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1 Introduction to Resonance

When a person blows air over the top of a bottle, the air blown into the bot-

tle causes the air inside the bottle to oscillate. If the person blows too hard or too

softly, the air inside the bottle oscillates, but the amplitude of the oscillation is small.

However, when a person blows into a bottle “just right,” the amplitude becomes in-

creasingly large, and the bottle will produce sound. This production of sound is an

example of resonance. Mechanical resonance occurs when a system is driven at a

frequency that is equal to the system’s natural frequency, which is dependent upon

a system’s physical characteristics. When a system is driven at its resonance fre-

quency, energy is most efficiently transfered to the system, and if the system allows

for movement, the system will oscillate at ever-increasing amplitudes.[1] Other ex-

amples of mechanical resonance include the production of musical tones from wind

instruments, the shattering of a crystal goblet by an opera singer, and an off-balance

washing machine.

Mechanical resonance has very important implications for design and engineering.

If a structure or piece of equipment is designed without considering the effects of

resonance, then the equipment or structure’s stability may be compromised. The

“Galloping Gertie” bridge in Tacoma, Washington, is an infamous example of such

neglect. Due to the design of the bridge, the wind was able to drive the bridge to

resonate, causing the bridge to vibrate at extremely large amplitudes. In 1940 the

bridge’s vibrating amplitude was too great for the structure’s support, and the bridge

collapsed.

London’s Millenium Bridge is a modern example of the effects of mechanical reso-

nance. During the bridge’s opening on June 10, 2000, an estimated 80,000 to 100,000

pedestrians crossed the bridge with no more than 2,000 pedestrians on the bridge at

one time. As the pedestrians crossed the bridge, their footsteps contributed to the
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bridge’s natural vibrations. These lateral vibrations were observed to dampen as the

number of people crossing the bridge or the movement of the pedestrians decreased.

In order to dampen these vibrations, engineers installed thirty-seven viscous dampers

as well as twenty-six vertical dampers as a precaution.[2]

The Tacoma Narrows Bridge and London’s Millenium Bridge1 are two examples of

structures being built without considering the effects of mechanical resonance upon

them. For the Tacoma Narrows Bridge the effects of resonance had very severe

consequences that ultimately led to the destruction of the bridge. London’s Millenium

Bridge is fortunate in that the effects of resonance were not as dire; however, more

time and money had to be spent in determining a solution to the bridge’s increasing

vibrations to ensure the bridge’s integrity. The resulting consequences for both bridges

could have been eliminated had the effects of resonance been more effectively studied

prior to their construction. However, it is not necessary to construct full-scale models

of the bridges in order to study the effects of resonance. Studying scale models or

analogous systems can be just as efficient and effective in determining the nature of

resonance in various systems. Therefore, it is imperative to study smaller resonant

systems in order to better understand the effects of resonance upon larger systems.

2 Traditional Approach to Resonance

In several physical science courses, mechanical resonance is traditionally introduced

via a spring-mass system. In this system, a spring is vertically attached to a driving

paddle that can be adjusted to drive the spring at various frequencies. A mass is

attached to the bottom of the spring. The natural or resonance frequency for this

spring-mass system is

1Prior to London Millenium Bridge’s opening, tests were conducted to determine how the bridge
would behave due to wind and vertical pedestrian excitation. However, lateral pedestrian excitation
was not considered.[2]



6

νo =
1

2π

√
k

m
(1)

where νo is the resonance frequency, k is the spring constant and m is the mass.

When the spring-mass is driven below its resonance frequency, the spring-mass and

the paddle are oscillating in phase, meaning that the paddle and the spring-mass are

moving together in the same direction as shown in Figure 1. When the spring is

driven above its resonance frequency, the spring-mass and the paddle are oscillating

out of phase, meaning that the paddle and the mass-spring are moving in opposite

directions of one another as shown in Figure 2.

Figure 1: Driving paddle and mass moving in phase.

When the spring-mass is driven at its resonance frequency by the paddle, the paddle

and the spring-mass move together in the same direction, and the amplitude of the

spring-mass’s vibrations get increasingly large.

The amplitude of the spring-mass’s oscillation will be affected by the mechanical

resistance in the system. The main source of resistance in the spring-mass system

is the air’s resistance to the moving mass. The quality factor for a spring-mass

system describes the amplitude of the spring-mass’s oscillation in terms of the system’s

resonance frequency and resistance and is given by:
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Figure 2: Driving paddle and mass moving out of phase.

Q =
ωom

R
(2)

In this equation Q represents the quality factor, ωo represents the resonator’s natural

angular frequency2 , and R is the resistance of the system.[3] A system with a high

quality factor has little resistance and a large oscillating amplitude at resonance

whereas a system with a low quality factor has more resistance and a dampened

response at resonance. The quality factor is also associated with the shape of the

resonance peak for a system. A system with a high quality factor will have a sharp

peak whereas a system with a low quality factor will have a broad peak.

The motion of the mass at the end of the spring can be described by Newton’s

Second Law, which states that the sum of the forces acting upon an object are equal

to its mass times its acceleration.

