v,0), (v,0)) = {(v,v)+ (Av,v) + (Bv,v)
+%<o, 6) + %(AOH, 0)
> ol e + 51000y (3.30)

Thus, A is coercive. On the other hand, by Lemma 3.1, we can readily deduce that A is
hemicontinuous. That is, we have

lip (Al 0) + 102, 02, (v,0)) = (A, 82, (v,6) (331)
for any (v',0'), (v*,60%), (v,0) € (H}, ()" x Hj(Q2). This completes the proof. O

Lemma 3.3 Suppose that (2.43) holds. If g satisfies (2.44) and (3.4), then D(A) is dense
in H. Further, if g satisfies (2.45) and (2.46) (or (2.93) and (2.94)), we have

D(A) C Dy ={(u,v,0) e H : uwe (H(Q)NH: (Q)", v e (HE ()",
6 € H(Q) N H(Q),

+ (A + p)vdivu+ am - vu+m-vg(v) =0 on Iy},

., (3.32)
Hou
for some s > 3/2.

19



Proof. Set
D ={(u,v,0) €M : ue (HQ) NHL ()", ve (HQ)),

Ko, + A+ p)vdivu + am -vu =0 on Ty},
14

To prove that D(A) is dense in H, it suffices to prove that D is dense in % and D C D(A).
Firstly, we prove that D is dense in ‘H. For this, it suffices to prove that

8_11)
Mal/

is dense in (H{ (2))". Let v € (H[ (22))" be such that

W ={w e (H*(Q) N Hp (Q)" : + A+ p)vdivw +am -vw =0 on Ty} (3.34)

(v,w)(H%I(Q))n - 0, we W. (335)

For any fixed f € (L?*(2))", we consider the following elliptic problem

—pAu — (A + p)Vdivu = f in Q,
u = O, on Fl, (336)

0
,ua—u + A+ p)vdivu +am -vu =0 on Ts.
v

By the elliptic regularity theory, problem (3.36) has a solution v € W. Thus, by (3.35), we
have

(v, )= (Uau)(Hlll(Q))" =0. (3.37)

Hence, we deduce that v = 0. It therefore follows from the Hahn-Banach theorem that W
is dense in (H{ ()"

Next, we prove that D C D(A). Let (u,v,0) € D. To prove that (u,v,6) € D(A), it
suffices to prove that Au+ Bv € (L*(Q2))". For this, let w € (H{ (2))". By the definition of
A and B, we have

(Au + Bv,w) = (u, w)(H%l(Q))n +/r m - vg(v) - wdl’
= / (uVu - Vw + (A + p)div udiv w)dzx
o
+ [ am-vu-wdl (use g(0)=0)

I's

— /Q (nAu + (A + p)Vdiv u) - wds, (3.38)

since u € (H?(2))™. It therefore follows that there exists a constant ¢, depending on u, such
that
|(Au + Bv,w)| < c||w||, (3.39)

which implies that Au + Bv € (L*(Q))". Thus (u,v,0) € D(A).
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It remains to prove that D(A) C Dy if g satisfies (2.45) and (2.46) (or (2.93) and (2.94)).
Then it is sufficient to prove that u € (H5(Q)NHL, (Q))" for some s > 3/2if (u,v,0) € D(A)
For this, let f = Au+ Bv and h = —m - vg(v). Then, for any w € (Hp, (€2))", we have

<f7 UJ) -

/Q(,uVu -Vw + (A + p)div udiv w)dz

+ am - vu - wdl +

. ~wdl. 3.40
5 [ mevg(o) w (3.40
This shows that u is a weak solution of the following elliptic problem
—pAu — (A + p)Vdiv u = f in Q,
u = 0 on Fl, (341)
8 + (A + p)vdivu +am -vu =h on T.
By assumption, we have
f=Au+ Bv € (L*(Q))". (3.42)
We further prove that
he (H°(I))" (3.43)
for some 0 < o < ¢/2. For this, we let
S1 = {lz,y)eI'xT : |z —y| <1}, (3.44)
Su = {(z,y) € S ¢ |v(z) —o(y) <1}, (3.45)
Sie = {(=,y) €S : |v(x) —v(y)| > 1} (3.46)
To prove (3.43), by definition (see [15, p.20]), it suffices to prove
lg(v g9(v(y))?
dl'(z)dI'(y) < oo. 3.47
/.. |x_y‘n e -dD(@)dT (y) < o0 (3.47)

The integral over I' x I' — 5} is bounded above by

¢ / /M l9(v(z)) = g(v(y))[*dT(z)dT (y) < ¢ /F lg(v(z))[?dT () < o0, (3.48)

since g(v(z)) € L?(I") which is true because v € (HY?(I"))" and g satisfies (2.45) and (2.46)
(or (2.93) and (2.94)). Therefore, it suffices to prove

I = /Sl ‘g( |i 1) _|ng(1+(20))| dF( )dF(y)

- I y|n DT g (ayar )

][ B A
L + 1,

< Q.

(3.49)
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By (2.45) and Hélder’s inequality, we have
I |2qu dl’
<
b= //511 \x — |” 1+20 (z)dl'(y)

< (//,, Lt |x_y| D ar @)ar(y))
* / /s1 |z — y\<"—1+2v—nq>/<1—q) dr(x)dr(y))l_q- (3.50)

Since v € (H}, (€2))", by the trace theorem, we have v € (H'/?(I'))", and then we have

// [0() = VWP 1 ar(y) < oo (3.51)

lz —y|"

In addition, since for 0 < 20 < ¢

—1+20 — 20 — 1
n + 20 nq:n+ o <n-1, (3.52)
l—¢q 1—gq
we have 1
/ 5. To = g Trzemaya—g A (@)L (y) < oo. (3.53)

It therefore follows that I; < co. On the other hand, by (2.46) and (3.51), we have
‘2
I, < // ——————dl'(z)dl'
s |33 - y|n g )
|2
< / / ) = L 4r (z)dr
< Jf "m0 @)
< (3.54)

