Neuroscience: Exploring the Brain

Chapter 3: The Neuronal Membrane at Rest

Introduction

• Action potential in the nervous system
 – Action potential vs. resting potential

Not at rest action potentials

Starring:
 water and its polar covalent bonds
 ions and distribution of + or – charges
 membranes

also starring
 proteins and enzymes
 diffusion, including concentration gradients
 electrical potential (VOLTAGE)
 electrical conductance
The Cast of Chemicals

- Cytosolic and Extracellular Fluid
 - Water
 - Key ingredient in intracellular and extracellular fluid
 - Key feature – uneven charge

The Cast of Chemicals

- Cytosolic and Extracellular Fluid (Cont’d)
 - Ions: Atoms or molecules with a net electrical charge
 - Cations
 - Anions
 - Spheres of hydration

The Cast of Chemicals

- Protein – enzymes, receptors, cytoskeleton
 - 20 amino acids
 - R group variable
 - Hydrophobic
 - Hydrophillic
 - other
The Cast of Chemicals

- **Protein**
 - Structure (Cont'd)
 - Peptide bonds
 - Polyamides (amino to carboxyl)
 - Four levels of protein structure

The Cast of Chemicals

- **The Phospholipid Membrane**
 - Hydrophilic
 - Dissolve in water due to uneven electrical charge (e.g., salt)
 - Hydrophobic
 - Does not dissolve in water due to even electrical charge (e.g., oil)
 - Lipids are hydrophobic
 - Contribute to resting and action potentials
Slide 10

< 5 nm

H₂O = < 1 nanometer
One billionth of meter

Slide 11

channels

can be open
or gated by environment

Slide 12

pumps - enzymes

sodium potassium pump
breaks down ATP in presence of internal Na⁺
Ion movement results from:

DIFFUSION
Concentration gradient (movement from high to low - relative difference in concentration between 2 locations)

CHARGE
Voltage gradient (same but volts)

Equilibrium occurs when CG balances VG

note this can be disproportionate

CURRENT – movement of electrical charge

I

amps

positive – movement of + charge
negative – movement of - charge

(positive in direction)

HOW MUCH CURRENT WILL FLOW?

1) ELECTRICAL POTENTIAL (voltage)
2) ELECTRICAL CONDUCTANCE
Slide 16

potential
membrane potential
resting membrane potential
equilibrium potential
action potential – next chapter

Slide 17

potential = voltage
force exerted –
difference between
(-) terminal (cathode)
(+) terminal (anode)
FLOW IS CURRENT
VOLTAGE IS DIFFERENCE (12V BATTERY)

Slide 18

CONDUCTANCE - ABILITY TO TRAVEL

\(g \)
measured in siemens
metal is a good conductor
it offers little resistance
Resistance - inverse of conductance
Slide 19

HOW MUCH CURRENT WILL FLOW??

Ohm’s law

\[I = gV \]

CURRENT = **CONDUCTANCE** \(\times \) **VOLTS**

\(I = \) current

\(g = \) conductance

\(V = \) volts or potential difference

Slide 20

membrane potential

VOLTAGE ACROSS MEMBRANE

at any given moment

- membrane is thin
- it "stores" charge
- it has "capacitance"

Slide 21

RESTING POTENTIAL

- GREATER NEGATIVE CHARGE INTRACELLULARLY

OUTSIDE \(\text{Na}^+ \) and \(\text{Cl}^- \) (also \(\text{CA}^{++} \))

1) at rest, most sodium channels closed, chloride open
2) sodium potassium pump is always pumping out \(\text{Na}^+ \)

INSIDE \(\text{K}^+ \) and protein anions \(\text{A}^- \)

1) \(\text{K}^+ \) channels always open
2) \(\text{A}^- \) are too big to leave

-65 mV (by convention)
Slide 22

Equilibrium potential

• no NET movement

Slide 23

concentrated
dilute

no channels, no potential - no Vm

Slide 24

diffusion rules! (for a while)

movement along concentration gradient
BUT REMEMBER

Ion movement results from:

DIFFUSION

Concentration gradient (movement from high to low - relative difference in concentration between 2 locations)

AND

CHARGE

Voltage gradient (same but volts)

A- left, so INSIDE becomes more -- and K+ will be pulled back in

Equilibrium occurs when CG BALANCES VG

REMEMBER this can be disproportionate

NO NET MOVEMENT
Nernst Equation
Calculates equilibrium potential of ion
\[E = \frac{RT}{zF} \ln \left(\frac{c}{c^*} \right) \]
- \(E \) = potential (volts)
- \(c \) = concentration (moles)
- \(z \) = charge or valence of the transported substance
- \(R \) = gas constant (8.3143 Joules/mole/degree)
- \(T \) = temperature (298 degrees kelvin)
- \(F \) = Faraday constant (charge of 1 mole electrons or 96490 Joules/mole/volt)

Nernst Equation
equilibrium
balance of diffusion and electricity

\[E_K \quad -82 \text{ mV} \]
\[E_{Na} \quad +62 \text{ mV} \]

ionic driving force
- difference between membrane potential (whatever) and equilibrium potential

\[V_m - E_{ion} \]
Slide 31

Goldman equation
resting potential

• takes all ionic PERMEABILITY into account
Mostly K⁺ and Na⁺ and Cl⁻
• ~ 65 mV
(Nernst -equilibrium potential single ion)

Slide 32

The Ionic Basis of The Resting Membrane Potential

• Equilibrium Potentials (Cont’d)
 • Four important points
 • Large changes in \(V_m \)
 • Minuscule changes in ionic concentrations
 • Net difference in electrical charge
 – Inside and outside membrane surface
 • Rate of movement of ions across membrane
 – Proportional \(V_m - E_{ion} \)
• Concentration difference known: Equilibrium potential can be calculated

Slide 33

The Ionic Basis of The Resting Membrane Potential

• The Distribution of Ions
 Across The Membrane

<table>
<thead>
<tr>
<th>Ion</th>
<th>Concentration (mM)</th>
<th>Conductance (mS cm²)</th>
<th>Rate (ms⁻¹)</th>
<th>Trans. (m² s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>K⁺</td>
<td>150</td>
<td>1.2</td>
<td>60</td>
<td>0.01</td>
</tr>
<tr>
<td>Na⁺</td>
<td>16</td>
<td>1.1</td>
<td>50</td>
<td>0.04</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>10</td>
<td>1.0</td>
<td>120</td>
<td>0.03</td>
</tr>
<tr>
<td>Cl⁻</td>
<td>150</td>
<td>1.2</td>
<td>60</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Notice Ca²⁺ small
Slide 34

Sodium potassium pump
breaks down ATP in presence of internal Na+
70% of brain ATP
AGAINST concentration gradients K+ INSIDE NA+ OUTSIDE
Ouabain – poison arrow also Ca++ pumps

Slide 35

why do you have to know this?

• **it is** THE DIFFERENCE BETWEEN LIFE AND DEATH

Slide 36

K+ tightly regulated

• BBB
 – CNS
• astrocytes
K+ channels deformed
let in NA+
epilepsy

Potassium, euthanasia, capital punishment