Σ~F = m~a (3)

There are three forces acting on the mass in the driven, damped spring-mass system.

The first force is the force driving the mass to oscillate and is denoted f(t)eiωt. The

2ωo = 2πνo
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sinusoidal component, eiωt, mathematically describes the paddle’s sinusoidal motion,

which is dependent upon the angular frequency, ω, and time, t. The second force

resists the motion of the mass as it moves through the air and is represented by Rv,

where R is the resistance and v is the velocity of the moving mass. The third force

is the restoring force of the spring, kx, where k is the spring constant and x is the

displacement3. The forces due to the air resistance and the restoring nature of the

spring are negative because both forces oppose the motion of the mass.

However, there is a fourth force acting upon the mass- gravity. Before the mass is

driven by the oscillating paddle, the mass is attached to the spring, and the force of

gravity pulls the mass downward, stretching the length of the spring. Eventually, the

mass’s weight will be offset by the upward restoring force of the spring, and the mass

ceases its downward motion. When this situation occurs, the system is said to be at

equilibrium. After the system reaches equilibrium, the driving paddle is then used to

oscillate the mass about its equilibrium position. Therefore, the force due to gravity

is not considered when inserting the forces acting upon the mass into Equation 3.

Inserting the three forces that act upon the mass into Newton’s Second Law yields:

f(t)eiωt −Rv − kx = ma (4)

Appendix A demonstrates how to mathematically manipulate this equation to give

the ratio of the displacement, x, to the maximum dispacement, xmax, at resonance as

a function of frequency, ν, and the quality factor, Q, for the system.

x

xmax

=
1√

1 +
(

ν0

ν

)2
Q2

[
1−

(
ν
ν0

)2
]2

(5)

An educational demonstration of a driven, damped spring-mass system can be

3This statement is also referred to as Hooke’s Law
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Figure 3: Resonance curve for a driven, damped spring-mass system. This system has a resonance
frequency of 1.67 Hz (represented here as fo) and a quality factor of 22.4.

constructed from a PASCO WA-9857 String Vibrator, a PASCO WA-9867 Sine Wave

Generator, a spring, and a hanging mass. This demonstration is similar to the spring-

mass systems shown in Figures 1 and 2. The frequency at which the string vibrator

(driving paddle) oscillated and the amplitude of the oscillation could be controlled

using the sine wave generator. The spring-mass was driven from 1 to 2.3 Hertz4, and

the displacement of the mass was measured at every tenth of a Hertz. The ratio of the

displacement to the maximum displacement at resonance was plotted as a function

of frequency, and the data was fitted to Equation 5. From the fit, the resonance

frequency and the quality factor for this system were determined to be 1.67 Hertz

and 22.4, respectively. One can see that as the system approached resonance, the

spring-mass’s amplitude of oscillation increased until it reached its maximum at 1.67

Hertz. As the system was driven at frequencies beyond the resonance frequency, the

4oscillations/second
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Figure 4: Compressions of air molecules moving out from the vibrating loudspeaker.

amplitude of the oscillation decreased. Although the resonance peak appears to be

fairly narrow, the quality factor of 22.4 for the system indicates some resistance in

the system, which is due to the resistive force of the air against the motion of the

mass.

3 Thermoacoustic Approach to Resonance

3.1 Basics of Acoustics

Consider an audio speaker that is producing sound. A loudspeaker’s vibrating

membrane compresses the air molecules closest to the membrane, and this disturbance

moves outward from the speaker as a traveling sound wave as seen in Figure 4.

Therefore, sound is simply defined as a mechanical disruption of molecules due to

pressure changes.[4]

Sound waves are physical traveling waves and are characterized by their frequency

and amplitude. Frequency refers to the number of waves that pass a point in space

within a second, and the amplitude is a measure of the wave’s “strength.” A per-

son with impeccable hearing can detect a range of sound waves with frequencies of

20 Hertz (20 waves per second) to 20,000 Hertz; however, waves below 20 Hertz

(infrasonic) and above 20,000 Hertz (ultrasonic) are still classified as sound waves,

despite the fact that they are not heard by people.[4] Sound waves may also travel
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through various mediums, including gases, liquids, and solids. Therefore, when a

person speaks of sound scientifically, she must take care to understand that sound

encompasses waves that are not limited to human hearing.

The study of sound, or acoustics, branches over several disciplines, including engi-

neering. One aspect of acoustical engineering focuses on various techniques to enhance

or dampen sound waves that can propagate within buildings and structures. Because

sound waves can be amplified when a system is driven at its natural frequency, acous-

tical engineers must find solutions to dampen resonating systems; however, the effects

of acoustic resonance are often considered after construction is complete. Like the

mechanical engineers who researched methods to dampen the vibrations on London’s

Millenium Bridge, acoustical engineers must find solutions to limit the effects of acous-

tic resonance. These solutions require more money and time to be invested in the

building or structure than initially expected.

Because the principles of mechanical resonance and acoustical resonance are iden-

tical, the effects of mechanical resonance on a large system can be studied with the

use of a smaller acoustic system. An acoustic system that may offer a unique means

in which to explore resonance is a thermoacoustic engine. By exploring resonance via

thermoacoustic engines, students can study the effects of mechanical resonance on a

system that requires very few or no moving parts and can be built on a relatively

small scale.

