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Abstract 

 Triaxial microelectromechanical systems (MEMS) accelerometers are inertial sensors 

that measure linear acceleration along three orthogonal axes. In many robotics applications, 

accelerometers help track a robot’s relative displacement. However, displacement estimates 

derived from an accelerometer’s raw measurements drift significantly over time from ground 

truth values during the derivation process due to accumulated errors in acceleration 

measurements. While accelerometers can be combined with other sensors to reduce the effect of 

displacement estimation drifting, calibrating accelerometers themselves before use is still 

essential, especially for very low-cost applications. This study investigates methods of 

calibrating a low-cost MEMS accelerometer using least-squares fitting, primarily concentrated 

on removing systematic error from acceleration signals. All code written for this project is 

publicly available on GitHub at https://github.com/willward20/UCA-Honors-Capstone. 
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Chapter 1: Introduction 

 An accelerometer is an inertial sensor that measures linear acceleration along three 

orthogonal axes in the 3-D Cartesian space. For example, Figure 1 shows an accelerometer as it 

is pushed across a flat surface by a constant force F. Along the x-axis, the accelerometer 

measures a linear acceleration of ax, due to the force F, and along the z-axis, the accelerometer 

measures the acceleration due to Earth’s gravity (approximately 9.797 m/s2 in Conway, AR [1]). 

An ideal accelerometer, whose data is completely free of error, could be used to precisely track 

an object’s displacement, s(t), from an initial starting position, s0, by performing double 

integration on the measured linear acceleration, a(t) [2]: 

 𝑠(𝑡) = 𝑎(𝑡)𝑑𝑡 𝑑𝑡 + 𝑣 (𝑡 − 𝑡 ) + 𝑠  
 

(1) 

In (1), t0 is the initial time, and v0 is the initial velocity.  

Figure 1: Accelerometer moving across a flat table due to a force F in the x direction. 

Unfortunately, even the most accurate accelerometers, used for navigating autonomous 

vehicles or tracking tactical missiles, contain small errors in acceleration measurements that 

accumulate into a massive drift in displacement calculations over time [3]. For example, consider 

an accelerometer that is sitting at rest on a table. Since the sensor is not moving, it should 
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measure a constant linear acceleration of 0 m/s2 over time (after removing gravitational 

acceleration). Letting the acceleration be a constant value, a, and letting the initial time, velocity, 

and position be equal to zero, the displacement of the accelerometer after a time t, given by (1) 

becomes 

 𝑠(𝑡) = 𝑎 𝑑𝑡 𝑑𝑡 =
1

2
𝑎𝑡  

 
(2) 

If a = 0 m/s2, then the displacement after any time t is equal to 0 meters. However, if the 

acceleration measurement is offset by some constant bias error, then the displacement over time 

drifts away from the expected value (0 meters). Table 1 illustrates how small errors in 

acceleration lead to large displacement errors, even after a short time.  

Table 1: Displacement Drift Over Time 𝒔(𝒕) =
𝟏

𝟐
𝒂𝒕𝟐    

for Different Acceleration Errors 

 t = 10 seconds t = 30 seconds t = 60 seconds 

a = 0.001 m/s2 0.05 meters 0.45 meters 1.8 meters 

a = 0.01 m/s2 0.5 meters 4.5 meters 18 meters 

a = 0.1 m/s2 5 meters 45 meters 180 meters 

 

  An accelerometer’s ability to accurately track an object’s displacement over time is 

highly dependent on the amount of uncertainty in its measurements and the total time over which 

displacement tracking occurs. Therefore, in many engineering applications where precise, long-

term position tracking is required, relying solely on accelerometers is unacceptable.  

Nevertheless, accelerometers are still commonly incorporated into complex navigational systems 

due to several key advantages: size, weight, and speed.  
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 Advances in silicone technology led to the development of micro electromechanical 

systems (MEMS) sensors, devices that are cheap, small, lightweight, and can contain multiple 

sensors in one unit [3, 4]. A MEMS accelerometer (with three axes to measure acceleration in the 

x, y, and z directions) is often packaged in combination with MEMS gyroscopes (inertial sensors 

that measure the angular rate of rotation) in Inertial Measurement Units (IMUs) [3]. MEMS 

IMUs, while on the low end of sensor accuracy, are ideal for electronics applications because 

they are sold on breakout boards by electronics manufacturers at a very low cost [3], and they 

have solderable pin connections that allow easy integration with other electronic devices. In 

addition, MEMS IMUs are small and lightweight, making them advantageous for a variety of 

robotics applications, such as the navigation of autonomous Unmanned Aerial Vehicles [5], 

Personal Dead-Reckoning devices [6, 7, 8], and controlling robotic manipulators [9]. 

 In robotics, IMUs are commonly used for odometry: tracking a robot’s movement 

(displacement and rotation) over time [10]. An odometry system that relies solely on an IMU is 

plagued with displacement estimation drift, but combining an IMU with other types of sensors, 

such as GPS, radar, LiDAR, or vision, can create a reliable odometry system where the strengths 

of one sensor balance the flaws of another [5, 10]. For example, in visual-inertial odometry, a 

camera is combined with an IMU so that the camera corrects the IMU’s accumulated 

inaccuracies, and the IMU compensates for the camera’s slow measurement rate [5, 10].  

 Even though accelerometers are often used in combination with other sensors to 

compensate for the accumulated error, it is still important to calibrate accelerometers before use 

to optimize their measurement accuracy. In robotics, situational awareness is key. The more 

uncertain a robot is about its environment, the less accurately a robot behaves. In an emergency, 

where a robot must suddenly rely on an accelerometer for displacement tracking, the sensor must 
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provide the best possible measurements to minimize the robot’s position uncertainty. One way to 

improve an accelerometer’s measurement accuracy is by calibrating the sensor. In this study, 

calibration methods are tested on a low-cost MEMS accelerometer to explore how well they 

reduce error in displacement calculations over time, primarily focusing on removing constant 

bias from acceleration signals. Calibration methods are chosen that require minimal equipment 

and are computationally simple to execute. All code written for this project is publicly available 

on GitHub at https://github.com/willward20/UCA-Honors-Capstone.  
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Chapter 2: Literature Review 

Introduction 

 The following literature review provides background information about characterizing 

and correcting errors in accelerometer measurements and subsequent velocity and displacement 

calculations. Discrepancies between expected and actual measurements are attributed to two 

types of error: random error and systematic error [11]. Random error is unpredictable, but it can 

be characterized statistically, and it is often modeled as white noise that contributes to 

displacement drift through random walk [12, 13, 14, 15]. On the other hand, systematic error 

persists throughout the entire dataset and is often attributed to an inherent flaw in a sensor or in 

an experimental procedure [11]. When acceleration data is integrated twice to calculate 

displacement estimates, both types of sensor error contribute to the displacement drifting away 

from true values.  