Thus we have proved (3.49). In a similar way, we can show that I < oo if (2.93) holds.
Finally, we prove that

€ (H°(Q) N Hy, ()" (3.55)
with 3 3
=§+0> 2" (3.56)
Let v = (v, Vs, - - -, V) denote the unit normal on I" directed to the exterior of 2 and consider
the following system
Z A+ p)viv; + 6iplé; = hiy i=1,--+,n, (3.57)

where d;; denote the Kronecker symbol, i.e.,
_J 1, 1=y
dij —{ 0 ij (3.58)
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It is easy to see that the system has a solution £ = (&, ---,&,) € (H?(T'))") for h € (H°(T'))".
By the trace theorem (see, e.g., [36, p.39, Theorem 8.3]), there exists ¢ € (H*(Q)NH} (Q))"
such that

0

a_f —¢ =0 onl. (3.59)
Let {7*(z)}?_] be a tangential vector field such that{v(x),7'(x),---,7" (x)} forms an
orthonormal basis in R" for almost all x € I'. Hence, there exist ¥¥7 (j = 1,2,---,n; k =

1,2,---,n — 1) depending on {v(z),7'(x), --,7" !(x)} such that

0p; _ p; - kja%'
ox; gy * ,;7 ork
_ 9%
T ov
= 1§ on T, j=1,2---,n. (3.60)
It therefore follows from (3.57) that
Jp .
ms, + A+ p)vdivp+am-vp =h on Ts. (3.61)
Setting
b=u—og, (3.62)
then v satisfies
—pAY — A+ p)Vdivp = F in Q,
=0 on I'y,
by | (3.63)
ha, + A+ p)vdivp +am -vp =0 on Ty,
where
F=f—pAp— A+ p)Vdiv g € (H>(Q))". (3.64)

Thus, problem (3.41) is equivalent to (3.63). By the classical variational methods (see, e.g.,
[13]), for every F € ((Hf,(2)')", problem (3.63) has a unique weak solution ¢ € (Hp ()"
in the sense of distribution

/Q UV - Vé+ A+ p)divipdive)dz + /P am-vip-¢dl = /Q F-gdz Ve € (HE (Q)". (3.65)

Moreover, by the classical Nirenberg’s translation method (see, e.g., [2, p.107, Lemma 9.2]
or [36, p.124]), we prove that, if F' € (L?(Q))", then ¢ € (H*(Q) N H{ (2))". Our proof
is essentially the same as that of Lemma 9.2 of [2, p.107]. Since the regularity is local
property, it suffices to prove that, for any z € , there exists a neighborhoood O(z) such
that ¢ € (H%(O(z) N Q))". We consider the case z € T as the case x € ) is much easier.
For simplicity, we may as well assume that x = 0 € I'y and the boudary is flat with the
normal oriented in the direction x,, since the general case can be transformed into the special
case by a mapping of class C? (see Remark 3.4 below). Therefore, there exists a hemisphere
Gr={z : |z| < R, m, > 0} such that Gg C Q and [y = {z € G : =z, = 0} C .
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Let 0 < R < R and R" = (R + R) and let ¢ denote a real function which is infinitely
differentiale on R™ and ( = 1 on Gx and ¢ = 0 outside Gr». Note that ( need not vanish
on the flat part I'yg of the boundary of Gg. Let C§°(GrUT'yg) denote the function space of
all infinitely differentiable functions with support in Gg U I'sg. By (3.65), we have for any
¢ € (C°(GrUTy))"

/G (U Vo + (A+ p)divdivg)da + /P am vy gl = /G g (3.66)
Define the bilinear form B(v, ¢) by
B, ¢) = /G (LY - Vo + (A + p)divepdive)de + /F am - v - ¢dr. (3.67)

Then we have
1B(y, 9)| < [|Fl[[g]l V¢ € (C5°(GrUTa))". (3.68)
For a real number, we define the difference operator & by

Shu=h Mu(@r, @i+ by @) — Uy, Ty )] i =1,2,-00,m.
We now want to estimate the difference quotients 6} (C¢) for 1 =1,2,---,n — 1. Since
BO.(Cv).6) = [ (V) - Vo + (A+ p)div(3}(Cv))dive)da

+ [ am v (@(C)) - g

= [, (Bh(V(CV) - Vo + (A + )8} (div(Cus)dive)da
+ J,,., @ v(8(CY)) - gdT

=, (0 VC+ (V) - V65 + (A )5,(VC - + Cdive)div)da
+ J,,, @ v(8i(CY)) - 4T

= u [ (Bh5V0) - Yoy + (Vi 61,,(V6))de
FO ) [ (01(VC-)dive + Cdive)o”  (dive)de

+ [ am-vc- 0ty (8)dr
= u . (Bh5V0) - Vs + Vs V(O 48) = Vi VC )i
+(+ 1) [ (G(VC - 9)dive + divdiv(Co' ,9) — divy VG - 8L, 0)da

+ am - v - (6, ¢)dl

I Ye]
= B.COL0) +p [ (BL(6V0) - Vo — Vi - VO 10)d
+(A+ ) /G (68(VC - 9)dive — divV( - 8, ¢)dz. (3.69)
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It therefore follows from (3.68) that

|B(6;,(C), 0)| < IFINCS-noll + Clidllcmarye 19l (arcryyn
< CUIF + 1Nl e @ ryy) 1@ et (Gmyyn- (3.70)

Let (Hp,,(Gr))"™ be the completion of (C§°(Gr UTy))" in (H'(GR))". Then by a density
argument, we obtain for any ¢ € (Ht,,(Gg))"

1B@L(CY), 9 < CUFI + 1]l o @rpm )bl G ryyn- (3.71)
Since 6}, (Ctp) € (Hy,,(Gr))™ if h is small enough, we deduce

