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Abstract

The physical phenomenon of a vibrating drumhead can be accurately mod-
eled by use of the two-dimensional wave equation. Solving this model makes
it possible to predict the natural frequencies at which the fundamental mode
and subsequent modes of vibration appear. Using a drum, driven by a sub-
woofer, amplifier, and signal generator the modes of vibration were sucessfully
reproduced and were found to match the predicted modes of vibration.
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1 Introduction

Drums have been essential to human interaction and communication since the be-

ginning of civilization. As with any physical phenomenon, physicists have strove to

understand and predict its behavior. Modeling and solving this problem is daunting

at first, considering that two coordinates are needed to locate any point on the surface

and another is necessary to determine displacement. To accomplish this feat, one can

visualize a small element of the total surface as according to figure 1.

Figure 1: Segment of vibrating

membrane.

Specific assumptions are made to obtain a

practical mathematical model. First, the mem-

brane is assumed to be thin, to ensure an equation

that only exists in two dimensions. Second, the

membrane is assumed to be perfectly elastic en-

suring that the model doesn’t become overcompli-

cated with damping terms. Last, the membrane

is to undertake only small displacements. Letting

ρs be the surface density of the membrane [kg per

m2] and τ is the tension per unit area [N per m2].

The derivation starts with Newton’s Second law;

The force acting on any one part of the surface is

the sum of the net transverse forces acting along

the x and z axes;

ΣFx = max (1)

and

ΣFz = maz (2)
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From Figure 1, the net forces acting on the element are due to tensions in the x

and z axis, respectively

τdz

[(

∂u

∂x

)

x+dx

−

(

∂u

∂x

)

x

]

= τ
∂2u

∂x2
dxdz (3)

and

τdx

[(

∂u

∂z

)

z+dz

−

(

∂u

∂z

)

z

]

= τ
∂2u

∂z2
dxdz (4)

The argument for the forces acting on the element are analagous to the argument

for transverse waves acting on a string. u is the displacement away from equilibrium,

and has the same physical characteristics as y from Appendix B. Summing the terms

in accordance with Eq. 1 and 2 yields,

τ

(

∂2u

∂x2
+

∂2u

∂z2

)

dxdz = ρsdxdz
∂2u

∂t2
for(x,z) ∈ Ω (5)

Where u is a function of x, z, and t, and Ω is the boundary of interest. A slight

rearrangement of this relation leads to;

∂2u

∂t2
= c2

(

∂2u

∂x2
+

∂2u

∂z2

)

for(x,z) ∈ Ω (6)

where c is the speed of the disturbance in the membrane;

c =
√

τ/ρs (7)

Just as the mathematical model is generalized from one-dimensional ideals, it will

follow that the physical behavior of the two-dimensional model will assume similar

properties. Previous study of the property of waves reveals that boundary conditions

restrict frequencies of vibration to a discrete set. Similar behavior is expected from

4



vibrating membranes, only the boundary conditions will now include the type of

support and also the shape of the perimeter of the membrane.[1] While a solution

can be found using the traditional cartesian coordinate system, the solution would

be sloppy and almost interminable. By choosing polar coordinates the solution will

be greatly simplified. The governing equation now becomes:

∂2u

∂t2
= c2

(

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2

)

for 0 ≤ r < a, 0 ≤ θ ≤ 2π (8)

Where a is the radius of the drum and θ compliments the radial position. To

make this more symbolically simple this equation can be written as

Utt = c2

(

Urr +
1

r
Ur +

1

r2
Uθθ

)

(9)

where U = U(r, θ, t) and Utt = ∂2u
∂t2

. Implementing the method of separation of

variables leads to,

Ur = R′(r)Θ(θ)eiωt (10)

Urr = R′′(r)Θ(θ)eiωt (11)

Utt = −ω2R(r)Θ(θ)eiωt (12)

Uθθ = R(r)Θ′′(θ)eiωt (13)

Where R′ = dR
dr

. It is important to note that in choosing eiωt as the temporal

component, that only the real part of this is used in the final solution. Substituting

these values into Eq. 6 and multiplying by r2

Θ(θ)R(r)
, yields

−ω2r2 = c2

(

r2R′′

R
+ r

R′

R
+

Θ′′

Θ

)

(14)
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Letting k = ω
c

and grouping all like terms yields

r2R′′

R
+ r

R′

R
+ k2r2 = −

Θ′′

Θ
(15)

To solve this problem a simultaneous solution must be determined, the only non-

trivial solution occurs when this relation is set equal to −m2. Rewriting the equation

and relating it to the constant leads to

−
Θ′′

Θ
=

r2

R

(

R′′ +
1

r
R′

)