3.2 Thermoacoustic Engines

Thermoacoustics is the study of how oscillating gas particles and their interac-

tions with solid boundaries might be utilized to design new energy-based technologies,

such as engines and refrigerators.[5] Thermoacoustic engines are ideal in that they

have very few or no moving parts and do not release harmful agents into the envi-
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ronment like traditional engines.[5] A thermoacoustic engine is based upon the same

scientific principles as a thermodynamic engine. When heat is put into a thermoa-

coustic engine, the engine produces work in the form of sound with an amount of

waste heat rejected into the cooler environment. However, unlike a traditional heat

engine, a thermoacoustic engine contains no moving parts, thus making it a desirable

alternative to tradition engines due to its high reliability and low cost.[5] While ther-

moacoustics has many practical applications regarding the design and fabrication of

technical equipment, the field may also provide a new means in which to study the

effects of resonance.

3.2.1 Heat Engines

Figure 5: Energy transfer in

a heat engine.

Heat engines convert heat into usable energy. In sci-

ence, one often calls this usable energy work (W ). Figure

5 illustrates a basic diagram of the process of converting

heat into work. The engine first absorbs heat, Qh, from a

hot reservoir. The engine then transforms that heat into

work, and a certain amount of waste heat, Qc, is ejected

into the cold resevoir (i.e. the environment). This process

describes an ideal engine, in which internal friction and

heat losses are considered negligible.[6]

In all physical processes the law of conservation of en-

ergy must hold, meaning that the energy that is first in-

troduced into the process must equal the exiting energy. For the heat engine, this

conservation of energy can be mathematically described by the equation:

Qh = W + Qc (6)
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An engine’s performance is described by its efficiency, e. An engine is efficient if

it can maximize the amount of work transformed from an available amount of energy.

[6]

e =
usable energy

heat put into engine
(7)

However, in thermal physics texts, the efficiency for a heat engine is given by the

equation:

e =
Work

Qh

(8)

The second law of thermodynamics prevents the efficiency of the engine from ever

equalling one5. A certain amount of waste heat must always be ejected during the

process. For example, consider a car’s engine. A spark from the spark plug ignites

a compressed fuel-air mixture, and the mixture explodes. This ignition from the

spark serves as the introduction of heat into the engine. The gas expands due to the

increase in temperature6, and this expansion will exert a force on the piston, causing

the piston to move another piece of machinery. However, not all of the heat will be

used in the process, and the waste heat as well as other combustion products that

resulted from the reaction will be released into the environment as exhaust.[6]

3.2.2 Theory of Thermoacoustic Engines

In order to better understand the actual thermoacoustic process, one has to look

at how the gas particles within a thermoacoustic engine are behaving. Consider an

5Kelvin’s statement of the Second Law of Thermodynamics: “No process is possible whose sole
result is the complete conversion of heat into work.”[7]

6This expansion is mathematically described by the ideal gas law, PV = NkT , where P is the
pressure, V is the volume, N is the number of gas particles, k is Boltzmann’s constant, and T is the
temperature. Because temperature is directly proportional to volume, an increase in the temperature
will result in an increase in volume.
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empty pipe with one end closed and the other end open to the environment. The gas

particles at the closed end will experience greater pressure than the molecules at the

open end because the particles are constrained to a limited area. The gas particles

at the open end will have more room to move and will therefore experience greater

changes in their velocity. In the thermoacoustic process gas particles must experience

both pressure and velocity changes.

Now consider a porous material (e.g. several soda straws taped together) that is

inserted into the middle of the pipe as shown in Figure 6. A gas particle located in

the porous material will experience both pressure and velocity changes because of its

location in the pipe. From Euler’s equation7 it is possible to prove that the middle

of the pipe is the proper location for the stack by observing the changes in pressure

that occur in the pipe as it is driven by an external source:

uAC =

∣∣∣∣
1

ωoρo

∆Po

∆x

∣∣∣∣ (9)

In this equation uAC is the acoustic velocity, ρo is the ambient air density, and ∆Po

is the change in acoustic pressure over a certain length, ∆x. ∆Po increases moving

towards the opening of the pipe, which means that the acoustic pressure amplitude

is significantly decreasing as one approaches the opening. From Euler’s equation,

one can determine that a gas particle at this location will oscillate back-and-forth

due to changes in its velocity. Towards the closed end of the pipe, ∆Po decreases

because the acoustic pressure is at its greatest towards the closed end of the pipe

and will not significantly change over a given distance. Therefore, the velocity of

the gas particles decreases, as well. However, a gas particle at this location will

expand and contract due to experiencing pressure oscillations that occur between the

acoustic and ambient air pressures. Therefore, a gas particle located in the middle

7A derivation of Euler’s equation can be viewed in Appendix B
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will oscillate back and forth due to the velocity changes caused by the difference in

acoustic pressure amplitudes between two locations and will expand and contract due

to the difference between the acoustic and ambient air pressures.

Figure 6: A closed-open pipe with a porous material inserted into the middle of the pipe.