As it will be seen in Chapter 5: Results, systematic uncertainty accounts for significantly 

more drift in displacement calculations than random uncertainty when using a MEMS MPU-

9250 accelerometer. Therefore, while calibrating random errors is still an important area of 

research, this literature review focuses only on removing systematic uncertainty from sensor 

measurements. In the future, methods of calibrating random uncertainty, such as using a Kalman 

Filter [12], an autocorrelation function [14], Allan variance analysis [15], or wavelet analysis 

[16] could be investigated in more detail and incorporated into the MEMS accelerometer 

calibration system to create a more robust system.  
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Calibrating Systematic Error 

Zero-State Detection 

 One method of removing systematic errors from accelerometers is to manually adjust 

measurements to 0 m/s2 when the sensor is known (or approximated) to be at rest. Yu et al. [17] 

and Irfan et al. [18] both determine when an accelerometer is at rest by comparing live 

acceleration measurements to a predetermined threshold. The threshold behaves like a filter that 

is designed to catch and correct measurements that meet a certain condition while letting the 

others pass through unchanged.  

One simple threshold, described by Irfan et al. [18], is an interval of acceleration values 

that sorts measurements into two categories: data points that fall within the interval and data 

points that fall outside the interval. A measurement that falls within the interval indicates that the 

sensor is most likely at rest, so the measurement is manually corrected to 0 m/s2. On the other 

hand, measurements that fall outside the interval indicate that the sensor is most likely in motion, 

so the measurements should not be forced to zero [18]. While Irfan et al. [18] do not describe 

how their threshold was chosen, it is challenging to determine the best value. An interval that is 

too small might miss values that ought to be corrected to zero, but an interval that is too large 

might lose important information about linear acceleration, compromising displacement 

calculations.  

Building on this idea, Yu et al. [17] choose a threshold based on the average mean and 

standard deviation of accelerometer measurements when the sensor is at rest. Then, as new data 

is collected, a zero-state adaptive compensation algorithm analyzes the data in small batches of 

20 data points each. The mean and standard deviation of each batch are calculated, and 
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depending on how they compare with the threshold values, every measurement in the batch is 

either forced to zero or passed unmodified. The algorithm continuously analyzes new batches of 

data and determines whether the sensor is at rest or in motion [17]. This approach considers the 

deviation in acceleration measurements over a short period of time, not just isolated 

instantaneous measurements like Irfan et al. [18] do. Incorporating standard deviation into the 

threshold algorithm gives a better representation of the sensor’s current state by including a 

second point of reference to compare new data with known static behavior.  

 Unfortunately, while this calibration method is simple, relying solely on a zero-state 

threshold to calibrate acceleration measurements and effectively reduce drift in displacement 

calculations is unrealistic for many robotics applications. One major issue with zero-state 

threshold filtering is that calibration only takes place after the algorithm detects that the sensor is 

at rest. When a robot is in motion, such as a UAV in mid-flight or an autonomous vehicle driving 

on the interstate, the acceleration measurements are not calibrated, and the robot’s odometry 

drifts significantly from the ground truth.  

In response to this problem, Yu et al. [17] describe an additional step to remove errors in 

velocity calculations accumulated during movement by modeling the error as a linear function 

and subtracting it from the calculations. However, this method still does not resolve the problem 

because measurements taken during motion are not calibrated until the motion stops. This means 

that a robot would have to stop frequently during an operation to correct its odometry, and that is 

not always feasible. For some applications, such as tracking a person’s position while walking or 

running [6, 8], this is highly effective. An IMU mounted to a person’s boot will instantaneously 

come to rest each time a person takes a step, allowing for frequent calibration of the sensor. 
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However, for a robot that drives on wheels or soars through the air, a more general way of 

eliminating accelerometer error is needed. 

Accelerometer Error Modeling 

 A more general way of calibrating an accelerometer is to devise a mathematical equation 

that relates true acceleration to measured acceleration. In the literature, several equations of 

varying complexity have been proposed to model errors in the accelerometer. In each model, the 

estimated ground truth acceleration is manipulated by several matrices that are composed of 

unknown parameters. By collecting data while the sensor is at rest and employing least-square 

fitting, the parameters in an accelerometer model can be optimized so that the equation 

relationship between true and measured acceleration fits the data.  

Niu et al. [2] describes one of the simplest accelerometer models where acceleration 

measurements, 𝐚′, and ground truth acceleration, 𝐚, are three dimensional vectors containing x, y, 

and z components of acceleration: 

 
𝑎

𝑎

𝑎

=

𝑎
𝑎
𝑎

+

𝑏
𝑏

𝑏

 

 

(3) 

 

In this model, the acceleration measured along each axis equals the true acceleration plus an 

unknown constant DC bias, 𝐛. A bias term is a source of systematic error that exists in every 

measurement, shifting the entire data set above or below the ground truth by a constant value. 

When graphing the measured accelerations versus true accelerations of each axis, the bias terms 

represent the intercepts of the functions. Since the only difference between the true and measured 

acceleration values in this model is the constant bias, the model assumes that the proportional 
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relationship between the values is one-to-one. In other words, the model cannot adjust the slope 

of the fitting equation to better fit the data, if necessary.  

 A slightly more complex accelerometer model, described by Aggarwal et al. [15] does 

not assume that the ratio between measured and true acceleration is one-to-one. In addition to the 

bias terms, the model includes a matrix of scale factors (𝑆 ,  𝑆 ,  𝑆 ) that is multiplied by the 

ground truth acceleration:  

 
𝑎

𝑎

𝑎

=

𝑆 0 0
0 𝑆 0

0 0 𝑆

𝑎
𝑎
𝑎

+

𝑏
𝑏

𝑏

 

 

(4) 

 

When fitting the collected 𝐚′ and 𝐚 data to the model, the scale factors are optimized so that the 

slope of the fit function for each acceleration component (x, y, z) matches the slope of the data 

for each component. Compared with the model described by Niu et al. [2], the scale factor model 

adds an additional dimension to the fit equation. If there exists a non-one-to-one ratio between 

true and measured acceleration, the equation described by Aggarwal et al. [15] will give a more 

accurate calibration because it can model any slope.  