BOHCOL B < CUFI+ [l ICD ey (372)
On the other hand, it is clear that
|B(31,(C¥), 64(C))| > ClI8, (S e (G-
Hence it follows from (3.72) that
18Oy < CUFN + 19l ¢ar @ ryym)- (3.73)

Since ( = 1 on Gr, by Theorem 3.16 of [2, p.45], we deduce that % € (HY(Gg))" for

alli=1,...,n, j =1,...,n — 1. It remains to show that g%{’ € (L?(Gg))"™. To do this we
have to distinguish the components v; for ¢ = 1,...,n — 1 and for ¢+ = n. In what concerns
1=1,...,n—1, we have

8277bi / 0 . 2
—Hora = HAYt (/\+M)a -(divyp) + F; € L*(Gr),
while
821% _ ! 0 8¢1 617bn—1 2
—(A+2p) e PN+ (A 1) 5 - (6—331 ot axn_l) +F, € L*(Gpr),

where A' = 2, 4 4+ 9
1 n—1
By interpolation (see, e.g., [36, p.29, Theorem 6.2]), for F' € (H*"%(Q))" we have 1 €
(H*(Q) N H{ (Q))", and then u € (H*(Q2) N H (Q2))". This completes the proof. 0

Remark 3.4 Let us briefly explain how to deal with the case where the boundary is not
flat by a flattening procedure. Suppose that z° € I'y and the boundary of 2 near z° can be
expressed by

&(x1,29,...,2,) =0.

Let

vi = vi(r1, 20, ... x0) =25, i=1,...,n—1, (3.74)
Yn = yn(xl,xQ,...,xn)=<I>(x1,:c2,...,:rn) (375)
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be the invertible mappling of class C? which transforms € into Q. We denote by = = z(y)
the inverted mapping of the above mapping y = y(x) and set

D(y) = Y(z(y)).

By calculations, we obtain

a¢z _ a@bz ayk
ox; Z * Oy, Oz (3.76)
0*1h; _ v 0™ % oy n O 0%y (3.77)
O3 izt OykOy Oz Ox; = Oyy, OxF '
Therefore, the first equation of (3.63) is transformed into
- L0 Oy Oy N O Py
Fly) = - +
) M< ,; L OOy aac] 83:J j,%gl Oyr Ox3 )
" 9%, Oyy 0 "oy O
0+ (X ﬂﬂﬂntzﬂi i=1,...,n, (3.78)

G.kl=1 aykayl 8-Tj ox; k=1 6yk 630]69@ ’

where Fj(y) = F;(z(y)). Moreover, since the unit normal v(z) on the boundary near z° is
equal to

Vi
v(z) = ,
(z) Vo
we have
O . 0% O Oyr Oyn 1
= j Vynl ", )
ov Z 8.T] kz OYx 8% 8.%] | (3.79)
: = 0, " 9y Oyx, Oyn -
vidivy = Ly, = - Vy.| L. 3.80
; 0z, Mzzl Oy (%] ox; | | ( )
Hence, the boundary condition of (3.63) is transformed into the following form
0 Oyi Oyn " O Oy Oy | - .
ZZRZI (A + i 2RI | =0, i=1,...,n, 3.81
uj’kz_l Oyx Oz 0z ; ( 2 %_:1 O0yy, Oz Ox; v ( )

where @ = a(y) > 0. Since the already known H'-regularity guarantees the first order
derivative terms of the unkown ¢ in (3.78) are in L2, they may be put on the right hand
side and it is then sufficient to keep the second order terms on the left hand side. Therefore,
since v(y) = (0,...,0,1) on the boundary of Q near 3° = y(z°), it follows that the bilinear
form corresponding to equation (3.78) and boundary condition (3.81) is

S - s " i Ob; Oy, 3?11 " Oy; Od; Oyx Oy
B(®.9) o GR”M laykay,axjaxj /R”§18yk Oy, Oz Ox; y
+ [ @y ¢drl, (3.82)
I Ye]
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where G r and f‘zg denote the same subsets in the y—space as Ggr and I'yg. It is clear
that the bilinear B(v, ¢) has the same properties as B(¢, ¢). Therefore, the above proof of
regularity is valid for the general case (see, e.g., [8]).

By the classical theory of nonlinear semigroups (see [6, Chap. 3]), we have

Theorem 3.5 Let I'y and T’y be given by (2.1) and (2.2). Let (2.16) and (2.43) hold.
Suppose that the function g satisfies (2.44), (2.49) (or (2.92), (2.97)) and (3.4). Then we
have

(i) For every initial condition (u°,u',0°) € H, problem (2.7) has a unique mild solution
satisfying

(u,u',0) € C([0,00); H). (3.83)

Moreover, if (u,0) and (v,&) are two solutions corresponding to initial states (u°, u',0°) and
(v0, v, £9), respectively, then we have for every t € [0, 00)

1(u(®), w'(£),0(2) — (v(t), v'(£), ()l < N1 (u”, 0", 0°) = (07, 01, ) |- (3.84)

(i) Further, if g satisfies (2.45) and (2.46) (or (2.93) and (2.94)), then, for every initial
condition (u®,u',8°) € D(A), problem (2.7) has a unique classical solution satisfying

u € L*®([0,00); (H*(2) N HE, (D)), (3.85)
" e L=([0,00); (Hr, ()"), (3.86)
u" € L™([0,00); (L*(2)™), (3.87)
0 € L™([0,00); H*(Q) N Hi (Q)), (3.88)
¢ € L*(]0,00); L*(2)), (3.89)

for some s > 3/2.

4 Proofs of the Main Results

In this section, we borrow the Lyapunov method to prove our main results.