If heat is added such that the temperature at one end of the stack, THOT , is greater

than the other end of the stack at temperature TCOLD, then the gas particle will now

transfer the added heat energy down the stack. If a particle is cooler than the warmer

end of the stack, it will absorb heat, QHOT . The particle expands due to the pressure

decrease as it travels a very small distance in the direction of the open end of the

pipe. If the particle comes into contact with a cooler portion of the material, it will

transfer its heat, QCOLD, to the material. As the particle travels towards its orginal

position, it will contract due to the increase in pressure. The particle will continue to

repeat this heat transfer for as long as a temperature difference is generated across

the porous material. Figure 7 shows a graphical representation of this heat transfer

cycle for the particle.

All of the gas parcels located within the material act as a bucket brigade, perform-
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Figure 7: The heat transfer cycle for a gas particle located within the stack.

ing work on the system by transferring heat to the cooler end of the material.[5] If the

temperature difference is large enough, the gas particles will perform enough work on

the system for the system to overcome internal resistance and produce sound. This

production of sound is referred to as onset.

4 Constructing Thermoacoustic Engines from

Helmholtz Resonators

4.1 Helmholtz Resonators

Figure 8: The behavior of air

within a Helmholtz flask.

A bottle is a special kind of resonator known as a

Helmholtz resonator. A Helmholtz resonator consists of a

hollow neck attached to an empty volume.[3] In order to

understand how the air inside a Helmholtz flask behaves,

consider a mass bouncing on a spring. The air oscillating

in the neck is comparable to the mass, and the air inside

the cavity is comparable to the spring (see Figure 8).

When a person blows over the top of a soda bottle,

she forces, or drives, the mass of air inside the neck to
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push down upon the air in the volume. The air inside the volume compresses like

a spring, and the pressure increases. When the air inside the volume can no longer

be compressed, the air will push back upon the air in the neck. This process will

continue for as long as the person blows air over the opening of the bottle. Therefore,

as long as the air within the flask is driven, the air within the bottle will oscillate.

When a person drives the air within a soda bottle at the right speed, the bottle

will produce sound or resonate. The tone that is produced is related to the resonator’s

natural frequency, which is dependent upon the geometry of the flask. The equation:

νo =
c

2π

√
S

L′V
(10)

allows one to calculate the natural frequency. In this equation, νo is the natural

frequency, c is the speed of sound in the air, S is the the cross-sectional area of the

neck, L′ is the effective length of the neck,8 and V is the volume. [3] If a person can

calculate the speed of sound and measure the dimensions of the resonator, she can

easily determine the frequency at which the resonator will produce sound.

If the mass of air within the neck experiences friction, then its motion will become

damped due to this added resistance. In fact, the air oscillating in the neck does

experience friction due to the air molecules rubbing against the walls of the neck.

This resistance along with the flask’s natural frequency defines a quality factor for

the flask. For a system with large resistance, the quality factor is quite small, but for

a system with small resistance, the quality factor is large. The air inside a Helmholtz

flask with large resistance will experience a very weak response when driven at its

natural frequency whereas a flask with little or no resistance will experience a very

8The effective length is related to the length of the neck by the equation: L′ = L + 1.5a, where a
is the radius of the neck’s opening. The effective length accounts for the shape of the opening of the
resonator. In this demonstration the opening is unflanged, meaning that the opening of the flask
does not have a broad ridge.
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strong response. Therefore, a low quality factor is associated with a weak resonance,

and a high quality factor corresponds to a strong resonance. Because of its well-

defined geometry and relatively small size, a Helmholtz flask is ideal for studying the

effects of resonance.

Because the air moving within the Helmholtz flask is comparable to a driven,

damped spring-mass system, one can describe the displacement of the air within the

Helmholtz flask’s neck as it is driven at a certain frequency using Equation 5. How-

ever, the displacement of the mass of air is not easily measureable, and it makes more

sense to measure the pressure of the air when driven at a certain frequency. Appendix

C describes how to transform Equation 5 from describing a ratio of displacements to

a ratio of pressure amplitudes. The resulting equation is:

A

Amax

=
1√

1 +
(

ν0

ν

)2
Q2

[
1−

(
ν
ν0

)2
]2

(11)

4.2 Theory of Thermoacoustic Engines Constructed from

Helmholtz Resonators

Figure 9: Heat enters the thermoacoustic engine and

is then transformed into work and waste heat.[8]

Adding a porous ceramic mate-

rial into the neck of a Helmholtz

flask will increase the system’s re-

sistance even more due to the fric-

tion between the oscillating air parti-

cles and the walls of the pores. This

added resistance will decrease the

quality factor for the system; how-

ever, the reduced quality factor of
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this system can be increased by ap-

plying a temperature difference across the stack. As the temperature difference across

the stack increases, then the quality factor of the system increases, meaning that the

resistance is decreasing. This increased quality factor corresponds to a strong re-

sponse from the system. If the system’s resistance is eliminated, then the system

produces work in the form of sound.[5]

Figure 10: Motion of a gas parcel within a Helmholtz thermoacoustic engine

The motion of the gas particles in the stack behave identically to the gas particles

moving in a stack placed inside an open-closed pipe as discussed in the Section 3.2.2.

