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small changes in the discharge coefficient as a function of wa-
ter depth, which is related to the water exit velocity. In 1933, 
Tuve and Sprenkle2 investigated the vena contracta phenom-
enon in an orifice plate placed inside a pipe with viscous fluid 
flow. Their experiment, while not exactly the same as Judd 
and King, showed that the discharge coefficient is a function 
of the flow’s exit velocity through the orifice, especially for 
Reynold’s numbers between 1 and 10,000. In 1940, Medaugh 
and Johnson3 return to Judd and King’s experiment and mea-
sured discharge coefficients for a broader range in fluid head 
height, demonstrating that the discharge coefficient depends 
on the fluid’s exit velocity. Interest in jetting from orifices re-
turned to the forefront with the invention of ink-jet printers 
in the 1980s. Leinard and Leinard4 determined that “surface 
tension does not retard a liquid jet unless it completely stops 
it.” In 2003, Libii5 demonstrated that fluid draining from a 
cylindrical tank marked with a measuring tape for visual data 
recording with a stopwatch can be incorporated into the un-
dergraduate laboratory experience. In 2005, Saleta et al.6 and 
Escamilla7 also demonstrated an undergraduate lab exploring 
this topic. To visualize fluid flow they use a digital photo-
graph of the jet exiting from the orifice in the side of a cylin-
der. Graph paper in the background of the photograph allows 
the student to determine the exit velocity of the jet using 
kinematics. Most recently, Guerra et al.8-9 have demonstrated 
how to use ultrasonic motion detectors to rapidly measure 
the velocity of the surface of the fluid in an open-top contain-
er as it drains. This velocity can be related to the fluid’s veloc-
ity through the orifice via the equation of continuity.

Lamb’s Hydrodynamics10 text and Milne-Thompson’s 
Theoretical Hydrodynamics11 text explore fluid motion from 
a high mathematical level. However, both texts use a simple 
physical argument early in the discussion of fluid draining 
from an open-topped container to argue why the cross-sec-
tional area of the fluid jet issuing from a sharp-edged orifice 
in the side of an open-topped container must be smaller than 
the cross-sectional area of the orifice, which we will repro-
duce here. Figure 1 illustrates a small hole XY in the side of 
a straight-walled open-topped container that is filled with 
fluid, maintained at a fixed level to simplify the discussion. 
The atmospheric pressure outside the container is Patm and v2 
is the speed of fluid exiting the hole as measured at the vena 
contracta. The hydrostatic pressure at the depth of the hole is 
p. When the hole is closed, as illustrated in Fig. 1(a), the net 
force of the container’s walls on the fluid is zero. However, 
when the hole is opened, as illustrated in Fig. 1(b), the force at 
XY becomes patmA1. Hence, if we assume that the hydrostatic 
pressure, p, is unaltered except at the orifice, then the net 
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The flow of fluids through open containers is a topic 
studied frequently in introductory physics classes. A 
fluid mechanics class delves deeper into the topic of 

fluid flow through open containers with holes or barriers. 
The flow of a fluid jet out of a sharp-edged orifice rarely has 
the same area as the orifice due to a fluid flow phenomenon 
known as the vena contracta. The area of a fluid jet out of an 
orifice is related to the actual area of the orifice by a value 
known as the coefficient of discharge, Cd. The purpose of 
this paper is to develop a mathematical model for a drain-
ing open container and an experimental method that will 
efficiently determine the coefficient of discharge for such a 
system. Prior work in physics education literature has devel-
oped a method for measuring the flow of a fluid out of an 
orifice using ultrasonic motion detectors. In this paper we 
present data that show our method can be used to find the 
coefficient of discharge within the expected literature values 
for sharp-edged and rounded orifices. 