Let u, 6 be the solution of (2.7) and ¢ the solution of (2.27) corresponding to the present
solution u of (2.7) (Note that ¢ depends on t as u does). Let d be any positive number. We
define a functional V on H by

F(t) = F(u,0,t) = /Q[Quém - Vu; + (n — Vuju; + Culp;lde, (4.1)

V(t) =V(u,0,t) = E(t) + S[E(t)|°F(t), (4.2)

where C and o are nonnegative constants that will be determined later. Here we have used
the summation convention for repeated indices. Thus, equality (4.1) means that

F(t) = Z /Q[Qu;-m - Vu; + (n — Duju; + Copiui]de. (4.3)
=1
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Evidently, the functional V' is actually a generalized energy functional which is closely
related to the energy functional E(t). Such similar functionals were constructed for the
wave equation (see [10, 25, 51]), thermoelastic plate models (see [42, 43]), viscoelasticity (see
(34, 35]) and thermoviscoelasticity (see [39]).

We will see below that the term Culy; plays a key role in dealing with the case where the
potential a is large.

We are going to show that V satisfies

V() < —cVorti(e), (4.4)

where ¢ is a positive constant. Then, by solving differential inequality (4.4), Theorems 2.2,
2.3 and 2.5 are proved.
We first show that, by choosing § sufficiently small, V' and F are equivalent.

Lemma 4.1 Let I'y and T’y be given by (2.1) and (2.2), respectively. Suppose that (2.16)
holds. Let the function g € (C(R™))" satisfy (2.44), (2.49) (or (2.92), (2.97)) and (3.4).
Then we have

(1= 6CTE (1) E(t) <V (t) < (1+6CTE(1))E(?), (4.5)
for all solutions u,8 of (2.7), where the positive constant C is given by
2R
cr = 7;’ + (n— 1) + Chy. (4.6)
Proof. 1t is easy to see that
R() 2RO
2/u;m-Vuidx < [N + | Vus(0))?] £ =—=E(*). 4.7
2/ | \/ﬁ[” @O + Vi @)]7] E(t) (4.7)
Using (2.25), we obtain
| wdasda] < S 0+ (0l el < M) (48)
Using (2.28) and (2.24), we have
| foigdal = 5[ 20
Q
k ”y 1
< =l )”2+k2 s lei(®)1I°]
k 7
< SOIF+ 5 [, fuPar)
< k17 ! 2
< B+ ||u(t>||(H;1(m)n]
< kvE(). (4.9)
Noting (4.6), we deduce from (4.7), (4.8) and (4.9) that
|F(t)| < CYE(), (4.10)
which implies (4.5). O

We then estimate F'(t).
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Lemma 4.2 Let 'y and T’y be given by (2.1) and (2.2), respectively, satisfying (2.43). Sup-
pose that (2.16) holds and the function g € (C(R™))" satisfies (2.44), (2-45), (2-46) and
(2.49) (or (2.92), (2.93), (2.94) and (2.97)). Let u,0 be a classical solution of (2.7) with
(u®,ut,0%) € D(A). Then we have

F'(t) < —E(t)+Gy|[ve@)|”
C2k?

12 " n|2
+ . [(m-u—l— " )|u| +Cim - v|g(u)| ]dF, (4.11)
where
o?R2 a?(n—1)2X2  C?e®’k2y?  a)?
CII — 0 0 1 1 412
2 UE + 4e + 4e + B’ (4.12)
2 2 -1 2 2
Cé/ — RO 4 (n +C) RO’Y ’ (413)
o de
and the constant C' is given by
2 2
C = Cy = max{0, 22050 L9y (4.14)
If, further, the function a(x) satisfies (2.50) or (2.51), then we can take
C =0. (4.15)
The constant ¢ is given by
1/8, if C = Cy,
e=<¢ 1/8, if C =0 and a(x) satisfies (2.51), (4.16)
(1 -2K(a)Ryy?)/8, if C =0 and a(x) satisfies (2.50).

Proof. Since (u°,u',60°) € D(A), we have u € L*([0,00); (H*(Q2) N H{, (2))™) for some
s> 3/2and 0 € L*([0,00); H*(Q2) N H}(2)). Hence, the following integrations by parts are
valid.

By (4.1), we have

F'(t) = /2u2’m-Vuidx+/ 2uim - Vuidz
Q Q
+ [ (n = Vuuldz + (n— 1l
Q
+C/ go,-ué’dx%—C’/ uida. (4.17)
0 %

We now estimate every integral in (4.17) as follows. Since u = 0 on I';, we have

or ~ v vy on TI4y. (4.18)
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Thus, we obtain

2/ u;m - Vu;dx
0

% ]m - Vu,;dz

Q/Q[MAui—i-()\—f-u) 0 o

oz, (divu) —

,u/ [ZGUim -Vu; —m - 1/|Vuz-\2]dF + (n — 2)p|| V| |?
r

ov

. auz . 2
+(A+ ,u)/F [2d1v(u)mk1/ia—xk —m - v|divu| ]dF
a0
u— ] 2 u— - . _—
+(n—2)(A+ p)|divul]? - 2a /Q (m Vug) 5 d

8uz~ 9 . 2
/Flm-y[u| 81/‘ + (A + p)|divul ]dI‘

aui
+2 Ty [,u ov

—/ m - v[p| V> + (A + p)|divu[*)dT
Ty
+(n = 2)[pllVuil* + (A + ) l|divul|]

o0
—204/0(m-Vui)a—xidx.

+ A+ ,u)lxidivu]m - Vu,;dl

Since m - v < 0 on I'y, we have

In addition, we have

—Qa/g(m : Vui)aaa

/ m - 1/[,u|%|2 + (A + ,u)|divu\2]df <0.
Ty Oov

a2R2
dz < ep||Vu;(t)||? 0
L0 < pl Vi ()] + e

It therefore follows from (4.19)-(4.21) that

2/ uim - Vu;dz
Q

(9uz~

ov
B /r m - V[V + (A + p)|dive[*]dT
+(n = 2)[pl|Vuil]* + (X + p)[|dive||?]