The gas particles are oscillating back and forth due to the pressure and velocity

changes, and when heat is introduced at one end of the stack, the particles will

transfer heat from the warmer to the cooler end of the stack. When the particles

produce enough work to overcome the resistance of the system, then the engine will

produce sound.

The main difference between a thermoacoustic engine constructed from an open-

closed pipe and a thermoacoustic engine constructed from a Helmholtz resonator
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is the placement of the stack. For an open-closed pipe, the stack must be placed

in the middle of the pipe for the gas particles within the stack to experience both

pressure and velocity changes. However, due to the unique geometry of the Helmholtz

resonator, the ideal location for the stack is at the junction of the resonator’s neck

and volume. The process for which this location was determined is described further

in Section 5.

5 Experimental Setup and Methodology

Figure 11: Experimental setup for observing resonance in a thermoacoustic engine constructed
from a 5000 cm3 Helmholtz resonator.

The following experiment investigated the acoustic response of a thermoacoustic

engine constructed from a 5000 cm3 Helmholtz flask as it approached resonance.

Before the engine could be constructed, it was necessary to determine the resonance

frequency and the quality factor for the empty flask. The neck of the Helmholtz

flask used in this experiment has a cross-sectional area of 2.03× 10−3 m2 and length
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8.90 × 10−2 m for its neck. Over the course of the experiment, the air inside the

Helmholtz flask’s neck was driven over multiple ranges of frequencies. The “driving

force” for this experiment was provided by a MTX Audio TP112 speaker. The flask

was placed approximately twenty centimeters in front of the speaker with the opening

of the engine aligned with the middle of the speaker. A Stanford Research Systems

SR785 signal analyzer controlled the frequency at which the speaker drove the flask.

The signal from the signal analyzer was first provided to an AudioSource Model AMP

One/A, amplifier, which increased the signal’s amplitude or strength to the speaker.

An Endevco Model 8510B-1 microphone was attached to a copper tube with an inner

diameter of 0.014 in (0.03556 cm) and an outer diameter of 0.0625 in (0.15875 cm).

The microphone tube was placed inside the flask such that the microphone would

measure the pressure changes occurring in the middle of the flask’s cavity as the flask

was driven over a range of frequencies. The microphone’s frequency and peak-to-peak

voltage measurements were recorded by the signal analyzer, which also displayed the

amplitude of the microphone’s peak-to-peak voltage measurement as a function of

frequency. One could determine the resonance frequency and the quality factor of

the empy flask by fitting the measurements to Equation 11 for the ratio of pressure

amplitudes of the air driven inside the Helmholtz flask.

After the resonance frequency and the quality factor had been determined, it was

necessary to determine the proper position of the stack inside the flask so that the

flask could be converted to a thermoacoustic engine. The air inside of the stack

needed to experience both pressure and velocity changes in order for the engine to

work, so pressure measurements were made by moving the end of the microphone

tube to various vertical positions in the flask as the empty flask was driven at its

resonance frequency. The setup for this portion of the experiment can be viewed in

Figure 12. It was experimentally determined that the lower portion of the flask’s neck
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Figure 12: Experimental setup for measuring the pressure at different vertical positions inside the
5000 cm3 Helmholtz resonator.

was the ideal location for the stack.

The porous ceramic substrate or stack used in this experiment had 324 pores per

square inch (approximately 50.2 pores per square centimeter), a diameter of 4.70 cen-

timeters, and a depth of 2.39 centimeters. Small grooves were cut onto one face of

the stack in preparation of wiring that face with 2.571 Ω/foot (78.4 Ω/centimeter)

nichrome wire. The nichrome wire served as the hot heat exchanger in this experi-

ment. Both ends of the nichrome wire were connected to fifty-centimeter-long strands

of 26-gauge wire. Later in the experiment, both wires would be connected to two

parallel GW INSTEK Model GPR-3060D labaratory DC power supplies that would

provide the nichrome wire with electrical power. An Omega Type K thermocouple

was fed through the middle pore and adhered inside the pore just at the opening on

the face of the stack with the nichrome wire. This thermocouple would eventually
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Figure 13: Bottom and top views of the porous ceramic substrate. The bottom view shows the hot
heat exchanger whereas the top view shows the cold heat exchanger.

measure the temperature on this face of the stack. The hot heat exchanger can be

seen in Figure 13.

On the other face of the stack, a copper cold heat exchanger was adhered using

four strands of 30-gauge wire. The cold heat exchanger consisted of a circular portion

of copper mesh approximately the diameter of the stack. A 0.125 in (0.3175 cm)

outer diameter copper tube lined the outer rim of the mesh. During the course of the

experiment, ice water would be pumped through the tube in order to achieve large

temperature differences across the stack. Beneath the cold heat exchanger another

thermocouple was placed just within the opening of the middle pore in order to

measure the temperature on this face of the stack. The cold heat exchanger can be

viewed in Figure 13.

