Thermoacoustic Quality Factor Measurement in a Helmholtz Resonator

Holly Smith Dr. William Slaton

University of Central Arkansas Department of Physics and Astronomy

154th Meeting of the Acoustical Society of America New Orleans, Louisiana 29 November 2007

The University of Central Arkansas Department of Physics & Astronomy For a driven-damped spring-mass system: $m \frac{d^2 x}{dt^2} + R \frac{dx}{dt} + kx = SPe^{jot}$ Assuming a solution of the form: $x_p(t) = xe^{jot}$ Inserting this solution into the equation: $\frac{x}{x_0} = \frac{1}{\sqrt{1 + (f^2/f_0^2)Q^2[1 - (f_0^2/f^2)]^2}}$ The resonance frequency f_0 and the quality factor Q are defined as: $f_0 = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{c}{2\pi} \sqrt{\frac{S_{neck}}{L'V_{flask}}} \quad \text{and} \quad Q = \frac{\omega_0 m}{R}$ The displacement in the flask is related to the pressure by: $x = \frac{V_{flask}}{\rho_0 c^2 S_{neck}} P$ The University of Central Arkansas Department of Physics & Astronomy