 The accelerometer error models discussed so far assume that the axes of the 

accelerometer are perfectly orthogonal to (rotated 90° relative to) each other. However, due to 

limitations in manufacturing precision, it is unlikely that the accelerometer axes are perfectly 

aligned. This is important to consider because the ground truth acceleration input into the model 

depends on the transformation matrix of the accelerometer axis relative to the reference frame of 

gravity. If the axes are misaligned, then each accelerometer axis could be measuring components 

from one or more ground truth acceleration components. Aggarwal et al. [15], Frosio et al. [19], 

Sipos et al. [20], and Särkkä et al. [21] all account for misalignment by modifying the 3x3 scale 
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factor matrix, where the diagonal components represent the scale factors from the previous 

model, and the non-diagonal components represent misalignments between the three sensor axes. 

The general twelve-parameter model is given below:  

 
𝑎

𝑎

𝑎

=

𝑆 𝑆 𝑆

𝑆 𝑆 𝑆

𝑆 𝑆 𝑆

𝑎
𝑎
𝑎

+

𝑏
𝑏

𝑏

 

 

(5) 

 

 In the literature, different variations of the 3x3 scale factor model are described. For 

example, Frosio et al. [19] presents a modified version of this model, assuming that 𝑆 =

𝑆 ,  𝑆 = 𝑆 , and 𝑆 = 𝑆 . Aggarwal et al. [15] and Särkkä et al. [21], on the other hand, do 

not make this distinction. Sipos et al. [20] take a different approach, setting 𝑆 =  𝑆 = 𝑆 =

0.  

Velocity and Displacement Error Models 

Errors (in the form of drift) can also be approximated in velocity and displacement 

calculations. In each accelerometer model presented in the previous section, a constant bias term 

propagates through the signal. When integrating the acceleration data over time, the velocity and 

displacement calculations can be approximated as the true values plus a polynomial error term 

that results from the DC bias in the acceleration [2, 18]:  

 𝐯 = 𝐯 + 𝐩𝟏𝑡 + 𝐩𝟎 

 

(6) 

 𝐝 = 𝐝 +
1

2
𝐪 𝑡 + 𝐪 𝑡 + 𝐪  

 

(7) 
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If acceleration signals are collected when the accelerometer is at rest, then v and d are equal to 

zero, and any non-zero velocity and displacement calculations are due to accumulated drift. (The 

model only directly accounts for error due to constant bias in the acceleration signal). The 

parameters p and q can be approximated using polynomial fitting, and the resulting calibration 

equations can be used to reduce the amount of error in velocity and displacement [2, 18].  

Least-Squares Optimization of Parameters 

 The advantage of error models, like those presented in the previous sections, is that 

precise information about the sensor does not need to be known. Instead, data can be collected 

(with minimal equipment) and compared with theoretical expectations to fit a model to the data 

and determine unknown model parameters. Nui et al. [2], Aggarwal et al. [15], Frosio et al. [19], 

and Särkkä et al. [21] all use a form of least-squares optimization to estimate parameters in an 

error model.   

In least squares fitting, a chosen trend function with one or more unknown parameters is 

fit to a set of data points by minimizing the sum of the square differences between the measured 

data points and the trend function [11, 22]. The minimum is found by optimizing the unknown 

parameters in the trend function for a given dataset. For a simple example, in Niu et al. [2] the 

error in velocity calculations (due to a DC bias in acceleration measurements) is modeled as a 

linear function p 𝑡 + p . To determine the coefficients p  and p , they minimize the sum of the 

squared differences between each velocity data point and the function [2]: 

 [𝑣 − (p 𝑡 + p )]  
 

(8) 

Aggarwal et al. [15], Frosio et al. [19], and Särkkä et al. [21] all use a form of least squares 

fitting to determine the unknown parameters in their respective error models for the 
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accelerometer. Depending on the complexity of the model, the number of parameters that must 

be optimized changes. In each calibration method, accelerometer data is collected while the 

sensor is at rest and in different orientations relative to the reference gravity vector.  

Data Collection Procedures 

Aggarwal et al. [15], Frosio et al. [19], Sipos et al. [20], and Särkkä et al. [21] all collect 

data for error model parameter optimization by rotating the sensor to different orientations and 

recording acceleration experienced by each axis when the sensor is at rest. Aggarwal et al. [15] 

collected data at six unique orientations on an approximately level surface so that the ground 

truth direction and magnitude of gravity were always known. In each collection position, a 

different face of the calibration cube was pointed up so that each axis experienced +1 g, 0 g, and 

-1 g at least once during the calibration process, as shown in Figure 2.  

Figure 2: Six position data collection procedure 

Särkkä et al. [21] expand on the previous collection process by placing the sensor, in its 

calibration cube, on an inclined plane and rotating the accelerometer to 24 unique orientations. 

For each of the six orientations used by Aggarwal et al. [15], Särkkä et al. [21] added three 
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additional orientations by rotating the sensor 90° about the vertical axes. In addition, using an 

inclined plane, rather than a flat surface, exposes the accelerometer to more variety in 

acceleration magnitudes. The rotation angles of the platform are measured manually, but they are 

also included in the accelerometer error model to be optimized during least-squares fitting. This 

provides a point of reference to determine how accurate the model fitting is [21]. 

 Similarly, Sipos et al. [20] suggest collecting accelerometer data at 36 positions while 

the sensor sits on a rotated platform. For three orientations (x-axis up, y-axis up, and z-axis up), 

Sipos et al. [20] suggest rotating the sensor 12 times about the vertical axis to achieve variety in 

the magnitudes of acceleration experienced by the other two axes. The angles of the rotating 

platform are measured directly for analyzing the accuracy of error model parameter optimization 

[20]. By contrast to the previous three studies, Frosio et al. [19] collected data at between 35 and 

72 random sensor orientations using a rotating platform. Multiple sensors were tested, and the 

number of orientations varied for each. A motion capture system was used to measure the true 

angles of rotation for calibration analysis.   
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Chapter 3: Methodology 

 This chapter is divided into several sections. First, the hardware and software setup, 

including equipment used, circuit wiring, and data reading, are presented. Second, preliminary 

characterization tests are discussed, in which data is collected to learn more about the specific 

sensor used in this study. Third, data collection procedures used for calibration are presented, 

followed by an explanation of the calibration process.  