The stack was inserted into the bottom portion of the flask’s neck with the hot

heat exchanger facing the cavity. After the stack had been placed, ice water was

pumped through the cold heat exchanger, the temperatures on both sides of the stack

were allowed to equilibriate, and the flask was swept over a range of frequencies. At

this time no power was supplied to the nichrome wire. Measurements for frequency

and peak-to-peak voltage were recorded by the system analyzer, and the resonance

frequency and quality factor for the 5000 cm3 flask with the stack in its neck were

calculated using Equation 11.



24

After observing how the insertion of the stack affected the system’s resonance

curve, the next step was to investigate how increasing the temperature difference

across the stack would affect the system’s response. A current of one ampere was

initially fed through the nichrome wire. The system was given ten minutes for the

temperatures on both sides of the stack to equilibriate. Once the system’s temper-

atures had equilibrated, it was swept over a range of frequencies, while the system

analyzer recorded the frequency and peak-to-peak voltage measured by the micro-

phone. The data was fitted, and the resonance frequency and quality factor were

determined for the system. The power supplied to the nichrome wire was increased

by one ampere increments, and this procedure was repeated for each increase in power

until the system reached onset. Overall, seven different measurements were made for

seven different temperature differences across the stack.

6 Experimental Results

6.1 Resonance Curve for Empty Helmholtz Flask

The empty five liter Helmholtz flask was swept over a range of frequencies. Figure

14 displays the ratio of the pressure amplitude to the maximum pressure amplitude

at resonance on the y-axis and the range of frequencies on the x -axis. The data

points are fitted to equation Equation 11 for the ratio of amplitudes for the air driven

inside of the Helmholtz flask. According to Equation 10 for the resonance frequency

of a Helmholtz flask, the resonance frequency is calculated to be approximately 97

Hz. As shown from the graph, the microphone measures maximum acoustic pressure

amplitude when the flask is subjected to a driving frequency of 97.5 ± 0.003 Hz. The

quality factor for this resonance curve was determined numerically to be 70.1 ± 0.184

. This large quality factor corresponds to a fairly sharp peak in the resonance curve
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Figure 14: Resonance curve for an empty 5000 cm3 Helmholtz flask.

and indicates low mechanical resistance. The resistance that is in the system is due

to the oscillating mass of air in the Helmholtz flask’s neck rubbing against the sides

of the neck.

6.2 Pressure inside Helmholtz Flask

Figure 15: Vertical positions used for pressure

measurements within the Helmholtz flask.

Figure 15 displays the vertical po-

sitions of the flask. The opening of

the flask corresponds to zero centimeters,

the neck of the flask extends from zero

to nine centimeters, and the cavity ex-

tends from nine to thirty-one centime-

ters. Measurements for the pressure at

various positions within the flask can be
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seen in Figure 16. From the opening of

the flask to the bottom of the neck, the pressure varies with position. However, from

the bottom of the neck to the bottom of the flask, the pressure is only slightly chang-

ing. Referring to Equation 9, one can see that the air within the neck will experience

mainly velocity oscillations, which is comparable to a mass oscillating about its equi-

librium position, whereas the the air within the cavity will experience mainly pressure

oscillations, which is comparable to a spring compressing and extending. Because the

air within the stack needs to experience both velocity and pressure oscillations, one

can determine from the graph that the ideal location for the stack is at the bottom

of the flask’s neck.
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Figure 16: Pressure at various positions in side of a 5000 cm3 Helmholtz flask.
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Figure 17: Resonance curve for a 5000 cm3 Helmholtz flask with a 324 psi ceramic stack placed
into its lower neck.

6.3 Resonance Curve for Helmholtz Flask with Ceramic Stack

After inserting the stack into the lower position of the Helmholtz flask’s neck,

the system was once again swept through a range of frequencies with no temperature

difference applied to the stack. Figure 17 represents the resonance peak of this system.

The most obvious difference between this graph and the resonance graph for the empty

flask (Figure 14) is the broadness of the peak. Inserting the stack into the flask’s

neck caused the quality factor to significantly decrease, thus indicating an increased

resistance. Assuming that the mass of the system (the air oscillating in the neck)

has not changed significantly and remembering that the quality factor is inversely

proportional to the resistance of the system, one assumes that the introduction of

the stack into this system has caused an increase in the system’s resistance. This

makes sense because the introduction of the stack into the flask causes the surface

area within the neck to increase, and the air oscillating in the neck will experience
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greater friction due to its contact with the pore walls in the stack.

The resonance frequency has decreased, as well, from its value of 97.5 ± 0.003 Hz

for the empty flask to 91.0 ± 0.011 Hz. From Equation 10 for a Helmholtz flask’s

resonance frequency, one sees that both the effective length and the volume of the

flask has not changed; however, the insertion of the stack has decreased the neck’s

cross-sectional area thus decreasing the system’s resonance frequency.

6.4 Temperature Difference across Ceramic Stack
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Figure 18: Temperature difference across the substrate as a function of the power dissipated in the
nichrome wire. The lines connecting the data points are not of empirical value but serve as a guide

for the eye.