Introduction
A desire for a calculus-based fluids lab for undergraduate 

physics majors prompted this investigation into fluid drain-
ing from an orifice at the bottom of a cylindrical open-top 
container. A review of the literature on the topic proved to be 
fascinating. In 1908, Judd and King1 chronicled an experi-
ment to measure the volumetric flow rate through a sharp-
edged orifice as a function of water depth. Of interest was the 
discharge coefficient, Cd, defined as the ratio of the actual 
volume discharge rate divided by that predicted by Torricelli’s 
law. They used an ingenious micrometer caliper system to 
measure the shape of the water jet issuing from the orifice. 
This information quantitatively showed that the jet area is 
smaller than the orifice area for a sharp-edged orifice [see Fig. 
1(b)]. This phenomenon is known as the vena contracta. Dur-
ing the course of their experiment, Judd and King observed 

(a) (b)
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Fig. 1. Illustrating presence of vena contracta in fluid jet issuing 
from side of an open-topped fluid-filled tank.
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the cylinder has a certain height h. The water is flowing out 
of the hole at the bottom with a velocity v2 and, consequently, 
the water level in the top is dropping with a velocity v1 (see 
Fig. 2).

Starting with the equation of continuity for the fluid,  
A1v1 = A2v2, and Bernoulli’s equation,  

               (5)
 

the following standard expression for the velocity of the 
fluid within the container may be derived, 

                                                                                                                    (6)h,

where we have introduced the constant C as indicated. If we 
had solved for v2 rather than v1, we would have found Torri-
celli’s theorem for the exit velocity of a fluid jet through a hole 
that is much smaller than the cross-sectional area of the con-
tainer. Note that Eq. (6) clearly shows that as the fluid drains, 
h → 0, the velocity of the top surface gets smaller and reaches 
zero when the container is fully drained, and therefore the 
slope of the position-versus-time graph for the fluid surface 
should flatten out when the container is drained. This makes 
sense physically because as the container drains there is a 
smaller and smaller pressure difference forcing the fluid out 
of the hole and, hence, a smaller exit velocity.

Note that v1 = –dh/dt since h is measured from the bottom 
of the container. Hence, with this substitution, Eq. (6) is sepa-
rable and integrates to give

                                (7)

          
This equation can be used to calculate a theoretical time to 
drain the container by setting h(tdrain) = 0 and solving for  
tdrain, and then comparing9 to experimentally measured val-
ues. 

Previous work8 relies on a standard ultrasonic motion 
detector12 to analyze the draining system. For convenience 
in our experimental setup, we recast our system to have an 
origin at the motion detector, which gives the function for the 
distance of the fluid level from the motion detector. 

        (8)

The water’s initial and final distances from the detector are yi 
and yf , and ti is the initial time when the drain starts. This is 
the appropriate function for the height of fluid draining from 
a straight-walled container whose origin is at the position of 
the motion sensor. 

Experimental setup 
For the purpose of this experiment we sought a setup that 

was similar to the mathematical model. The most cost-effec-
tive and accurate setup was to use a straight, open-ended 6-in 
diameter PVC pipe that is approximately a foot in length. One 

force on the fluid at the orifice is: (p – patm)A1, which must 
equal the time rate of change of the momentum,

                                (1)
   

If the fluid level in the tank is held fixed, then the fluid’s exit 
velocity at the vena contracta is a constant, v2. The rate at 
which the mass of fluid is exiting the container may be writ-
ten in terms of the fluid’s density, the jet’s cross-sectional area, 
and speed as dm/dt = rA2v2.

 
Thus, Newton’s second law for 

the fluid is 

           (2)
which may be combined with Bernoulli’s equation for a 
streamline that flows through the center of the orifice,

                               
 (3) 

      

2 2
1 atm 2

1 1 ,
2 2

p v p vρ ρ+ = +
  

where the left-hand side of the equation refers to the near-sta-
tionary fluid in the container and the right-hand side refers to 
the fluid in the jet at the vena contracta. Since v1 is small we 
can ignore v2

1 on the left-hand side. Combining Eqs. (2) and 
(3) to eliminate (p – patm) yields an expression relating the 
cross-sectional area of the orifice, A1, and the cross-sectional 
area of the jet, A2,