+ k2r2 = −m2 (16)

Solving the left side of the relation yelds a harmonic solution in the following form

Θ(θ) = cos(mθ + η) (17)

The η term is the initial phase angle and takes values of (2π, 4π, ...), according

to the geometry of the drumhead. Also, because we require u to be a single valued

function of position then u(r, θ, t) must equal u(r, θ + 2π, t). This requires that m to

take integer values of m = (0, 1, 2, ...).[1] Our relation now takes the form

R′′ +
1

r
R′ + (k2

−
m2

r2
)R = 0 (18)

This is known as Bessel’s equation, this relation has the general solution

R(r) = AJm(kr) + BYm(kr) (19)

By definition Jm and Ym correspond the Bessel’s functions of the first and second

kind respectively. Because our boundary conditions include r = 0 then B must be

zero, and due to the restriction that there can be no motion at the outer boundary,

R(a) = 0 . Using these conditions Eq. 18 now leads to a discrete set of solutions
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where

R(a) = Jm(ka) = 0 (20)

kmn =
jmn

a
(21)

where a is the radius of the membrane and j = jth root of the Bessel function.

We now have a general solution in the form of

Umn(r, θ, t) = Jm(kmnr) cos(mθ + η)eiωt (22)

Also a relation for the frequency of the system is defined as

f =
ck

wavelength
=

jmnc

2πa
(23)

where c =
√

τ/ρs and a is the radius of the membrane.

Though the solution doesn’t lend a very visually pleasing equation set it is better

appreciated graphically. Figure 2 shows a snapshot of the solutions of the governing

equation. One would notice the subscripts (m, n) appended on many of the terms.

These correspond to the nodal lines and nodal circles, respectively, and are apparent

in Figure 2. The shading refers to the observed transversal motion of the drum. Each

oppositely colored section of the drum is exactly 180 degrees out of phase with its

affiliated section.
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Figure 2: Modes of a circular membrane

2 Materials & Methods

Figure 3: Setup for acoustically driven os-

cillation.

To create uniform and constant oscilla-

tion of the drum, the apparatus incorpo-

rated a Pioneer A301R50-51F subwoofer

driven by an Audio Source Amp1/A am-

plifier and an Agilent 33220A Wave Gen-

erator. For repeatability purposes the

wiring diagram includes an ammeter and

voltmeter. The current output is a direct

correlation to the power output from the amplifier. Because of the 8 Ω rating on the

subwoofer the current was not allowed to exceed 2.5AAC .

Since we are dealing with the vibrations of a symmetric surface, it is necessary

to ensure as uniform a tension as possible. Modern day drums are kept “in tune”

by adjusting the set screws around the top of the drum. The musician adjusts the

tension by sound alone. Unfortunately this is not adequate for scientific experiment.
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The drum was set so that there was an equal amount of threads showing from the

bolt head on all clamps. After ensuring a roughly uniform tension, the apparatus

was set so that there existed a 2 cm gap between the bottom of the drum and the

top edge of the subwoofer. This was easily accomplished with a small lab jack. After

a symmetric setup was assured the apparatus was powered up and allowed to warm

up for fifteen minutes. This doesn’t mean that one must simply turn on the power

switches, but that a 0.5AAC current is allowed to run through the circuit to also

warm up the speaker. After a sufficient warm up period we must then visualize the

vibrations. This is much harder than it seems. Depending on the color of the drum

in use, in this case white, one can use a colored craft sand. The theory being that

the sand will settle on the saddle points and be disturbed away from the oscillating

sections of the surface. For this run of experiments a black craft sand (grain size

1
16

mm −
1
8
mm) was utilized.

There are two methods to determine the natural frequencies of vibration. One is

to sweep through the available frequencies and wait for the sand to settle in symmetric

patterns. While this is a viable method, one can take also take advantage of previous

work on this problem, present in almost any acoustics or advanced mathematics book.

This knowledge leads to the mathematical property of vibrating membranes known

as Bessel Functions. The fundamental mode will be the lowest frequency of vibration,

once this mode is determined a quick calculation will give you an approximate value

of the rest of the important modes of vibration, see Appendix A.