Figure 18 shows the temperatures for both sides of the stack with the hot and

cold heat exchangers versus the power dissipated by the nichrome wire. From this

graph one notices that the cold heat exchanger wasn’t able to provide the cool side

of the stack with a constant temperature. After increasing the power for each data
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set, the temperatures were allowed to equilibriate, and the flask was driven through

a range of frequencies for each temperature difference. For each set of data taken, an

increase in both the resonance frequency and the quality factor was observed. The

data for these experiments are displayed in Appendix D.

6.5 Resonance Curve at 203 ◦C Temperature Difference across

Stack
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Figure 19: Resonance curve for a temperature difference of 203oC across the stack.

At a temperature difference of 203 ◦C, the system was just below onset. A reso-

nance curve for this system is shown in Figure 19. The resonance frequency has in-

creased from 91.0 ± 0.011 Hz at a ∆T = 5 ◦C to 109.0 ± 0.004 Hz at a ∆T = 203 ◦C,

and the quality factor has increased from 7.82 ± 0.016 to 56.5 ± 0.138, indicating a

decrease in the total mechanical resistance of the system.
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7 Analysis

As the temperature difference across the stack increased, the resonance frequency

of the system increased from 91.0 ± 0.011 Hz at ∆T = 5 ◦C to a 109.0 ± 0.004

Hz at ∆T = 203 ◦C. Referring to the definition for the resonance frequency of a

Helmholtz resonator (Equation 10), one notices its dependence upon the speed of

sound and the dimensions of the flask. Of course, after the stack is inserted into

the flask’s neck, the dimensions of the flask are not altered for the remainder of the

experiment; therefore, one automatically assumes that an increase in the speed of

sound is responsible for the increase in the resonance frequency. The speed of sound

is dependent upon temperature (Equation 32), and as more heat is introduced into

the system, the temperature of the air within the flask increased causing an increase

in the speed of sound. This increase in the speed of sound caused an increase in the

flask’s resonance frequency.

As the temperature difference across the stack increased, the quality factor is

shown to increase, as well. The quality factor increases from 7.82 ± 0.016 at ∆T =

5 ◦C to a 56.3 ± 0.138 at ∆T = 203 ◦C. The quality factor is defined by Equation

2, where it is shown to be proportional to the angular resonance frequency and the

mass of air in the neck and inversely proportional to the resistance in the system. The

mass of air within the neck has not changed significantly as the temperature difference

across the stack increases, and although the resonance frequency does increase with

increasing temperature difference, this increase is not significant enough to cause the

observed increase in the quality factor. Therefore, this increase in the quality factor

must be associated with a decrease in the system’s total mechanical resistance.

Because the quality factor is inversely proportional to the total mechanical resis-

tance in the system, it is more enlightening to study how the resistance of the system

is affected as the inverse quality factor changes due to the temperature difference
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across the stack. Figure 20 shows the inverse quality factor as a function of the tem-

perature difference across the stack. The linear fit of this data was initially used in

the experiment as a means to predict the temperature difference at which onset would

occur. For this thermoacoustic engine onset occured at ∆T = 207 ◦C. At onset the

net work of the gas parcels within the stack has become great enough to overcome the

resistance caused by the friction due to the motion of the parcels against the walls of

the pores. Because the resistance of the system has essentially been eliminated, the

system produces sound. Therefore, the thermoacoustic engine at this point may be

considered an ideal heat engine.
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Figure 20: Inverse quality factor versus the temperature difference across the stack.

8 Conclusion

Thermoacoustics is the field of study that strives to invent new technologies that

exploit acoustically-driven systems in order to perform work or transfer heat. These
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engines and refrigerators are preferable to their predecessors in that they are mechan-

ically simple and do not introduce harmful agents into the environment. However,

thermoacoustic engines also offer a unique alternative to introducing physical concepts

in educational settings. Traditionally, resonance, a physical concept that can have

dire consequences regarding the integrity of stuctures and equipment, has been taught

in educational settings via mass-spring systems. By presenting this concept through

the use of a Helmholtz thermoacoustic engine, students will have the opportunity to

see that resonance for a system can be achieved via other physical methods.
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Appendix A: Derivation for the Driven, Damped

Spring-mass System

Newton’s second law for a driven, damped spring-mass system with a sinusoidal

driving force is:

f(t)eiωt −Rv − kx = ma (12)

m
d2x

dt2
+ R

dx

dt
+ kx = feiωt (13)

In this equation x is the displacement of the mass, m is the mass, R is the resistance,

and k is the spring constant. The term on the right-hand-side of the equation repre-

sents the external sinusoidal force driving the system. Assuming a particular solution

to this differential equation of the form:

xp(t) = xeiωt (14)

Inserting this solution into the differential equation yields:

(−m(ω)2 + Ri(ω) + k)xei(ω)t = fei(ω)t (15)

x =
f

−m(2ω)2 + Ri(ω) + k
(16)

In order to eliminate the imaginary parts of the displacement, x is multiplied by

its complex conjugate.
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x2 = x∗x =