2 QQRS 2
+ep|[Vui(t)|] +?|IV9(75)|| :

< 2 [u + (A + ,u)l/idivu]m - Vu,;dl'
I's

For the second integral in (4.17), we have

Q/S)u;m - Vuidz = —nllul(t)]]* + /r2 m - v|u,|?dl.
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Using (2.25), we deduce

IN

1 / wl'd
(n )Quuzx

By (2.28) and (2.29), we have

IN

IN

Using (2.28), we have

(n—1) / wi[pdu; + (A + ) 61 (divu) — agi]dx
(n—1) / [ %M |t vidivu] u;dl

( = D[ullV ( )||2 + (A + p)lldivu(t)[1?]

Do /

(n—1) 5 [ + (A + p)vidivuudl

—(n 1)[M||2 ( )P 4 (A + ) [ dive(t) 1]
0= 17220900+ )y,
C/ngz-u;-'dx
C / eiluAu; + (A + p) aii (diva) — gi]dx

C / au, + (A + ,u)l/ldlvu] pidl’

—C’/Q[,LLVUZ- t)Vi(t) + (A + p)divu(t)dive(t)|dz

—C’a/ (pi%da:

C [,ua + (A + ,u)l/ldlvu] u;dl
r, U Ov
C?a?k?~? £
+4—1||ve< I+ 2 eI
C/ [,u 8 + (A + p)vdivu]udl
02 2k ’}’
TIHVQ( N+ ellu®ta, @y

02
C’/'-'-d<—'-t2 ()17
o piidr < = lles (O] + ellu ()]

C2k?

IA

[ k(o) Pdr + el e)|.
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It therefore follows from (4.17) and (4.22)-(4.26) that
F'(t) < =[pllVuill® + (A + plldivel” + [Ju;(2)]]
+3e|u®)|[tuy, @ +elluiOI’
a’R? N (n —1)2a2\2 N C?a’ki~?
e de 4e

+| [Ivee)?

49 [Maui + (A + ,u)l/z-divu]m -Vudl' (= 1)
r, L' Ov

_/F m - vV[p|Vu> + (A + p)|dive|dT (= L)

21.2
1

ColiPar (=15

+ [ [meov+
T2

ou;
—1+C / :
+(n—-1+0C) . s,
—2E(t) + 6¢E(t)
o’R? n (n —1)2a2)\2 n C?a’kiv?
e 4e 4e
+L+ L+ 13+ 1,

+/ am - v|u;|*dU (= I5).
Ty

+ (A + p)ydivu]udl (= 1)

IN

+

[Ivo@I? + Sl

Note that we add here two terms
2162, [ am - viufdr
p T2
to make up [u||Vug||®> + (A + p)||divul|? + ||ul(2)]]?] into E(t). Since

L = =2/ [am-vu; +m-vg(u')]m - Vu;dl
To
2a° R? 2R?
=+ = Rl (u) P V)

< F2m-z/[

we have
2a

2R2 2R2
Hluaf? + =R lg (w) 7] dr

Il—}—IZS/ m-y[
Ty 0]

In addition,

IL+1Iy = —(n—l-i—C)/ [am - vu; + m - vgi(u)]udl + [ am - v|u;[2dD
Ty 1)
< —(n—2+C’)/ am - v|u;|*dT
Iy
(n — 14 C)*Roy? "2 € 2
+ ) mev| = l9:()? + 7 51l |ar
< —(n—2+C)/ am - v|ug|*dl’
T
(n—1+ C)?Ryv?
e [ mvlg@)Pdr + lu@lffy o
g Ty 1
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Noting definitions (4.12) and (4.13) of C% and CY, it therefore follows from (4.27)-(4.31) that
F'(t) < —2E(t)+8<E(t) + C5||Vo(t)|
272
+ [m-u+ %]\u'\QdF+C§'/ m - v|g(u')[>dT
Ty 4e I's

2

> —n+2-0)||uldl (=1). (4.32)

2a
+ [ am- I/[
e
Thus, by taking C' = Cy and ¢ = 1/8, we have I < 0, and then we deduce (4.11).
If, further, the function a(x) satisfies (2.51), we can take C' = 0 and we still have I < 0.
Then (4.11) follows.
Likewise, if the function a(z) satisfies (2.50), then we can also take C' = 0. However,

in this case, since I is no longer negative, we estimate I as follows. Let K(a) be given by
(2.23). Using (2.24), we deduce

1

IN

K(a) /F2 m - v|u|*dl’

K (a) Ro[[u(t)|{a, (@
< 2K(a)Roy’E(t). (433)

IA

Thus, by taking e = (1 — 2K (a)Ry?)/8, we also deduce (4.11) . This completes the proof
of Lemma 4.2. a

We are now ready to prove our main results. The method of the proof is analogous to
the one developed by the second author in [51].

Proof of Theorem 2.2. We first assume that (u°, u',6°) € D(A). Then Lemma 4.2 is valid.
We note that C' = 0 because the function a(z) satisfies (2.50) or (2.51). Then the constant
C7 in Lemma 4.1 and the constants C!) and C¥ in Lemma 4.2 become C}, Cy, C5 in Theorem
2.2, respectively. By (2.42), (4.10) and Lemmas 4.1 and 4.2, we have

V(t) E'(t) + (
E'(t) +5aE" Yt)E'(t)F(t) + 6E° (1) F'(t)
) =

“(OF()

(
[1=6C1oE (1) E'(t) — 0BT+ (1)

(

VAN

FOCLE (1)|| VO] + 5E"(t)/r m - vl |2 + Cs|g(u')[]dD

oaCy

g
— [1 - 5010E”(t)] /1“2 m-vg(u') - u'dl

—5E (1) + [5E7(0) (T2 + G — %] Vo)

OB (1) /F m - v[Ju'[2 + Csg(u)[?]dL. (4.34)
2
We now distinguish the cases p=¢=1and p+1 > 2q.
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Case I: p = ¢ = 1. In this case, we take 0 = 0 and 6 = §; (see (2.64)) in (4.34). By
definitions (2.64) and (2.59) of 6; and Cj, it follows from (4 34) and (2.49) that

V'(t) = —6F /m vg(u') - u'dl

+5104/ m - v|u'[*dl’