                                (4)2 1
1 ,
2

A A=
  

showing that the coefficient of contraction of the jet is 1/2 
for a sharp-edged orifice at this level of approximation. For a 
round-edged orifice such as a nozzle, the change in cross- 
sectional area of the jet occurs within the nozzle itself. An-
other way to explain the existence of the vena contracta with-
out mathematics is to note that the fluid within the container 
is moving in a radial direction toward the orifice. The fluid 
maintains this radial component of its velocity upon exiting 
the container and so the jet narrows as the fluid streamlines 
become parallel. This curving of the fluid streamlines occurs 
within the nozzle of a rounded-edge orifice so that the jet 
emerges with all streamlines parallel. The physical argument 
presented here is not changed if the orifice is at the bottom of 
the container.

Mathematical model 
To begin, we seek to 

mathematically define the 
system of interest. Consider 
an open-topped container 
where water is flowing out 
of a given diameter opening 
in the bottom of a perfect 
cylinder. The top of the cyl-
inder has a known diameter 
D1 and area A1, and the hole 
has a known diameter D2 and 
known area A2. The water in 

Motion Detector

D1

h0
y0

y(t)
h(t)

V1

D2

V2

Fig. 2. Schematic of system 
with original origin (blue) and 
changed origin (red).
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It is important that the motion detector have a clear view of 
the water level. The motion detector is set up to collect a data 
point every half second. We discovered that the PVC cylinder 
needed to be 6 in in diameter so that the motion detector 
could “see” the water level and not the top edge of the cylin-
der.

This paper explores drainage through holes of four differ-
ent diameters with two edges: sharp edge (no grommet) and 
rounded edges (grommet). The rounded edge case consists 
of a brass grommet13 attached with a waterproof adhesive 
to a test cap with a hole that is slightly larger than the inner 
diameter of the grommet itself. Grommets have an extended 
length under the flange and a curved transition from flange 
to extension, as shown in Fig. 5. The length under the flange 
and the inner diameter are provided from the grommet man-
ufacturer and checked with a measurement using calipers. 
The radius of curvature is measured approximately through 
the use of a Starrett radius gauge set. Dimensions of both the 
grommet and no grommet holes and their corresponding cap 
numbers are presented in Table I.  

In general, the holes in the caps are plugged with tape or a 
rubber stopper to keep the fluid from draining before the de-
sired time. We wait 10 minutes after adding fluid to the pipe 
to allow the fluid to settle, ensuring a smooth drain. Excess 
turbulence in the fluid during draining results in the forma-
tion of a vortex that seriously skews data collection and is an 
effect that is outside the scope of this investigation. When 
the fluid is still, data collection is begun on the Logger Pro 
software and the plug is removed from the cap. It is important 
that the pipe is disturbed as little as possible during this pro-
cess. Bumping or jostling the fluid will cause ripples or slosh-
ing, resulting in an inaccurate position measurement.

Results & discussion of data
In our experiments, the velocity data tended to be noisy. 

This noise is attributed to the slow velocity of the top surface 
of the water. The motion detector confuses the slow motion 
of the top surface for no motion, and thus the velocity sud-
denly becomes zero at points, resulting in jagged data. Thus 
we choose to analyze the position data rather than the veloc-
ity data, fitting Eq. (8). The initial height, final height, and 

end of the pipe is cemented into a piece of 1/2-in thick PVC 
sheeting that has an approximately 4-in-diameter opening 
coaxial with the 6-in PVC pipe. The opening allows the use 
of 4-in-diameter PVC test caps (see Fig. 3) with various sized 
holes drilled in them. A rubber band with width of approxi-
mately 1/4-in is placed around the inner edge of the test cap 
to serve as a seal that keeps the water from leaking out of the 
system. Test caps make it easy to change the size or properties 
of the hole being drained and are readily available at home 
centers and hardware stores. The ease of altering properties of 
the hole is essential for a teaching lab experiment. 