Recording the results can be done with any digital camera. Comparing these

pictures or videos with Figure 2 makes it possible to draw a conclusion on the accuracy

of the method.
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3 Results

Results for the experiment were recorded by use of a digital camera. These pictures

were then compared to the theoretical results compiled by a Mathematica program

available in Appendix C and Figure 2. The results are on the next page:
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(a) Theoretical Mode (b) Experimental Mode

Figure 4: Mode (0,1)

(a) Theoretical Mode (b) Experimental Mode

Figure 5: Mode (0,2)

(a) Theoretical Mode (b) Experimental Mode

Figure 6: Mode (0,3)
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(a) Theoretical Mode (b) Experimental Mode

Figure 7: Mode (1,1)

(a) Theoretical Mode (b) Experimental Mode

Figure 8: Mode (1,2)

(a) Theoretical Mode (b) Experimental Mode

Figure 9: Mode (1,3)

12



(a) Theoretical Mode (b) Experimental Mode

Figure 10: Mode (2,1)

(a) Theoretical Mode (b) Experimental Mode

Figure 11: Mode (2,2)

(a) Theoretical Mode (b) Experimental Mode

Figure 12: Mode (2,3)
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The following table is a listing of the corresponding frequencies compared between

the theoretical and the observed. One will notice that the pictures above have modes

that are not completely symmetric. Also there is a variance in the calculated and

observed frequencies. The calculated frequencies are derived from the properties of

Bessel’s functions and circular boundary conditions, see Appendix A.

Predicted Frequency (Hz) Observed Frequency (Hz) % Error

f01 164.2 111.4 32.16

f02 376.8 415 10.14

f03 590.7 665 12.58

f11 261.5 261.5 0

f12 497.9 490.5 1.49

f13 694.5 647.3 6.80

f21 350.5 364 3.85

f22 574.7 535 6.9

f23 793.4 701 11.65

Table 1: Data table with comparison of predicted and observed frequencies.
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4 Discussion

An astute observer would look at the percent error of the data and immediately

raise questions. Not only is there a trend, but it seems that this trend picks an

arbitrary absolute answer in f11, and deviates away in both directions. This is due to

the choice to not disassemble the drum, thus risking the integrity of the instrument.

From Appendix A one can see that all subsequent modes of the drum are determined

by a constant related to the Bessel’s function and the fundamental mode f01. This

fundamental mode is a function of both tension and density of the drumhead. By

not disassembling the drum and taking qualitative measurements of both of these

physical constants an assumption must be made. Using Figure 2, one can see that

f11 is the best candidate. This mode has a very distinct saddle point that runs across

the diameter of the drum. The aforementioned assumption was made to discover the

frequency for f01 and Table 2 was used to calculate values for the expected frequencies.

As one can see from the results section, everything does not follow theory. While

the arbitrary coordinates that Mathematica supplies may confuse an observer, it is

mainly a semantic problem. What does become a problem stems directly from the

assumptions made at the beginning of the derivation of the theory. Assumption three

states that the drumhead is perfectly elastic. This is obviously not true, and manifests

itself in the sometimes odd patterns observed in Figure 12. Comparing the theoretical

and experimental results, there are twice as many outside saddle points. Also only one

of the two inner conical excitation points makes themselves evident. One can make the

direct correlation between the relatively high frequency and the internal dampening

that would occur, thus causing an increased % error. The unusually high error for f01

most likely manifests itself through the harmonics of the drum casing itself.[2] It was

observed that during the frequency modulation to determine the fundamental mode;

the drum struck its natural resonance frequency. This increased vibration would be
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the most likely culprit for the unusually high % error.

Unfortunately, the human eye is not quick enough to catch these high frequency

modes of vibration. This led to the use of sand to visualize a dynamic process. While

this seemed to work fairly well, it did not perform to expectations when used with

modes that have slightly ambiguous saddle points. This is especially the case in

Figures 6 and 9. Objectively observing the theoretical mode from either of these

figures shows saddle points that are nowhere near as stable as f11.

5 Conclusion

This experiment proved itself to be a challenging exercise in mathematical deriva-

tion. The apparatus used, while simple in design, ultimately led to a deviation from

the accepted behavior of the theoretical results. The vibrational characteristics of a

drum can be modeled by generalizing the two-dimensional wave equation, while the

qualitative results will vary. Many of the assumptions for this model hinge on an ideal

world. As experiment almost always proves, the real world is never precisely predicted

by mathematical theory. Though this theory does point the inquiring mind into the

right direction, it cannot be used as an accurate method to totally predict the be-

havior of vibrating membranes. A more thorough approach, including manufacturing

your own membrane from more trustworthy and measurable material, and physically

ensuring uniform tension and density would most likely lead to better visualization

of the nodal lines.
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6 Appendix A

Appendix A contains information pertaining to the Bessel’s function as well as pre-

vious modal information, where

fmn =
jmnc

2πa
(24)

f01 = 1.0f01 f11 = 1.593f01 f21 = 2.135f01

f02 = 2.295f01 f12 = 2.917f01 f22 = 3.500f01

f03 = 3.598f01 f13 = 4.230f01 f23 = 4.832f01

Table 2: Relative Theoretical Frequencies

7 Appendix B

To derive the equation of motion for a transverse wave on a string, one starts with

the diagram below.