IA

5. E(t) + [0,Cy — ks] /Fzm-y|u'|2df
_5E{) (use (45))
SIS (4.35)
(

IN

IN

1460
Solving this differential inequality and using (4.5), we obtain
1
Eit) < ——V(t
0 < 15V
1
< V(0 —01t/(14+61Ch)
S 15aG " We
14+ 0,C
< %{{dE(O)e—‘WWICI). (4.36)
This is (2.52).
Case II: p+ 1 > 2q. We first estimate

E° (1) / m - v[[u'[2 + Csg(u')[2]dL. (4.37)
Tan[[u|<1]

Applying Young’s inequality

b 1 1
abga_+—, Va,b >0, and s,7 > 0 with — + — =1, (4.38)
s | T s T
we have for any b > 0
E”/ m - v|u'[22dD
Tanflw’|<1]

PH1 =20, p41)/(p+1-20) oto+1)/(p41-20)
p+1

2 1 30 1)/ 20)
. r
+ (p + 1)b(p+1)/2(1 (/Fgﬂ[u’|§1] m V|u | )

P+ 1= 20, 411)/p41-20) grolo+1)/(p+1-20)
p+1

IA

VAN

2q
(p + 1)b@+D/20) (/mnuwsu m - vdl)

X / m - v|u' [Pl
T2Nflu’|<1]

P+ 1= 20, p41)/(p+1-20) oto+1)/(p41-20)
p+1

2g[Rymes(I'y)]PH+1-20)/(20) / -
: ~udl.
k3(p + 1)ble+1)/(29) F2ﬂ[|u’|§1]m vg(u) -u

. (p+1—2q)/(29)

IN

(4.39)

34



Thus, by taking

p+1 )(p+172q)/(p+1)

- <204(p +1-12q) ’ (4.40)

we obtain

Bo) [ me o[+ Clg(w) Flar
ranfw|<1]

(note that |u/|? < |u/|?? since ¢ < 1)

CLE’ (t) / m - v|u'|*C

FaN[|u'[<1]
1

IN

Eoe+1)/(p+1-29)

IN

q(2C,) Pt/ CD[Rymes(Ty) (p + 1 — 2¢)] P+ -20/(9)
ks(p + 1)®+1)/(20)

X / m-vg(u') - u'dl. (4.41)
T2N[lu'[<1]

It therefore follows from (4.34) and (4.41) that

+

aa01

_@
g g
6CLE°(0) N
Eo(0)+ &2 - ldl
+[5Cla (0) + T ] /1"20[u’|21] m-vg(u') - u'd

+[(5010E0(0) — 1] / m-vg(u') - u'dl

T2N[|u[<1]

VI(t) < —8ET(t)+ [0B7 (t)( +Cy) — ] IIVO)|?

+5E”(t)/ m - v[[u'2 + Cy|g(u')[?]dD

raniiu|<1]

—S6E7H(t) + éEU(p+1)/(p+172q)
2

IN

+[5E"(t)(0a01 - %

6C4EU(0) , '
+ E°(0)+ ———=—1 . -udl
[5010 (0) ks } /mepl] m-vg(u')-u'd

+Cy) = Z]IIVO)|I”

+[5C'10E”(0) - 1] / m - vg(u') - u'dl

Tan[|u'|<1]
q(20,)PtD/CO[Rymes(Ty)(p + 1 — 2¢)]P+1—20/(0)
k3(p + 1)+1)/(29)

X / m-vg(u') - u'dl. (4.42)
F2Nfle’|<1]

+9

We now choose o so that ( D
o+
c+l=———"—. 4.43
p+1—2¢q ( )

Then
G_p+1—2q_

5 0. (4.44)
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By taking § = d, (see (2.65)) and o = oy in (4.42), we obtain

V'(t) < —%E"‘)“(t). (4.45)
By (4.5), we have
V(t) < [1+6.CLE(0)]E(t). (4.46)
It therefore follows from (4.45) that
02

V'(t) <

B _2[1 + 5201E00 (0)]00 VUO_H (t) (447)

Solving this differential inequality and noting definition (2.65) of J,, we obtain

. 0052t —1/00
V() < [(V(O)) +2[1+5201an(0)]0’0+1]
< [(BO) + 0GB 0) 7" + 5o 52((1?2250(0)]"0“]_1/00
O'()(Sgt —1/o0
< 2B(O)[1+ 2(2E(0))0°[1+5201E00(0)]0°+1] ’ )

which, combined with (4.5), implies (2.53).
Finally, if (u®, u!,6°) € H, in view of (3.84), we can show that Theorem 2.2 still holds by
a density argument. O

Proof of Theorem 2.3. We first note that C = Cy and the constant C} in Lemma 4.1 and
the constants Cy and Cf in Lemma 4.2 become C7, Cj, C4 in Theorem 2.3, respectively. In
this case, (4.34) becomes

V() < —6E°H(t) + [515”@)("0;301 +Cy) - %] V)|
—[1 - oCioE"(t)] - vg(u') - u'dl
+6E°(t) /F [(m v+ %ﬁ%)w + Chm - v|g(u)?] dT. (4.49)
okt

Because the additional term does not contain the factor m - v, we have to impose

condition (2.69) on I'y so that ihe sum of the integrals on I'; becomes negative if ¢ is
sufficiently small. The rest of the proof is the same as that of Theorem 2.2 except that Cy
is replaced by Cj and the integral [ m - vg(u') - w'dl is enlarged to Ry Jr, g(u') - v'dl" or
reduced to 1 fp, g(u') - u'dl. O

Proof of Theorem 2.5. The proof of the first part of Theorem 2.5 is the same as that of
Theorems 2.2 and 2.3 except that all v’ and g(u') are replaced by u} and h(u}), respectively.
Also, in this case, the constant b in (4.40) is taken as

p+1 )(p+1—2q)/(p+1)

b= (204n(p +1—2q) ’ (4.50)
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and (4.41) becomes

E°(t) m - v[[ui]® + Cs|h(u;)|*]dl

ran[luf <1]

1
2n
+(1(2(,*4)(1)+1)/(2q) [nRomes(L2)(p + 1 — 2¢)]@+1-20)/(20)

ks(p + 1)@+1)/(20)
X / m - vh(u})u,dT. (4.51)
ranfull<1]

Eo+1)/(p+1-2q)

IN

Note that the space dimension n appears here.