Hardware and Software Setup 

 This study uses an MPU-9250 IMU breakout-board sensor, shown in Figure 3, that 

includes a three-axis accelerometer, gyroscope, and magnetometer. It is a very low-cost sensor 

package (less than $20.00 US) that is manufactured by HiLetgo (hiltego.com)  and sold by 

Amazon (amazon.com) [23, 24]. The MPU-9250 sensor itself (a small integrated circuit chip 

located on the breakout board) is manufactured by InvenSense, which provides a product data 

sheet detailing the characteristics and inner workings of the sensor array [25]. The datasheet 

indicates that the IMU is configured to register accelerations between -2 and +2 g’s (±19.6 m/s2), 

and that the “initial tolerance” of the sensor is ± 3% [25, p. 9].   

Figure 3: HiLetgo MPU-9250 IMU Sensor with coordinate axes labeled [24]. 

Accelerometer measurements are transmitted to a Raspberry Pi 4 for recording and 

processing through an I2C connection. Table 2 labels the pin connections made between the IMU 
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and the Pi [26]. The IMU is mounted inside a 3D-printed calibration cube that was sanded on all 

sides after printing to ensure approximate levelness [27]. The cube allows easy 90° rotation of 

the IMU during calibration. The full setup of the IMU connected to the Raspberry Pi is shown in 

Figure 4. All data collection, recording, and analysis are performed by scripts written in the 

programming language Python. 

Table 2: Raspberry Pi and IMU Pin Connections 

IMU Breakout Board Pins Raspberry Pi 4 GPIO Pins 

VCC 3V3 Power 

GND Ground 

SCL GPIO 3 (SCL) 

SDA GPIO 2 (SDA) 

 

  Before data collection begins, the accelerometer sensor is initialized and configured 

using the mpu9250_i2c.py program written by Joshua Hrisko and made publicly available in the 

mpu92-calibration repository on GitHub [28]. In addition, during data collection, functions in 

Hrisko’s program are called to read raw bits from the sensor and convert them to acceleration in 

g. During an experiment, data is collected in a continuous loop. In each iteration, an acceleration 

data point (in units of g) for each axis is retrieved and immediately appended to a new line in a 

CSV file, along with a corresponding time stamp. Although saving data points one at a time may 

slow down the collection rate, it avoids appending data to a list, which risks data loss in the event 

of a power shortage. The average data collection frequency is 180 Hz (data points per second).  
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Figure 4: IMU mounted in a calibration cube and connected to a Raspberry Pi 

 

Preliminary Characterization Tests 

 Before planning and performing lengthy data collection and calibration procedures, initial 

tests are performed while the sensor is at rest to better understand the accelerometer’s 

limitations. First, triaxial accelerometer data is collected at 180 Hz for one hour, generating a 

dataset of 645,714 measurements for each axis (x, y, and z). Then, the data is analyzed using 

statistical analysis to understand whether systematic error in the measurements is consistent. 

Determining how much the systematic error changes over time in acceleration measurements is 

important to understand before collecting calibration data. If measurements taken over a small 

period (30-60 seconds) do not have a consistent mean when the accelerometer is at rest, then 

deriving calibration model parameters using multi-position calibration techniques will result in a 

calibration model with high uncertainty. This calibration technique relies on precise mean 

measurements at different orientations, so imprecise measurements will lead to greater 

uncertainty in the optimized parameters.  
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Second, data is collected in 60 individual trials that last one minute each. After each trial, 

the data collection program is restarted, re-initializing the IMU. After every tenth trial, the 

Raspberry Pi was rebooted. Finally, after the 30th trial, the Pi was shut down for two hours before 

performing the last 30 trials. Each trial is analyzed statistically and compared with the others. 

The purpose of this experiment is to determine whether systematic error (characterized by the 

mean of a set of measurements) changes between collection trials. If systematic error in the 

accelerometer changes significantly every time the sensor is turned off and on again, then the 

sensor needs to be calibrated before every use.   

Finally, the preliminary data collected through these experiments are also used to 

determine how much of the calculated displacement error is caused by noise (random 

uncertainty) and how much of the displacement error is caused by bias (systematic uncertainty). 

If all systematic uncertainty is eliminated from a set of accelerometer measurements, any leftover 

displacement drift error is a result of noise. It is important to understand the contribution of noise 

in displacement error before analyzing the success of systematic error calibration because it sets 

a limit on how much displacement error the systematic calibration technique can realistically 

remove.    

 

Statistical Analysis 

Statistical analysis is a valuable tool for interpreting the preliminary data and the 

calibration data. In particular, statistical analysis can reveal important information about random 

and systematic uncertainty. Given a set of N measurements, xi, of a quantity x, the mean, �̅�, of 

the set of measurements represents the best estimate of the quantity [11] 
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 x =  
1

𝑁
𝑥  

 

(9) 

In some cases, the best estimate of systematic uncertainty is given by the mean, representing a 

constant offset above or below the true value of the quantity.  

 If systematic uncertainty is negligible (or constant) in a set of measurements, then the 

standard deviation, σx of the data approximates the random uncertainty [11]. 

 𝜎 =
1

𝑁 − 1
(𝑥 − �̅�)  

 

(10) 

Any one measurement from the data set, then, will have a value of 𝑥 ± 𝜎 . As a side note, the 

quantity 𝜎  is called the variance of the variable x [29].  In addition, the uncertainty of the mean 

of the whole data set is given by the standard deviation of the mean 𝜎 ̅  (SDOM) [11] 

 𝜎 ̅ =
𝜎

√𝑁
 

 

(11) 

The mean of the data can be written as �̅� ± 𝜎 ̅ . 

 

Experimental Data Collection  

Accelerometer data collection is performed based on the method described by Aggarwal 

et al. [15], in which the accelerometer is rotated to six different orientations on a flat, level 

surface. The sensor is rotated to each orientation, and acceleration measurements are collected 

for 30 seconds (180 Hz) while the device is at rest. The data recorded at each orientation is then 

averaged and saved to a CSV file, along with a ground truth label that indicates the actual gravity 

components experienced by each axis. If the surface that the sensor rests on is truly level, then 

the direction of gravity, relative to the axes of the accelerometer, is always known. Having a 
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reliable ground truth estimate is essential for accurate least-squares fitting. In the lab, a level 

surface is approximated using a flat plastic plank and several metal washers. The washers are slid 

underneath the corners of the plank until the surface is level, approximately verified by five 

different bubble levels. Figure 5 shows the experimental setup. To ensure that the IMU is always 

stationary during data collection, a 100 gram weight rests on top of the calibration cube.   