The 6-in PVC pipe is situated in such a way as to be held 
stable while water is being drained out. These experiments are 
conducted with the PVC pipe sitting on a level wooden stand 
that allows water to pass through into a bucket; however, the 
PVC could be held on a variety of common lab items (a ring 
stand, cinderblocks, etc.). It is only important that the pipe is 
level and steady. To level our pipe, we used a standard bubble 
level. The apparatus we designed to hold the PVC pipe in place 
is a wooden box that fits the bucket, as shown in Fig. 4. 

In this experiment, the motion of the falling water level is 
recorded using an ultrasonic motion detector.12 The motion 
detector is placed in a three-fingered clamp attached to a ring 
stand approximately 40 cm above the top of the PVC pipe. 

Fig. 3. PVC test caps with holes drilled in the center, grom-
met and no grommet case shown.

Fig. 4. Schematic of apparatus designed to measure the draining of a fluid.

Fig. 5. Grommet design showing its inner diam-
eter (I.D.), length under flange, and radius of 
curvature.

Bucket for
catching
draining fluid

6-in PVC pipe
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support
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coefficient of discharge. The coefficient of discharge is de-
fined as a ratio of actual and theoretical mass flow rates.18-19

      
  (9)

The mass flow rate can be represented as the density of 
the fluid r multiplied by the fluid velocity v and the cross-
sectional area of the flow A. It is important to note that here 
we make a distinction between the experimental area of the 
flow, A2exp, and the actual area of the orifice, A2. Thus, in 
our case, the coefficient of discharge is:

                              (10)   exp exp

 
where the fluid density r has canceled out. By manipulation 
of Bernoulli’s equation and the equation of continuity, we 
can develop an expression for the velocities, which can be 
substituted into the coefficient of discharge definition and 
simplified to produce 

                              (11)   
    

Equation (11) shows that the coefficient of discharge is a 
product of two terms—the first is a ratio of the experimental 
to theoretical areas, and the second is a term that arises from 
a ratio of velocities. The first term is called the coefficient of 
contraction Cc and the second is called the coefficient of ve-
locity Cv. Hence, we may write Cd = Cc Cv. Equation (11) al-
lows us to calculate the values for Cc and Cv separately and 
use those values to determine the coefficient of discharge for 
the system. Recall that from the fit constant C, we can deter-
mine the experimental area of the flow to be

            (12)exp

 
We calculate the experimental values for Cc, Cv, and Cd 

from the average of five runs for each hole. We find that Cv 
ranges between 1.0±10-9 to 1.0±10-4, which is essentially a 
value of 1. A value of 1 makes sense in our setup because the 
area of the orifice is much smaller than the area of the top of 
the pipe. The value of 1 for the coefficient of velocity is also 
confirmed by literature references.19 This being the case, the 
coefficient of discharge is effectively equal to the coefficient 
of contraction for the system. For simplicity, we represent 
only the final value for the coefficient of discharge, taken as 
an average from five runs each for both the grommet and no 
grommet cases. Again, the range for the fit lines from which 
these values were calculated is approximately 5 s after the 
drain starts to 5 to 10 s before the data plateau, as illustrated 
in Fig. 6. Values for the coefficient of discharge, including 
standard deviations, are shown in Table II.

We can now compare these experimental values for the 
coefficient of discharge to the expected values given in several 
textbooks and articles. The no grommet case, with a value for 

start time are put in as constants, and Logger Pro determines 
the most appropriate value for the constant C. 

Our physical model suggests there are no specific criteria 
for choosing which data to be fitted. However, in general, we 
chose data ranging from 5 s after the flow began to 10 s before 
the flow transitioned to a dripping state, which occurs 5 to 
10 s before the data plateau out. The reason for this choice is 
to remove from consideration flow that is subject to start-up 
or dripping-state physics,14-17 which is not contained in the 
physical model presented in the “Mathematical Models” sec-
tion. A sample of the data collected for the grommet and no 
grommet case for hole #3 and the fit lines for both situations 
is shown in Fig. 6. The fit range, described above, is marked 
on the graph by a set of solid black lines (grommet case) and a 
set of dashed lines (no grommet case). 