However, the proof of the decay rate (2.101) is a bit different. Hence we present it as
follows.

We first look at the case corresponding to Theorem 2.2. Since p > 1 and ¢ = 1/p, as in
Remark 2.12, we have

|s]” + Cs|h(s)[” < Cs(h(s)s) @™, |5 <1, (4.52)
where 14 Cukok
Cs = % (4.53)
3

It therefore follows that for any b > 0
E(t) [ mevllulf?+ Cylh(up) Flar
Panfluf|<1]

o P = Lywrie-1 gowrn)/e-1)
p+1

2C5 ,
e . R )2/ PO
* (p + 1)be+1)/2 (/rm[u;|<1} m (k) )

o2 = Lyor0/6-1) gowr1)/e-1)
p+1
2C5

+ (p —+ 1)b(p+1)/2 (~/1—‘zﬂ[ug|<1} m-v
></ m - vu;h(u;)dl’
Tonflug|<1]

0P = Lo+ 0/6-1) potr1)/-1)
p+1
205[R0mes(F2)](p_1)/2/ .
- vujh(uf)dr . 4.54
o+ DV ooy ™ (454

IN

(p+1)/2

IA

)(pfl)/2

IN

Thus, by taking +1 (p-1)/(p+1)
B p p— p+
b= (")

=T , (4.55)
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we obtain
E(1) [ m - wlul? + C|h(ul)P)dT
Tanflul|<1]

1

< Lpotrneoy . CCs) T2 [Rymes (D) (p — 1]PD72
=9

(p+ D)0/
X / m - vu;h(u;)dl. (4.56)
P juf <1]

It therefore follows from (4.34) that

OOJCl

B

0CLE°
-I-[(SClJE"(O) + @T(O) — 1] /I‘zﬂ[u'.|>1] m - vu;h(u;)dl’

VI(t) < —8ETH(t) + [SE° (1)( +C’2)—%]||V0(t)||2

+[6C10E(0) 1] / m - vl h(ul)dT

Fanflui|<1]
+OE°(t) | m - luf|? + Cslh(uf) *dT
Fanffui<1]

J
—§E°T(t) + = goe+1)/(p—1)
(t)+35

IN

[ (222 - %

B
” dC,E°(0) v
+[5010E (0) + B 1] /Fzﬂ[u’.|21] m - vu;h(u;)dl

+Cy) — 2] IVO@)|I?

+[5010E”(0) — 1] / m - vu;h(u;)dl

Pl <1]
(2C5)P+V/2[Rymes(T) (p — 1)]@-1/2
(p+ 1)®+D)/2

x / m - vubh(u!)dT. (4.57)
Ton{ug <1

+9

By taking § = 0, (see (2.65)) and 0 = (p — 1)/2, we obtain

V() < —%E(”“)/Z(t). (4.58)

The remainder of the proof is the same as that of Theorem 2.2.
The proof of the case corresponding to Theorem 2.3 is similar. O

We now use the method developed in [41] to prove Theorem 2.7.

Proof of Theorem 2.7. If E(ty) = 0 for some ty > 0, then, by (2.42), we have E(t) = 0 for
t > to and then the theorem holds. Therefore, we may assume that E(t) > 0 for ¢ > 0. This
assumption ensures that, in the following proof, ¢"(aF(t)) makes sense as we have assumed
that ¢(s) is twice differentiable outside s = 0.
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We first note that C = Cj and the constant C}] in Lemma 4.1 and the constants C} and
C% in Lemma 4.2 become C7, Cy, C§ in Theorem 2.3, respectively. Set

V(t) = E(t) + 6¢'(aE(t))F(t), (4.59)
where the constant a is given by (2.116). By (2.42), (4.10) and Lemmas 4.1 and 4.2, we have
E'(t) + bag" (aE())E'() F(t) + 6 (aE(1)) F'(t)

(1~ 6aCl" (aE(0) E(0)] B (t) — 8¢/ (aE(t)) E(2)
+6C5¢' (aBE(0))VO(1)]”

464 (aE(1)) /F [(m-u+20§k§|u'|2+cgm-uz\h(ug)\2]dr

V'(t)

IN

IN

04/ (aE() E(t) + [5C3¢/ (aE(0)) + adaCig(aB(0) E(0)/ — a/ 8] VO
+[10aC " (B (0))E(0) + 8¢ (aE(0)[Ro + 203K + Oy Rol ks — ]

X wdl
§:~A¥ﬂ|u|>1 u
sacty? / tar
I:T} a4 ( Z Tl |u |<1
(note that [u/|? < |u/|?? since ¢ < < 1 and |u}| < 1)
+3[Ry + 2C2k? + Cik3 Rl (aE(t Z/ [lu}|< |ug|*2dl
Fzﬂ u <1

IN

~0¢' (B () E(t)
+[naCie" (@E@)EWO) =] - [ h(uf)uidr

= Jroniluy<1]

+6[Ro + 2022 + CLk2 Rol¢' (a B (t Z / |22, (4.60)

Tan[ \u [<1]

if § is small enough. Let ¢* denote the dual of ¢ in the sense of Young (for definition, see
[4, p.64]). Then, by Young’s inequality [4, p.64] and Jensen’s inequality [49], we deduce