Next, the six-position acceleration data is used to optimize parameters in three different 

accelerometer output models, giving calibration equations. After all orientations in the data 

collection procedure are recorded, additional static data at one orientation is recorded to a CSV 

file for one minute. Each measurement is paired with a time stamp. This dataset of acceleration 

over time is used to test the accuracy of the calibration models that are optimized using the 

multi-orientation data. The process of collecting six-position data, optimizing the error models, 

and testing them on static data is repeated over three consecutive trials.  

Figure 5: Six-Position data collection experimental setup 

 

Optimizing Accelerometer Model Parameters 

 After collecting calibration data, three accelerometer output models from the literature 

(Equations 3, 4, and 5) are fit to the data using the curve_fit function from the python package 
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scipy.optimize. The inputs into the curve_fit function are a fitting equation, an array of true 

acceleration values, a corresponding array of measured acceleration values, an array of 

uncertainty values in the measurements, and initial guesses of the equation parameters [30]. The 

outputs of the curve_fit function are the optimized parameters and a covariance matrix that 

approximates the uncertainty in the parameters [30]. Matrix members on the diagonal of the 

matrix represent the variances (standard deviation squared) of each parameter, while the off-

diagonal components represent the covariances between pairs of parameters [31]. When 

analyzing the optimized parameters, the square root of the variances in the matrix characterizes 

the uncertainty of the optimized parameters. For each data collection method, the three 

accelerometer models are optimized in order of complexity, and the optimized parameters of one 

model are used as initial guesses in the next model. Three models are listed below in order of 

complexity: 

 Model 1:    
𝑎

𝑎

𝑎

=

𝑎
𝑎
𝑎

+

𝑏
𝑏

𝑏

  [2] 

 

(3) 

 

 Model 2:   
𝑎

𝑎

𝑎

=

𝑆 0 0
0 𝑆 0

0 0 𝑆

𝑎
𝑎
𝑎

+

𝑏
𝑏

𝑏

 [15] 

 

(4) 

 

 Model 3:    
𝑎

𝑎

𝑎

=

𝑆 𝑆 𝑆

𝑆 𝑆 𝑆

𝑆 𝑆 𝑆

𝑎
𝑎
𝑎

+

𝑏
𝑏

𝑏

  [15, 19, 20, 21] 

 

(5) 

First, the bias vector in Model 1 is optimized. Then, the optimized bias vector becomes 

the initial guess of the bias in Model 2, increasing the speed of the fitting. Next, the bias and 

scale factor vectors optimized in Model 2 become the initial guesses in Model 3. Finally, the 

biases, scale factors, and misalignments are optimized in Model 3. After optimizing all three 
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accelerometer models, each model is used to calibrate the static test data collected during the 

trial. The mean and standard deviation of the uncalibrated data are compared with the mean and 

standard deviation of the data after calibrating with each model. Then, each set of data is 

integrated twice over time to calculate the measured displacement of the sensor. The 

displacement drift is compared between each calibration model to analyze their calibration 

accuracy and determine which model is best.  

 

Final Calibration Trial 

 After determining the best accelerometer calibration model, one final calibration trial is 

performed that incorporates the displacement error modeling technique described by Niu et al. 

and Irfan et al. [2, 18]. First, six-position data collection is performed as discussed previously, 

followed by two rounds of 60 second data collection while the senor is on the level surface with 

the z-axis pointed vertically. Next, the parameters in Model 3 are optimized using the six-

position data. Model 3 is used to calibrate the first set of 60 second static data, and the 

acceleration is integrated twice to calculate the displacement over time of the sensor. Then, least-

squares optimization is used to fit Equation 7 (see Chapter 2) to the displacement data. This 

function models the remaining error in displacement after calibrating the acceleration with 

Model 3. Finally, the second set of 60 second static data is calibrated using Model 3, integrated 

to calculate the displacement, and calibrated using the displacement error model. The goal of this 

process is to introduce a second round of calibration that could further reduce the amount of drift 

in displacement calculations.   
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Chapter 4: Results 

Preliminary Characterization Tests 

The first question that the preliminary characterization tests attempt to answer is whether 

systematic error in accelerometer measurements changes significantly over time when the sensor 

is at rest in a controlled environment. One hour of static test data was collected at a rate of 180 

Hz while the sensor was mounted to a stationary, unlevel table. Figure 6 shows histograms of the 

data from each axis (x, y, and z). Before plotting the histograms, the mean of the data was 

calculated and subtracted from the entire dataset to center the data around 0 m/s2. Plotting in this 

way makes it easier to visualize the spread of the data.  

Figure 6: Histograms of each axis (x, y, and z) of the one-hour accelerometer data 



26 
 

The mean, standard deviation, and standard deviation of the mean (SDOM) of the one-

hour data are calculated and displayed in Table 3. Note that only the order of magnitude of the 

mean, not the value of the mean itself, is important in this analysis. (Data was collected on an 

unlevel surface). When compared with the magnitude of the mean, the SDOM is very small, 

indicating high certainty in the mean of the data, even though the uncertainty in one 

measurement (given by the standard deviation) is somewhat large. This is an important result 

because it assures that the systematic error in acceleration measurements is consistent when the 

sensor is held at rest at one orientation. Therefore, when calibration models are derived from 

measurements, it is reasonable to assume that the model’s accuracy does not significantly change 

while it is used to calibrate new data for a long time if the new data is collected immediately after 

deriving the model. In calibration experiments, as described in the Methodology section, static 

test data is collected immediately after collecting the multi-position data that is used for 

parameter optimization.  

The histograms for the x and z axes in Figure 6 exhibit unusual behavior in the 

distribution. Both graphs have “wings” to the left and right of the mean where the frequency of 

values starts to increase when moving away from the center. Strangely, at a certain distance 

away from the mean, the frequency suddenly drops to zero, making the plot look like it was cut 

off. The cause of this behavior is uncertain, but based on the SDOM’s small size, it does not 

largely impact the mean of the data.    