(
f

−m(ω)2 −Ri(ω) + k

)(
f

−m(ω)2 + Ri(ω) + k

)

x2 =
(f)2

(ν2
0 − ν2)2 + R2ν2

4π2m2

x2 =
(f)2

√
(ν2

0 − ν2)2 + R2ν2

4π2m2

|x| =
f

ν2
0

√
(1− ν2

ν2
0
)2 + R2ν2

4π2ν4
0m2

|x| =
f

ν2
0

√
( 1

Q2 )(
ν2

ν2
0
) + (1− ν2

ν2
0
)2

|x| =
f

ν0ν
Q

√
1 + (ν0

ν
)2Q2[1− ( ν

ν0
)2]2

(17)

Equation 17 is the general solution for a simple harmonic oscillator. The resonance

frequency of the driven-damped spring-mass system, νo, is given by

νo =
1

2π

√
k

m
(18)

The quality factor for this system is:

Q =
ωom

R
(19)

When the system is at resonance, ν = νo, and Equation 17 becomes:

xmax =
νQ

4π2νo

(20)
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Inserting this value for xmax into Equation 17 yields:

x

xmax

=
1√

1 +
(

ν0

ν

)2
Q2

[
1−

(
ν
ν0

)2
]2

(21)
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Appendix B: Derivation of Euler’s Equation

Figure 21: Pipe with pressures P1 and P2 at

either openings.

Consider a pipe as shown in Fig-

ure 21. Assume that the pressure P2

is greater than the P1; therefore, the

change in pressure, ∆P , is negative. Be-

cause pressure is defined as the force per

unit area, A, Newton’s Second Law can

be written in terms of the pressure.

ΣF = ma

−A∆P = ma (22)

Because acceleration is the first derivative of the velocity, Equation 22 can be written

as:

−A∆P = m
dv

dt
(23)

Considering a pressure change over a small volume in the pipe, V = A(xf − xi) =

A∆x, and dividing both sides of Equation 23 by this volume yields:

−A∆P

A∆x
=

m

A∆x

dv

dt

−∆P

∆x
=

m

A∆x

dv

dt
(24)

The density of the air for ambient conditions, ρo, is defined as the mass per unit
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volume of air:

ρo =
m

V

ρo =
m

A∆x
(25)

Inserting this value for the ambient air density into Equation 24 gives:

−∆P

∆x
= ρo

dv

dt
(26)

Due to the sinusoidal nature of the pressure and velocity, the pressure and velocity

are represented by P = Po(x)eωot and v = uAC(x)eωot, respectively. Inserting this

value for pressure and the derivative of the velocity with respect to time into Equation

26 yields:

−∆Po(x)eiωot

∆x
= (iωoρo)(uAC(x)eiωot)

−∆Po(x)

∆x
= (iωoρo)(uAC(x))

uAC =

∣∣∣∣
1

ωoρo

∆Po

∆x

∣∣∣∣ (27)
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Appendix C: Derivation for the Acoustical Driven,

Damped System

The equation for the ratio of the displacement to the maximum displacement at

resonance for the air driven inside of the Helmholtz flask is:

x

xmax

=
1√

1 +
(

ν0

ν

)2
Q2

[
1−

(
ν
ν0

)2
]2

(28)

The displacement of the mass within the Helmholtz flask is not easily measurable.

However, it is possible to measure the pressure changes occuring in the flask. There-

fore, it is necessary to express equation 28 in terms of a ratio of pressures rather than

a ratio of displacements.

Sound is an adiabatic process, which means that the compression and expansion

of gas occurs quickly such that there is no transfer of heat. The adiabatic Equation

of state is

P

Po

=

(
Vo

V

)γ

(29)

where P is the pressure, Po is the ambient pressure, V is the volume, and Vo is the

ambient volume.[3] Because this experiment focuses upon small changes in pressure

and velocity, P and V can be written as P = Po + ∆P and V = Vo + ∆V , where Po

and Vo are the initial values for pressure and velocity and ∆P and ∆V are the small

changes in pressure and volume. Inserting these values for pressure and velocity into

the adiabatic equation of state and simplifying the equation yields

∆P

Po

= −γ
∆V

Vo

(30)

The change in the flask’s volume is ∆V = −Sx. If the mass moves down into
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the neck, the volume decreases whereas the volume increases when the mass moves

towards the opening of the flask. Substituting this value into Equation 30 gives

∆P

Po

=
γSx

Vo

(31)

The speed of sound, c, is represented by the equation:

c2 = γR′T (32)

In order to obtain a value for the ratio of specific heats, γ, we solve Equation 32 for γ

and replace R′ with Po

ρoT
, which comes from the ideal gas law. ρo is simply the ambient

density of the air within the flask. Inserting our definition for γ into Equation 31 and

solving for the pressure yields

P =
ρoc

2S

Vo

x (33)

This equation shows the acoustic pressure as a function of the acoustic displace-

ment. Solving this equation for the displacement and inserting this definition for the

displacement into Equation 28 gives

A

Amax

=
1√

1 +
(

ν0

ν

)2
Q2

[
1−

(
ν
ν0

)2
]2

(34)

Here, A is the amplitude of the pressure and Amax is the amplitude of the pressure

at resonance.[9]
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Appendix D: Resonance Curves for Increasing

Temperature Differences
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