Figure 13: String Segment

The string is assumed to have uniorm linear density and is stretched to a tension

T . The figure represents an infinitesimal section of the string. Equilibrium is at x

and has a length dx. y is the transverse displacement of the string from equilibrium,

therefore

17



∂fy = (T sin(a))x+dx − (T sin(a))x (25)

where a is the angle between the x axis and the tangent of the element of string,

and two terms are the value of the tension at position x+dx and x, respectively. The

Taylor series expansion of this type of function is

f(x + dx) = f(x) +

(

∂f

∂x

)

x

dx +
1

2

(

∂2f

∂x2

)

x

dx2 + ... (26)

Applying this concept yields

∂fy = [(T sin(a))x +
∂(T sin(a))

∂x
dx + ....] − (T sin(a))x =

∂(T sin(a))

∂x
dx (27)

This solution takes advantage of the fact that the first partial term of the Taylor

series dominates all subsequent terms. If a is small then sina can be replace by ∂y

∂x
,

in accordance with the small angle approximation which states sin a ≈ tan a. The

transverse force acting on the string now becomes

∂fy =
∂
(

T ∂y

∂x

)

∂x
dx = T

∂2y

∂x2
dx (28)

Using Newton’s second law and equating the sum of the forces to ma we now have

ΣFy = may (29)

T
∂2y

∂x2
dx = ρLdx

∂2y

∂t2
(30)

where ρLdx is the mass of the string and the second partial of y with respect to t
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is the calculus equivalent of acceleration. Rewriting leaves the final form

∂2y

∂x2
=

1

c2

∂2y

∂t2
(31)

where,

c2 =
τ

ρL

(32)

8 Appendix C

The following is the Mathematica code that will export a (.gif) movie into “My

Documents”.

Plot[{BesselJ[0, x], BesselJ[1, x]}, {x, 0, 20}]

Clear[alpha], f, k, [lambda]]

[alpha][0, j_] :=

w /. FindRoot[BesselJ[0, w] == 0, {w, (j - 1)*[pi], j*[pi]}]

[alpha][1, j_] :=

w /. FindRoot[

BesselJ[1, w] == 0, {w, [alpha][0, j], [alpha][0, j + 1]}]

[alpha][2, j_] :=

w /. FindRoot[

BesselJ[2, w] == 0, {w, [alpha][1, j], [alpha][0, j + 1]}]

[alpha][3, j_] :=

w /. FindRoot[

BesselJ[3, w] == 0, {w, [alpha][1, j], [alpha][2, j + 1]}]

[alpha][4, j_] :=
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w /. FindRoot[

BesselJ[4, w] == 0, {w, [alpha][1, j], [alpha][3, j + 1]}]

a = .2;

[sigma] = .05;

T = 100;

c = Sqrt[T/[sigma]];

k[m_, n_] := [alpha][m, n]/a;

[lambda][m_, n_] := c*k[m, n];

f[m_, n_] := [lambda][m, n]/(2 [pi])

f[0, 2]

List[Table[f[i, s], {i, 0, 3}, {s, 1, 3}]]

r[x_, y_] = Sqrt[x^2 + y^2];

[theta][x_, y_] = If[x > 0, ArcTan[y/x], ArcTan[y/x] + [\pi]];

u[i_, s_, x_, y_, t_] =

If[Sqrt[x^2 + y^2] < a,

BesselJ[i, k[i, s] r[x, y]] Cos[i*[theta][x, y]]

Cos[[lambda][i, s]*t], 0];

Plot3D[u[0, 3, x, y, 0], {x, -.2, .2}, {y, -.2, .2},

PlotPoints -> 30];

Export["Drum02.gif", {Table[

Plot3D[u[0, 2, x, y, .0001*j], {x, -.2, .2}, {y, -.2, .2},

PlotPoints -> 30, PlotRange -> {-1, 1}], {j, 0, 110}]}]

The last line of code can be adapted to any integer value for m, n. This example will

export the f0,2 mode, where 110 frames will be output and the step size is .0001j.
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