Table 3: Statistical Analysis of One Hour Accelerometer Static Data (unlevel surface) 

 Mean (m/s2) Standard Deviation (m/s2) SDOM (m/s2) 

x 1.08800 0.05 0.00006 

y 0.53304 0.02 0.00002 

z -2.27746 0.06 0.00007 
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Next, 60 one-minute data collection trials were performed while the sensor was at rest 

and attached to a stationary wooden block. The mean of each trial was calculated and graphed, as 

shown in Figure 7. The means deviate between trials, and the most significant change occurred 

when the Raspberry Pi was shut off for two hours between the 30th and 31st trials. To analyze the 

results of this test, first, the SDOM of each one-minute trial was calculated. The average SDOMs 

of the x, y, and z axes were 0.0003, 0.0002, and 0.0004, respectively. Since these values are 

much smaller than the mean sensor measurements shown in Figure 7, it is reasonable to assume 

that the mean reported in each trial is accurate.  

Figure 7: Mean of all 60 one-minute trials.  

However, it is clear from the graph that the means between trials still deviate 

significantly. This quantity is approximated by taking the standard deviation of the entire set of 

trials. The standard deviations for the x, y, and z axes (0.004, 0.002, and 0.006, respectively), 

represent the uncertainty in the mean of each trial, relative to the entire set of trials, which are 

one order of magnitude larger than SDOM uncertainty reported by each trial, relative to itself. 
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These results imply that the systematic uncertainty of the sensor is not consistent when the 

device and/or the Raspberry Pi are rebooted. Therefore, as discussed in Chapter 3, when 

calibration methods are tested, test data is collected immediately after calibration data is 

collected to rule out this source of error.  

Finally, the effect of noise on displacement calculation errors is investigated using data 

from one of the 60 one-minute trials. First, the measurements for each axis are converted to units 

of m/s2, and the acceleration due to gravity (9.797 m/s2) is subtracted from the z-axis because it 

is vertically oriented on the approximately level platform). Next, the measurements are 

numerically integrated twice over time to calculate the displacement, as shown in Figure 8. After 

only one minute of data collection, the displacement along each axis exceeds an absurdly large 

magnitude of 1000 meters. Since the sensor is known to be at rest, the calculated displacement 

should be zero meters. Therefore, there is a significant error in the calculated displacement when 

the sensor is not calibrated.  

Figure 8: Displacement over time calculated from raw accelerometer data. 
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Next, the mean of each axis is calculated and subtracted from the data to remove 

systematic error (constant bias) from each axis. As with the data collected over one hour, the 

standard deviation of the mean is sufficiently small to justify assuming a near-constant bias over 

the one minute of data collection. The bias-corrected acceleration data is integrated twice to 

calculate the new displacement over time, as shown in Figure 9. With bias removed, the 

displacement after one minute does not exceed 1 meter. This dramatic improvement from the 

displacement error in the raw data (1000 meters) clearly indicates that the effect of noise on the 

displacement error (when the sensor is at rest) is insignificant compared with the effect of the 

bias.  

Figure 9: Displacement calculated from accelerometer data after bias is removed. 

 

Six-Position Calibration 

 Six-position data was collected over three trials, and the data from each trial was used to 

optimize the parameters in the three accelerometer output models (see Table A-3 in Appendix A 

for a complete table of optimized parameters). As discussed in the Methodology chapter, one 

minute of static test data was recorded after every data collection trial, along with time stamps. 
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After optimizing the three accelerometer models, each model was used to calibrate the static test 

data to compare the effectiveness of the models. Table 4 shows the mean of each axis of the test 

data in Trial 1 before and after calibrating with each model. (Trials 2 and 3 are not included in 

Table 4 because they are very similar to Trial 1, but the full results from all three trials are found 

in Table A-1 in Appendix A). In Table 4, the uncertainty percentage of the mean was derived 

from the SDOM of the test data.   

Table 4: Mean of Trial 1 Static Test Data Before and After Calibration 

Calibration Method Used x mean (m/s2) y mean (m/s2) z mean (m/s2) 

No Calibration 0.9617 ± 0.03% 0.6050 ± 0.09% -2.2238 ± 0.019% 

Model 1: Bias 0.0638 ± 0.5% 0.1411 ± 0.4% 0.2296 ± 0.18% 

Model 2: Add Scale Factors 0.0638 ± 0.5% 0.1411 ± 0.4% 0.0140 ± 3% 

Model 3: Add Misalignments      -0.0252 ± 1.2% 0.0367 ± 2.2% 0.0139 ± 3% 

 

 Since the data was collected while the sensor was at rest, the expected mean acceleration 

of each axis is zero (after gravity is removed from the z-axis). Therefore, non-zero mean values 

in Table 4 represent an error in the mean acceleration measurement. Looking at Table 4, every 

method of calibration improved the mean of the test data, compared to the original uncalibrated 

mean. Interestingly, some calibration models had more effect on the mean than others. For 

example, in Trial 1, the means of the x and y axes after calibrating with Model 1 are nearly 

identical to the means after calibrating with Model 2. On the other hand, the means in both axes 

improved by 0.04 and 0.1 m/s2 between Model 2 and Model 3. Similarly, the mean of the z-axis 

after calibrating with Model 2 and Model 3 are comparable, while the improvement between 

Model 1 and Model 2 is approximately 0.21 m/s2. Overall, calibrating with Model 3 resulted in 

the least amount of mean error across all three axes and all three trials (see Appendix A). 
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 The results from Table 4 are verified further by taking the calibrated and uncalibrated 

data in each trial and integrating them over time (using the recorded time stamps). Table 5 shows 

the results from Trial 1, and Table A-2 in Appendix A contains the results of all three trials. 

(Again, the results of Trials 2 and 3 are comparable to Trial 1). With no calibration, the 

displacement along each axis drifts by more than 1000 meters after 60 seconds (sitting at rest on 

the table). After calibrating with Model 1, the displacement decreases by approximately one 

order of magnitude. Finally, after calibrating with Model 3, the drift in each axis is reduced 

below 100 meters.  