The data in Fig. 6 are the position of the water level versus 
time. The slope of the plotted line at any point in time repre-
sents the velocity of the water in the cylinder drained at that 
time. For both cases, the slope of the line at the beginning of 
the drain is large, indicating a high draining velocity. Like-
wise for both cases, the slope towards the end of the draining 
time is shallower. This is expected because as the depth of 
the water decreases, the pressure that forces the water out of 
the bottom orifice decreases as well. Less pressure forcing the 
water downward out of the orifice results in a slowing of the 
velocity. It is clear from Fig. 6 that the orifice with a rounded 
edge drains faster than the sharp-edged orifice, even though 
the holes are approximately the same diameter. 

To quantify the effects of the vena contracta on fluid 
draining from an open-topped container, engineers use the 

Cap 
Number

No Grommet                        Grommet

Inner 
Diameter 

(mm)

Inner 
Diameter

(mm)

Length Under 
Flange 
(mm)

Radius of 
Curvature 

(mm)

1 4.29 4.43 3.43 1.98

2 5.89 6.04 4.45 1.58

3 8.92 9.11 5.46 2.78

4 12.5 12.6 9.5 3.57

Table I. Properties of drainage holes.

Fig. 6. Sample of data taken with fit lines overlaid.
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the coefficient of discharge of ~0.65, represents a sharp-edged 
orifice. The value of Cd for a sharp-edged orifice was reported 
by Vennard and Street19 as 0.61. Judd and King1 measured 
values for Cd between 0.59 and 0.61 depending on the size of 
the orifice and the depth of the water in the system. A round-
ed orifice, represented by the grommet case with an average 
coefficient of discharge of ~0.98, has reported values19 of 0.98 
or simply 1.00. In systems with a value for Cd approaching 
1.00, like the rounded grommet case, the actual area of the 
draining stream is closer to the measured area of the orifice. 
These systems are more accurately represented by the tradi-
tional draining-bucket theoretical calculations as presented 
in the “Mathematical Model” section of this paper. The vena 
contracta of a rounded orifice, then, can be assumed to be 
smaller than the vena contracta of a sharp-edged orifice, as 
stated above. 

The discharge coefficient’s dependence on the flow’s exit 
velocity is not so apparent in this setup or in our data. Our 
decision to fit the majority of the position-versus-time graph 
for a run results in a single composite value for the discharge 
coefficient during that run. If we had better data for the ve-
locity of the water level in the container, we could experimen-
tally calculate the discharge coefficient directly. 

Conclusion
With this project we have shown that there is an accurate 

way to measure and determine the coefficient of discharge for 
fluid flow that follows Bernoulli’s law in an open container 
with orifices of different diameters. Measurements and calcu-
lations for the coefficient of discharge can be done with water 
only, or the fluid properties can be varied by changing the 
surface tension and/or viscosity of the fluids. We didn’t report 
our investigations using cooking oil and acetone in this setup. 
Further research in this subject could investigate an improved 
method for physically measuring the area of the flow out of 
the cylinder (photography, video, force probe, etc.). Still the 
experiment presented here is accurate and informative, and 
it can be executed in any calculus-based college physics class 
with minimal expense and difficulty. Future work could in-
vestigate fluids draining from shaped containers.
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Cap Number
         Coefficient of Discharge

With Grommet Without Grommet

1 1.03 ± 0.01 0.761 ± 0.003

2 0.984 ± 0.001 0.654 ± 0.002

3 0.970 ± 0.004 0.650 ± 0.003

4 0.96 ± 0.01 0.666 ± 0.005

Table II. Average experimental values after five runs, over a range 
of exit velocities. The coefficient is a dimensionless variable.
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