PaBW) [ e
Ton[fuf|<1]
1

_ r "< 1)) (aE / J22dr

mes( 2ﬂ[|uz| = DSO (a )mes(Fzﬂ[|u’| < 1]) T \u|<1]| z|

1
< r 1< 1)) |¢* (¢ (aE / 1%2dT
< mes(Ca 1 1) < D" (¢ (0 + (A o 2T oo 47°00)]
< [)e* (¢ (aF 120 g
< mes(C)p'(P(@B) + - e(u*)dr)
< mes([y)p* (¢ (aFE)) + uih(ug)dz. (4.61)
Tan[lug <1]
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Hence, if § is small enough, then it follows from (4.60) and (4.61) that

V'(t) < =0¢' (aE(t))E(t) + nd[Ry + 2C5k} + Ciks Rolmes(Ty)p* (¢ (aF)). (4.62)

By the definition of the dual ¢*(t) of ¢(s), ¢*(t) is the Legendre transform of ¢(s), which is
given by (see [4, p.61-62])

P (t) =t (1) — ol (t)]- (4.63)
It therefore follows from (4.62) that

VI(t) < —=0¢'(aBE(1)E(t)
+nd[Ro + 265kt + Cyk; Ro|mes(Ts) [ag (aE(t)) E(t) — p(aB(1))]
= —nd[Ro + 207k} + C3k; RoJmes(Ta) p(a E(t))
¢ (@B () (), (4.64)
with
_ 1
™ 2[R, + 203k% + Csk3RoJmes(T)

On the other hand, since ¢(s) and ¢'(s) are positive and increasing on [0, o), it follows from
(4.10) that

(4.65)

[1-6C1¢'(aE(0))|E(t) < V() < [140C1¢ (aE(0)]E(). (4.66)
It therefore follows from (4.64) that

SV (#) aV (t) )

Vi) < _2(1+501so'(aE(0)))(P'(1+501<p'(aE(0))

V()
- 202K + Clk2Ro|mes (I - . 4.67
nd[Ro + 2C5k; + Cyk3 Rolmes(L)¢ (1 50{([),(@]5(0))) (4.67)
This is (2.115).

It remains to prove (2.118). We argue by contradiction. Suppose that E(t) does not tend
to zero as t — oco. Since E(t) is decreasing on [0, 00), we have

E(t)>0>0, Vt>0, (4.68)
and by (4.66), we have
V() >8>0, Vt>0. (4.69)
Thus we have Vit
‘PI(GT()) >4 >0, Vt>0. (4.70)
It therefore follows from (2.115) that
’ oy
Vi(t) < _Q_bv(t)’ vVt > 0, (4.71)
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which is in contradiction with (4.69). This completes the proof. O

Proof of Corollary 2.9. By Theorem 2.7, it suffices to prove that, for ¢ large enough,
(2.115) becomes (2.121). Since h is odd in [—1,1] and s'/9h(s'/(29)) is convex in [0, 1], we
can take for 0 < s <1

pls) = /OO (s1/00), (4.72)
and then
1
T2

On the other hand, by (2.118), there exists 7' > 0 such that

©'(s) [s0720)/C0) p(s1/ R0y 4 (=0 ap! (/2] (4.73)
Vi) <1, Vt>T. (4.74)
Thus, for ¢t > T, substituting (4.72) and (4.73) into (2.115), we obtain (2.121). O

Proof of Corollary 2.10. If h satisfies (2.95), then we can take

©(s) = kgs®H/CD - for 5 > 0. (4.75)

Thus, (2.115) becomes
VI(t) = —K(V (1)) et/ (4.76)
where K is a positive constant independent of V. Hence, the decay properties (2.52) and
(2.53) follow from (4.76). O

5 Further Comments

In the proof of Theorems 2.2-2.7, inequality (2.25) of Poincaré type plays a key role. This
inequality is guaranteed by assumption (2.16). If this assumption does not hold, i.e., I'; = ()
and a(x) = 0, then this inequality is no longer true for all u € H'(2). When I'; = () and
a(xz) = 0, in order to guarantee the coercivity of the energy , it is natural to look for a closed
subspace or subset W of (H*(£2))" x (L*(£2))" x L*(f2) invariant under the flow generated by
the semigroup such that the energy norm (2.20) on W is equivalent to the usual one induced
by (H'(2))" x (L2 ()" x L*().

Naturally, one is tempted to consider the following space of functions with zero average

Ho = {(u,v,0) € (H'(Q))" x (L*(Q)" x L2(Q) :

Jou(z)dz = [qv(z)dr = O}, (5.1)

on which the energy norm is really equivalent to the usual one. Unfortunately, H, is not
invariant. To see this, we define the function

ﬂ@:éuwm. (5.2)
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We look at the special case where g(u) = u. Take sufficiently regular initial condition
(u®,u', 6°) € Hy such that

/Fm -vutdl # 0, (5.3)

and let u, 6 be the solution of (2.7) corresponding to this initial data. By the continuity of
u'(t) with respect to ¢, we have that

/ m - vu'(t)dl # 0 (5.4)
r
for ¢ > 0 small enough. It therefore follows that
7o) = s
Q
= / [uAu 4+ (A + p)Vdiv u — aVl|dzx
Q
ou .
= /[u— + (A + p)div(u)v — afv]|dl
r- ov

= —/Fm-yu'(t)dF

£ 0. (5.5)
Hence, [, u(t)dz and [, u'(t)dz are not always equal to zero along the solution trajectories
of (2.7).
On the other hand, we do have the following conserved quantity
t
/ u'(t)dx + / / m - vg(u'(t))dldt = C (a constant), (5.6)
0 0 Jr
since, by (2.7), we have
/ " (8)dz + / m - vg(u!(£))dT = 0. (5.7)
Q T
If g(u) is linear, i.e., g(u) = ku, then we can easily find an invariant subspace W as follows
W=V x L*(Q), (5.8)
where
V = {(u,v) € (H'(Q)" x (L*(Q))" : /km - vudl —i—/ vdx = 0}. (5.9)
r Q

Moreover, the energy norm on W is equivalent to the usual one. However, for the general
nonlinear boundary feedbacks, it is difficult to find such an invariant closed subset. Thus,
the case that I'y = () and a(z) = 0 with g nonlinear is open.
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