Table 5: Final Integrated Displacement of Trial 1 Static Test Data (60 seconds) 

Calibration Method Used x (m) y (m) z (m) 

No Calibration 1731 1089 -4002 

Model 1: Bias 115 254 413 

Model 2: Add Scale Factors 115 254 25 

Model 3: Add Misalignments -45 66 25 

 

Final Calibration Trial 

 In the final calibration trial, another set of six-position data was collected, along with two 

60 second static test data sets. After collecting data, the parameters in Model 3 were optimized, 

and the model was used to calibrate the first 60 second static test data set. After integrating the 

calibrated acceleration to calculate the displacement, the parameters in the displacement model 

were optimized to fit the model to the displacement curve. Table A-4 in Appendix A gives all the 

derived parameters in this trial. Finally, the second set of test data was calibrated using Model 3, 

integrated for displacement, and calibrated a second time using the displacement model. Table 6 

compares the final calculated displacement of the second set of test data after 60 seconds when 
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no calibration, acceleration calibration, and both acceleration and displacement calibration are 

used.  

Table 6: Displacement of Final Trial Static Test Data Set Two (60 seconds) 

Calibration Method Used x (m) y (m) z (m) 

No Calibration 1760 1061 -4014 

Model 3 (Acceleration Only) -35 96 25 

Model 3 and Displacement 
Model 

-1 -1 -7 

 

Figure 10: Displacement error model fitted to new displacement data. 

Additionally, Figure 10 shows how well the displacement model fit to the second set of 

displacement data (after calibrating the acceleration and integrating).  The fit is well aligned with 

the x and y displacement data (corresponding with a very small displacement drift along those 

axes in Table 6), but the fit begins to diverge significantly from the z displacement data, resulting 

in a larger accumulated displacement drift after 60 seconds. Overall, when compared with no 
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calibration and acceleration calibration only, calibrating with the acceleration and displacement 

models significantly improves the displacement results, even though significant drift still occurs.  
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Chapter 5: Conclusions 

MEMS accelerometers are compact, light, and cheap electronic sensors that might seem 

ideal for tracking a robot’s odometry. However, inherent flaws in the sensor’s linear acceleration 

measurements make them impossible to use effectively for position tracking without the aid of 

calibration or additional sensors. In this project, a mathematical modeling approach was used to 

calibrate the accelerometer’s output data and attempt to reduce the effect of displacement drifting 

to the point where the sensor could be used practically in robot odometry. Of the three 

accelerometer models presented, Model 3 (which accounts for bias, scaling, and misalignments) 

performed the best, dramatically reducing the amount of drift in displacement calculations from 

the scale of 1000 to the scale of 100. Additionally, calibrating the displacement calculations 

using a polynomial error model reduced the displacement drift further.  

Figure 11: Final calibrated displacement (using accelerometer Model 3 and the displacement error model) 

Figure 11 shows a graph of the displacement over time after calibrating the data with the 

accelerometer model and the displacement model. Even though the drift in displacement was 
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reduced significantly compared with the uncalibrated results, the displacement functions shown 

in Figure 11 illustrate how unstable the system is. Trying to calibrate an accelerometer so that it 

can be used by itself for displacement odometry is like swimming against a strong current. No 

matter how much the data accuracy improves, small amounts of error in acceleration will always 

exist and accumulate over time in displacement calculations. Depending on how long a robot 

needs accurate robot odometry, using an accelerometer by itself may or may not be feasible. In 

the future, further testing should be performed to investigate how well the accelerometer 

approximates distance traveled while attached to a moving robot.  

 

Sources of Error 

Although the acceleration calibration models (optimized using six-position data 

collection) improved the displacement approximations, even the smallest amount of drift after 

employing this calibration model, 25 meters achieved in Trial 1, is still unacceptably large, 

considering that the sensor only collected data for 60 seconds. 25 meters (approximately 82 feet) 

is much, much larger than the size of the IMU breakout board used in the experiments (2.5 by 

1.5 cm), so an error in displacement of that size makes any odometry calculation completely 

useless. Therefore, while the six-position calibration method using least-squares fitting improves 

the sensor’s measurements, it is not enough by itself for practical, long-term robotics odometry 

tracking. On the other hand, from the results of the Preliminary Characterization Tests, we know 

that it is possible to remove systematic uncertainty directly from acceleration measurements 

when the sensor is at rest and produce far more accurate odometry. This raises the question of 

why the six-position calibration method was so ineffective.  
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One source of error in the experimental system that contributes to drift in the 

displacement results is noise (random uncertainty) in the measurements. However, in the 

preliminary characterization tests, random uncertainty only contributed to 0.4 to 0.6 meters of 

drift, which is much smaller than the total drift in the three six-position calibration trials, even 

after calibrating with Model 3. Therefore, more significant sources of error must exist in the 

system.  

Figure 12: Calculating the angle of the table, relative to the direction of gravity. 

 One possibility could be that the platform that the accelerometer rested on during the data 

collection is not as level as was assumed. This is tested by using the accelerometer x- and y-axis 

mean measurements from Table 4 to calculate the approximate lateral angles of the 

accelerometer relative to a perfectly level surface. Figure 12 shows a diagram for calculating the 

approximate angles using equations 12 and 13.  

 𝜃 = sin   
 

(12) 

 𝜃 = sin   
 

(13) 

When the x and y acceleration measurements are uncalibrated, the calculated angles are 5.6° and 

3.5°, respectively. Setting up a simple protractor with suspended mass on the edge of the table 
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used for data collection shows that the calculated angles are far too large. The protractor 

measures an angle between 0 ± 1°. Next, when the x and y acceleration measurements are 

calibrated using Model 3, the calculated angles are -0.15° and 0.21°, respectively. These 

calculated angles fall within the uncertainty bars of the measured angle of the table, so they are 

reasonable estimates.  

 It is unclear why the six-position calibration method was unable to remove more 

uncertainty from acceleration measurements than reported. However, a more detailed analysis of 

the sensor, its limitations, and the limitations of the experimental setup/calibration model could 

reveal the sources of error. It is highly likely that the sensor itself is often inconsistent in the 

values it reports between trials, leading to slightly different acceleration values that accumulate 

into large error when calculating displacement.   

 

Future Work 

 In the future, the calibration methods discussed in this project (accelerometer Model 3 

and the displacement error model) should be tested on multiple IMU sensors to investigate the 

consistency in results. Additionally, the methods should be tested on a moving robot to simulate 

real-world applications in which odometry estimations are needed. Finally, while these 

calibration methods are simple and quick to implement, more advanced calibration methods 

could be researched and tested to investigate whether there is a more effective way of using 

accelerometers for displacement tracking.   
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Appendix A: Six-Position Data Collection Full Results 

Table A-1: Mean of Trial Test Data Before and After Calibration 

Trial 1 

Calibration Method Used x (m/s2) y (m/s2) z (m/s2) 

No Calibration 0.9608 ± 0.03% 0.6045 ± 0.09% -2.2217 ± 0.018% 

Model 1: Bias Only 0.0638 ± 0.4% 0.1410 ± 0.4% 0.2294 ± 0.17% 

Model 2: Add Scale Vector 0.0637 ± 0.4% 0.1410 ± 0.4% 0.0140 ± 3% 

Model 3: Add Misalignments      -0.0252 ± 1.0% 0.0367 ± 1.4% 0.0139 ± 3% 

Trial 2 

Calibration Method Used x (m/s2) y (m/s2) z (m/s2) 

No Calibration 0.9476 ± 0.04% 0.6004 ± 0.08% -2.2026 ± 0.02% 

Model 1: Bias Only 0.0572 ± 0.6% 0.1420 ± 0.4% 0.2408 ± 0.17% 

Model 2: Add Scale Vector 0.0572 ± 0.6% 0.1420 ± 0.4% 0.0261 ± 1.6% 

Model 3: Add Misalignments -0.0194 ± 1.8% 0.0354 ± 1.4% 0.0261 ± 1.6% 

Trial 3 

Calibration Method Used x (m/s2) y (m/s2) z (m/s2) 

No Calibration 0.9452 ± 0.04% 0.5940 ± 0.08% -2.2057 ± 0.19% 

Model 1: Bias Only 0.0621 ± 0.6% 0.1383 ± 0.3% 0.2246 ± 0.19% 

Model 2: Add Scale Vector 0.0621 ± 0.6% 0.1383 ± 0.3% 0.0056 ± 7% 

Model 3: Add Misalignments -0.0165 ± 2% 0.0334 ± 1.4% 0.0056 ± 7% 

 

Table A-2: Final Integrated Displacement of Trial 1 Static Test Data 

Trial 1 

Calibration Method Used x (m) y (m) z (m) 

No Calibration 1729 1088 -3999 

Model 1: Bias 115 254 412 

Model 2: Add Scale Factors 115 254 25 
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Model 3: Add Misalignments -45 66 24 

Trial 2 

Calibration Method Used x (m) y (m) z (m) 

No Calibration 1705 1080 -3961 

Model 1: Bias 103 255 433 

Model 2: Add Scale Factors 103 255 47 

Model 3: Add Misalignments -35 63 46 

Trial 3 

Calibration Method Used x (m) y (m) z (m) 

No Calibration 1702 1071 -3970 

Model 1: Bias 113 251 404 

Model 2: Add Scale Factors 113 251 10 

Model 3: Add Misalignments -29 62 10 

 

Table A-3: Model Parameters with Uncertainty 

Model 1: Bias Only 

Parameter Trial 1 Trial 2 Trial 3 

bx  0.093 ± 3%  0.090 ± 3%  0.089 ± 3% 

by  0.043 ± 7%  0.043 ± 7%  0.043 ± 7% 

bz -0.251 ± 3% -0.248 ± 2% -0.248 ± 2% 

  

Model 2: Bias and Scale Factor Vector 

Parameter Trial 1 Trial 2 Trial 3 

bx  0.093 ± 4%  0.090 ± 3%  0.089 ± 3% 

by  0.043 ± 7%  0.043 ± 7%  0.043 ± 7% 

bz -0.251 ± 1.2% -0.250 ± 1.2% -0.249 ± 1.2% 

Sxx  1.000 ± 1.3%  1.000 ± 0.9%  1.000 ± 0.7% 

Syy 1.000 ± 1%  1.000 ± 0.8%  1.000 ± 0.8% 
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Szz  1.022 ± 0.5%  1.022 ± 0.5%  1.023 ± 0.5% 

  

Model 3: Bias and Scale Factor Matrix with Misalignments 

Parameter Trial 1 Trial 2 Trial 3 

bx  0.0916 ± 0.5%  0.0907 ± 0.3%  0.0903 ± 0.7% 

by  0.046 ± 4%  0.0461 ± 4%  0.0459 ± 4% 

bz -0.2501 ± 0.3% -0.2491 ± 0.2% -0.2480 ± 0.3% 

Sxx  1.0001 ± 0.17%  0.9999 ± 0.07%  0.9999 ± 0.14% 

Syy  1.000 ± 0.5%  1.000 ± 0.4%  1.000 ± 0.4% 

Szz 1.0220 ± 0.11% 1.0220 ± 0.1% 1.0225 ± 0.13% 

Sxy  0.0080 ± 9%  0.0063 ± 6%  0.0066 ± 14% 

Sxz  0.0086 ± 9%  0.0078 ± 5%  0.0078 ± 17% 

Syx -0.007 ± 30% -0.006 ± 30% -0.007 ± 30% 

Syz  0.006 ± 50%  0.007 ± 40%  0.007 ± 40% 

Szx -0.0100 ± 11% -0.0095 ± 11% -0.0094 ± 14% 

Szy -0.0047 ± 30% -0.0047 ± 23% -0.0042 ± 33% 

 

Table A-4: Final Calibration Trial Model Parameters with Uncertainty 

Model 3: Bias and Scale Factor Matrix with Misalignments 

Parameter Optimized Value 

bx 0.0922 ± 0.8% 

by 0.0462 ± 4% 

bz -0.2496 ± 0.25% 

Sxx 0.9997 ± 0.24% 

Syy 1.001 ± 0.4% 

Szz 1.0228 ± 0.09% 

Sxy 0.0055 ± 18% 

Sxz 0.0088 ± 12% 
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Syx -0.0068 ± 40% 

Syz 0.008 ± 40% 

Szx -0.0092 ± 11% 

Szy -0.0040 ± 30% 

 

Displacement Model (Polynomial Fitting) 

Parameter Optimized Value 

q0,x -0.0328 ± 1.2% 

q1,x 0.00880 ± 0.3% 

q2,x -0.018965 ± -0.005% 

q0,y -0.0480 ± 1.0% 

q1,y 0.01138 ± 0.3% 

q2,y 0.053362 ± 0.002% 

q0,z -0.0366 ± 1.6% 

q1,z 0.02727 ± 0.17% 

q2,z 0.010863 ± 0.014% 
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